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A Functional Subnetwork Approach
to Designing Synthetic Nervous
Systems That Control Legged Robot
Locomotion
Nicholas S. Szczecinski1*, Alexander J. Hunt2 and Roger D. Quinn1

1Biologically Inspired Robotics Laboratory, Department of Mechanical and Aerospace Engineering, Case Western Reserve
University, Cleveland, OH, United States, 2Department of Mechanical and Materials Engineering, Portland State University,
Portland, OR, United States

A dynamical model of an animal’s nervous system, or synthetic nervous system (SNS),
is a potentially transformational control method. Due to increasingly detailed data on the
connectivity and dynamics of both mammalian and insect nervous systems, controlling
a legged robot with an SNS is largely a problem of parameter tuning. Our approach to
this problem is to design functional subnetworks that perform specific operations, and
then assemble them into larger models of the nervous system. In this paper, we present
networks that perform addition, subtraction, multiplication, division, differentiation, and
integration of incoming signals. Parameters are set within each subnetwork to produce
the desired output by utilizing the operating range of neural activity, R, the gain of the
operation, k, and bounds based on biological values. The assembly of large networks
from functional subnetworks underpins our recent results with MantisBot.

Keywords: synthetic nervous system, design tools, functional subnetworks, leaky integrator, arithmetic, differen-
tiator, memory

1. INTRODUCTION

The development of robotic control that can closelymatch the dexterity and adaptability found in the
animal kingdom has so far remained elusive. This is because the control of locomotion is a complex
process controlled by dynamic systems which are not fully understood. However, recent advances in
neural imaging and recording has lead to an increase in the abundance and detail of our knowledge
of how an animal’s nervous system controls its body within the context of its environment (for a
recent review, see Buschmann et al. (2015)).

These advances have lead to an explosion of bio-inspired robotic systems in recent years (for a
review, see Ijspeert (2014)). These models can be broadly categorized into a range of template and
anchor models. In a template model, biological principles are abstracted, such using as a spring-
loaded inverted pendulum (SLIP)model to investigate bipedal locomotion (Blickhan, 1989) or using
Whegs to investigate insect locomotion (Allen et al., 2003; Schroer et al., 2004). These models seek
to explain how specific characteristics of animal locomotion lead to desired behaviors, or they
exploit certain principles of animal locomotion for more agile robotic systems. Anchor models,
in contrast, seek to directly mimic particular mechanical or control mechanisms from animals,
in order to understand how they function. Robots such as Pleurobot (Karakasiliotis et al., 2016),
Puppy (Hunt et al., 2017), MantisBot (Szczecinski and Quinn, 2017; Szczecinski et al., 2017a), and
others are relevant anchor models, because they seek to use highly articulated robots with central
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pattern generator controllers to understand how specific animals
are capable of providing adaptable locomotion with their unique
morphology and physical constraints.

The template versus anchor model distinction is not limited
to physical models; it can also be applied to control systems.
The majority of robotic controllers so far have been template
models, either mathematical abstractions of neural systems, or
black box artificial neural networks. This is because effective tools
for setting parameters in more realistic, dynamic neural models
to produce reliable behavior in a robotic system do not yet exist.
In spite of growing knowledge about the neural connectivity that
underlies locomotion control, detailed data for tuning these sys-
tems (neural time constants, ion channel conductivities, synap-
tic conductivities, etc.) remain largely unavailable, requiring the
modeler or engineer to tune these parameter values. However, this
is an inherently difficult task because there are many parameters
to be tuned in a model, and likely many different parameter
combinations that lead to indistinguishable performance (Prinz
et al., 2004; Marder and Taylor, 2011). Thus, the emphasis in
choosing parameter values should not be on selecting the singu-
lar “correct” values, but rather sufficiently “effective” values. In
this work, we tune parameter values in functional subnetworks
for addition, subtraction, multiplication, division, differentiation,
and integration of incoming signals and use analytical techniques
to identify constraints on the parameter values that must be met
for the intended calculations to occur. Larger networks can then
be assembled from these subnetworks with no additional tuning
(Szczecinski and Quinn, 2017; Szczecinski et al., 2017a). In this
manuscript, “tuning” refers to selecting the static parameter values
for a network; “learning” refers to changing the parameter values
while the model performs a task, either in simulation or in a
robot, based on its performance; and “adapting” refers to a model
qualitatively changing its behavior (e.g., walking more slowly),
either with or without “learning.”

Neuromechanical models may be tuned in a supervised or
unsupervised way. A supervised tuning method adjusts the
parameters of the model until the model replicates animal data.
This includes tuning the model by hand (Daun-Gruhn and Tóth,
2010; Szczecinski et al., 2014; Markin et al., 2016), which is a
time-consuming and imprecise process. Such imprecision may be
acceptable in simulation studies, but provides many difficulties
for robots that must interact with real environments. Techniques
do exist for tuning controllers based on animal locomotion data
(Schilling et al., 2013; Hunt et al., 2015b, 2017; Karakasiliotis et al.,
2016). However, collecting kinematic and dynamic data from
animals is time-consuming and expensive, and once collected,
must be further processed to scale the dynamics of the animal to
the robot (Karakasiliotis et al., 2016;Hunt et al., 2017). In addition,
using cross-individual average values for tuning dynamical neural
models may fail in many cases, because the average may not
represent any one individual (Golowasch et al., 2002; Marder
and Taylor, 2011). Large amounts of animal data may be used
to tune a control network of abstracted artificial neural networks
(Schilling et al., 2013). Methods like back-propagation can be
used to adjust synaptic weights in the network until it captures
the animal data arbitrarily closely, if it has enough connections
(Trappenberg, 2009). However, because the control network

is abstracted, so are the biological insights gained from the
model.

Unsupervised tuning methods, in contrast, tune the model
based on how well the model accomplishes a task, such as
navigating toward a goal, without comparison to animal data.
These methods frequently use genetic algorithms (GAs) (Beer
and Gallagher, 1992; Haferlach et al., 2007; Agmon and Beer,
2013; Izquierdo and Beer, 2013) or reservoir computing (RC)
(Dasgupta et al., 2015) to testmany different networks and param-
eter values, based on a simulated agent’s performance. GAs can
be effective at finding networks that perform specific opera-
tions, such as oscillating (Beer and Gallagher, 1992), navigat-
ing (Haferlach et al., 2007), or switching between foraging tasks
(Agmon and Beer, 2013). However, this approach has some draw-
backs. Specifically, the evolution process is slow, requiring the
simulation of hundreds or thousands of parameter combinations
(Agmon and Beer, 2013), which may take days without great
computing power. The speed and likelihood of success can be
increased by embedding functional subnetworks in the network
(Pasemann et al., 2001; Haferlach et al., 2007), which may be
identified by brute-force (Prinz et al., 2003), dynamical systems
analysis (Hunt et al., 2017), or constraints on network connectivity
and parameter values (Haferlach et al., 2007). In this paper, we
analytically derive parameter constraints to eliminate the need for
GAs altogether, and guarantee network performance.

RC methods simulate large “reservoirs” of randomly connected
dynamical neuron models, and then use optimization methods to
map reservoir activity to learned useful values. While this method
can produce capable robotic controllers (Dasgupta et al., 2015),
the final system is likely more complicated than is ultimately
necessary, increasing its computational cost to implement. In
addition, the final system is a black box, which does not provide
any insights about nervous system function. The methods in
this paper enable the direct assembly and tuning of dynamical
networks without the need of large reservoirs of neurons.

This work analytically derives constraints that govern the
behavior of synthetic nervous systems (SNSs) built from dynam-
ical neural networks. These constraints were derived as a result
of our previous network design work (Szczecinski et al., 2017b)
and have enabled the rapid assembly and testing of our recent
robot control networks (Szczecinski andQuinn, 2017; Szczecinski
et al., 2017a). An SNS designer can apply these constraints to
find parameter values needed for a functional network. Section
2 presents the neural and synaptic models and explains how the
neural system encodes mechanical inputs and outputs. Section 3
derives two basic synapse types, “signal transmission” and “signal
modulation,” and uses them to derive constraints on synaptic
parameters in networks performing addition, subtraction, multi-
plication, and division of two incoming signals. Section 4 derives
constraints on neural and synaptic parameters in networks that
differentiate and integrate incoming signals as a function of time.
Results showing that the networks perform as intended are pro-
vided throughout the manuscript, and Tables 1 and 2 summarize
the design constraints. Finally, Sec. 6 explores how these tech-
niques may be used to tune robot controllers and neuromechan-
ical models of animals, and how they may be improved in the
future.
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2. METHODS: MODELS AND APPROACH

We model neurons as non-spiking Hodgkin–Huxley compart-
ments (Cofer et al., 2010), the same basic model as used in
continuous-time recurrent neural networks (Haferlach et al.,
2007; Agmon and Beer, 2013). The leaky integrator dynamics cap-
ture the most basic behavior of neurons and allow more complex
behaviors to be addedwith additional ion channels, if desired. This
work is not concerned with the specifics on how action potentials
are generated and have left out Hodgkin–Huxley sodium and
potassium currents. The membrane voltage, V, may be seen as
a proxy for the spiking frequency of a spiking neuron. V varies
according to the differential equation

Cm
dV
dt = Ileak + Isyn + Iapp (1)

where
Ileak = Gm · (Er − V), (2)

Isyn =
n∑

i=1
Gs,i · (Es,i − V), (3)

and Iapp is an optional external stimulus. Equations (2) and (3)
define the leak and synaptic currents, respectively. Both follow the
same basic form of a conductance G multiplied by the difference
between the current membrane voltage, V, and a constant refer-
ence voltage (i.e., reversal potential),E.Er is the resting potential of
the neuron, and Cm and Gm are the capacitance and conductance
of the cell membrane, respectively. Unless otherwise noted, all
units in this paper are scaled to nA for current, mV for potentials,
nF for capacitances, and µS for conductances.

Neurons communicate via synapses. The conductance, Gs,i in
equation (3), is a threshold linear function of the ith incoming
(i.e., presynaptic) neuron’s voltage. Synapses communicate via
piecewise-linear functions described as

Gs,i =


0, if Vpre < Elo,
gs,i · Vpre−Elo

Ehi−Elo , if Elo < Vpre < Ehi,
gs,i, if Vpre > Ehi.

(4)

The parameters gs,i, Elo, and Ehi are constants representing
the synapse’s maximum conductance, its lower threshold, and its
upper threshold, respectively. The relationship between the presy-
naptic neuron voltage, synaptic conductance, and postsynaptic
neuron voltage is illustrated in Figure 1A.

We prefer this piecewise-linear representation better than a
sigmoidal function for several reasons. First, the thresholds ensure
that for low activations, synapses conduct exactly 0 current. This
could represent a reducedmodel of a spiking neuron, which trans-
mits no information while it is not spiking. Second, equation (4)
contains no transcendental terms, facilitating analytical manipu-
lation of the equations. A discontinuous system does complicate
traditional gradient-based optimization methods, but this struc-
ture can be exploited to make these methods unnecessary. In the
following sections, we showhownetworks of three or four neurons
with synapses between them can be constructed and analytically

FIGURE 1 | Graphical representation of synaptic dynamics and mapping
between mechanical and neural values. (A) Graphical representation of how
synapses couple neural dynamics. Note that R is marked on the plot.
(B) Enhanced version of the motor control network from Szczecinski et al.
(2017b), showing how R relates mechanical and neural values. Mechanical
values are drawn in red, and neural values are drawn in blue. Gray shaded
boxes map from mechanical to neural values (i. and ii.), or from neural to
mechanical values (iii.).
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tuned to perform mathematical operations on the input signals,
such as addition or differentiating with respect to time.

Instead of analyzing V when designing these networks, we
shift the neural activity to simplify analysis. For each neuron,
we substitute U =V −Er, the activation level above the resting
voltage. A typical value is Er =−60mV, but using U for analysis
rather than V lets us apply the same analysis no matter what Er
is. We also set Gm = 1µS, which is a typical value (Daun-Gruhn
et al., 2009; Daun-Gruhn, 2010).

For the synapses, we set Elo =Er of the presynaptic neuron,
and introduce a new parameter R=Ehi −Elo. Thus, a synapse’s
conductivity rises as the presynaptic neuron’s voltage rises above
its resting potential, and exhibits an “operating range” of R mV.
The constraints we apply ensure that Upre ∈ [0, R], meaning that
the synapse is always active, but never saturates. Thus, we can
replace Gs with the second line of equation (4). Applying the
substitutions described so far,

Gs = gs · Vpre − Elo
Ehi − Elo

= gs · Upre

R =
gs
R · Upre. (5)

For each synapse, we also introduce the parameter
∆Es,i =Es,i −Er,post, where Er,post is the resting potential of
the postsynaptic, or receiving neuron.

Making all of these substitutions in equations (1)–(3) gives the
response

Cm
dU
dt = −U +

n∑
i=1

gs,i
R · Upre,i · (∆Es,i − U) + Iapp. (6)

When U =R, the neuron is fully active, and when U = 0,
the neuron is inactive. We can use this knowledge to categorize
synapses as excitatory or inhibitory, depending on the sign of
∆Es,i. If ∆Es,i ≥R, then the ith synapse will always transmit
positive current, no matter the instantaneous value of U. Thus,
this synapse will cause U to increase and is, therefore, excitatory.
Similarly, if ∆Es,i ≤ 0, then the ith synapse will always transmit
negative current, no matter the instantaneous value of U. Thus,
this synapse will cause U to decrease and is, therefore, inhibitory.

2.1. Mapping between Neural and
Mechanical Values
The nervous system encodes physical quantities as neural activity.
In insects, the firing rate of sensory neurons encode the stretch
of chordotonal organs (Field and Matheson, 1998) and the strain
of campaniform sensilla (Zill et al., 2004), among other physical
quantities. Typical robot controllers perform operations on these
signals to provide meaningful information for control actions.
These operations may include the subtraction of measured and
reference values, differentiation or integration of error values, or
gain adjustments. Neural systems perform these same operations,
but in a transformed space. The exact transformation that nervous
systems use is not known, but for reliable behavior, it is necessary
that sensory information is mapped to neural activity in apre-
dictable way. Thus, we map any sensory input, θ, to an applied
current

Iapp = R · θ − θmin

θmax − θmin
, (7)

where R is the “operating range” specified in the previous section.
Figure 1B illustrates such a transformation within a diagram of
a neural feedback loop that controls the position of a motor. The
purpose of this paper is not to analyze how this particular network
functions; for a detailed analysis of this network and its function,
see Szczecinski et al. (2017b). Instead, the purpose is to show how
R and other functional values (time constants, gains, etc.) may be
used to constrain neural and synaptic parameter values.

Figure 1B (i,ii) graphically illustrate the mapping in equation
(7), and Figure 1B (iii) graphically illustrates the inverse relation-
ship (i.e., neural value to mechanical value). If a sensory neuron
has only this applied current and leak current, equation (6) shows
that

Cm
dU
dt + U = R · θ − θmin

θmax − θmin
. (8)

Thismeans that the sensory neuron acts as a low-pass filter with
time constant τ =Cm. It is trivial to show that, when the neuron
is at equilibrium (i.e., dU/dt= 0),

U∗ = R · θ − θmin

θmax − θmin
, (9)

where the superscript “∗” specifies the equilibrium value.
(Throughout this manuscript, the equilibrium activation of neu-
ron U will be referred to as U∗, and the neuron itself will be
referred to as U.) Equation (9) means that the neuron’s activation
above its rest potential encodes the sensory signal. In addition
to perceiving sensory information, commands must be issued in
the same transformation. Thus, we map the commanded sensory
quantity, θcomm, to the commanded neural activation,Ucomm, with
the inverse function of equation (9),

θcomm = θmin +
Ucomm

R · (θmax − θmin). (10)

In this way, the nervous system may specify an intended
motion, such as the rotation of a joint, encoded in neural activity.
In our synthetic nervous systems, R specifies how mechanical
quantities and neural activation are related. Thus, the tuning of
every functional subnetwork described in this work relies on R,
which the designer specifies before tuning the rest of the network.
Two other parameters are critical for tuning these subnetworks:
the amplification of synaptic transmission, ksyn (discussed in Sec.
3.1), and the synaptic reversal potential, ∆Es. From these values,
biological parameters such as synaptic conductance and neural
tonic drive can be directly calculated. This makes network design
intuitive, enabling the designer to select biological parameter
values based on functional ones.

3. METHODS: ARITHMETIC
SUBNETWORKS

This section describes how to use typical engineering quantities
to design neural and synaptic pathways. We can understand how
these pathways work by manipulating their equilibria, something
that naive optimization does not leverage. The steady-state activa-
tion U∗ is calculated by solving for U when dU/dt= 0

0 = −U∗ +
n∑

i=1

gs,i
R · Upre,i ·

(
∆Es,i − U∗)+ Iapp. (11)
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Moving all U∗ terms to the left hand side

U∗ ·

(
1 +

n∑
i=1

gs,i
R · Upre,i

)
=

n∑
i=1

gs,i
R ·Upre,i ·∆Es,i+ Iapp. (12)

Solving for U∗,

U∗ =
∑n

i=1
gs,i
R · Upre,i · ∆Es,i + Iapp

1 +
∑n

i=1
gs,i
R · Upre,i

. (13)

This solution is the basis for the remainder of Sec. 3.

3.1. Signal Transmission Pathways
The goal of a signal transmission pathway is to cause the post-
synaptic neuron’s voltage to be some ratio of the presynaptic
neuron’s voltage. We call this ratio ksyn. The Upre,i terms in the
denominator of the right hand side of equation (13) mean that
ksyn changes as Upre changes, so we approximate ksyn as Upost/Upre
when the presynaptic neuron is fully activated (i.e.,Upre =R). The
steady-state response of a neuron with a single synaptic input
and no applied current can be written based on equation (13), as
below:

U∗
post =

gs
R · Upre · ∆Es
1 + gs

R · Upre
. (14)

To find ksyn for this synapse, we first divide both sides of
equation (14) by Upre,

U∗
post

Upre
=

gs
R · Upre · ∆Es

Upre ·
(
1 + gs

R · Upre
) . (15)

Next, we want to find ksyn, which can be calculated for any
value of Upre. To simplify analysis and improve the clarity of this
derivation, we set find ksyn when Upre =R. Then, we show how
to set parameter values to keep ksyn nearly constant, even as Upre
changes. Making this substitution,

U∗
post

R = ksyn =
gs
R · R · ∆Es

R ·
(
1 + gs

R · R
) . (16)

Finally, reducing R/R terms reveals

ksyn =
gs · ∆Es

R · (1 + gs)
. (17)

Rearranging to solve for gs,

gs =
ksyn · R

∆Es − ksyn · R . (18)

Because gs must be positive, and the numerator of equa-
tion (18) is always positive, equation (18) is also subject to the
constraint

∆Es > ksyn · R. (19)

Equation (18) will be used to tune addition, subtraction, multi-
plication, and division networks (Secs. 3.3 through 3.6).

3.2. Signal Modulation Pathways
We may also use synapses to modulate a neuron’s sensitivity to
other inputs. Based on equation (13), the steady-state response of
a neuron with only an applied current Iapp is simply

U∗
post = Iapp, (20)

if we setGm = 1. For example, this is the case for a sensory neuron
that receives applied current proportional to a sensor’s state, such
as a joint angle (Figure 1B), muscle stretch, or touch sensor.
However, the nervous system may need to actively increase or
reduce the sensitivity of the sensory neuron depending on con-
text. Hyperpolarizing or depolarizing the neuron, however, would
cause sensory information to be truncated (i.e., Vpre <Elo). We
can change the sensitivity of this neuron without losing sensory
information by adding a synaptic input to the response from
equation (20):

U∗
post =

gs
R · Upre · ∆Es + Iapp

1 + gs
R · Upre

. (21)

To quantify how Upre modulates U∗
post for a given Iapp, we

introduce the parameter csyn, which quantifies this degree of mod-
ulation. We define csyn as U∗

post/Upre, the same as ksyn, but with
the understanding that Upre will decrease U∗

post in this case. Divid-
ing both sides of equation (21) by Upre and using the definition
of csyn,

U∗
post

Upre
= csyn =

gs
R · Upre · ∆Es + Iapp
Upre ·

(
1 + gs

R · Upre
) . (22)

As in the previous section, we will solve for csyn when Upre =R
to simplify analysis. Making this substitution and reducing R/R
terms,

csyn · R =
gs · ∆Es + R

1 + gs
. (23)

Multiplying both sides by the denominator of the right hand
side and expanding,

csyn · R + csyn · R · gs = gs · ∆Es + R. (24)

Collecting gs terms on the left hand side,

csyn · R · gs − gs · ∆Es = R − csyn · R. (25)

Solving equation (25) for gs,

gs =
csyn · R − R

∆Es − csyn · R . (26)

Just as in Sec. 3.1, gs > 0 depends only on R, which the designer
specifies beforehand, ∆Es, which is limited by biological con-
straints, and csyn, which the designer picks based on network
function. ∆Es should be negative, and as close to 0 as possible to
minimize hyperpolarization of the postsynaptic neuron. Equation
(26) will be used to tune division and multiplication networks
(Secs. 3.5 and 3.6).
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3.3. Addition
A subnetwork that approximates linear addition of the form
U∗

post = ksyn · (Upre,1 + Upre,2) may underlie positive feed-
back mechanisms, which increase motor neuron activation pro-
portional to sensory inputs such as force sensing organs (Zill
et al., 2004), or used to sum sensory signals from different
body segments (Mittelstaedt, 1957). We construct such a net-
work by using two Signal Transmission pathways as presented in
Sec. 3.1.

Let us rewrite equation (13) here, for clarity:

U∗ =
∑n

i=1
gs,i
R · Upre,i · ∆Es,i + Iapp

1 +
∑n

i=1
gs,i
R · Upre,i

. (27)

This equation shows Upre,i in both the numerator and denom-
inator. To capture addition, we wish to minimize the impact of
Upre,i on the denominator. This is accomplished by minimizing
gs. However, if gs = 0, then the network will not function at
all. Therefore, we instead maximize ∆Es, which yields a small
gs (equation (18)). Mathematically, there is no limit on ∆Es,
but synaptic potentials are limited in biological systems. In our
work, we choose the reversal potential of calcium (Es = 134mV),
which yields ∆Es =Es −Er = 134− (−60)= 194mV, and specify
R= 20mV. To design a pathway where ksyn = 1, for example, we

TABLE 1 | This table assumed that the designer has already selected a value of R
for the subnetwork.

Operation Component
pathways

Constraint
equations

Free
parameters

Addition Syn. 1, gs,1 = ksyn,1·R
∆Es,1− ksyn,1·R ksyn ,1

transmission ∆Es ,1 − ksyn ,1·R>0 ∆Es ,1, maximize

Syn. 2, gs,2 = ksyn,2·R
∆Es,2− ksyn,2·R ksyn ,2

transmission ∆Es ,2 − ksyn ,2·R>0 ∆Es ,2, maximize

Subtraction Syn. 1, gs,1 = ksyn·R
∆Es,1− ksyn·R ksyn

transmission ∆Es ,1 − ksyn·R>0 ∆Es ,1, maximize

Syn. 2, gs,2 = ∆Es,1
∆Es,2

· −ksyn·R
∆Es,1− ksyn·R ∆Es ,2, minimize

transmission

Division Syn. 1, gs,1 = ksyn·R
∆Es,1− ksyn·R csyn

transmission ksyn = 1 ∆Es ,1, maximize

∆Es ,1 − ksyn·R>0

Syn. 2, gs,2 = csyn·R−R
∆Es,2−csyn·R

modulation ∆Es ,2 = 0

0< csyn <1

Multiplication Syn. 1, gs,1 = ksyn·R
∆Es,1− ksyn·R

transmission ksyn = 1

∆Es ,1 − ksyn·R>0 ∆Es ,1, maximize

Syn. 2, gs,2 = −R
∆Es,2

modulation ∆Es ,2 <0 ∆Es ,2, maximize

Syn. 3, gs ,3 = gs ,2
modulation ∆Es,3 =∆Es,2

In this table, “minimize” refers to making a value as negative as possible and “maximize”
refers to making a value as positive as possible.

plug these values into equation (18), which gives gs = 115 nS. The
contour plots in Figure 2A show that the network matches the
ideal behavior very closely over the operating rangeUsum ∈ [0, R].
These design constraints are summarized in Table 1.

3.4. Subtraction
A subnetwork that approximates linear subtraction of the form
U∗

post = ksyn · (Upre,1 − Upre,2) may underlie negative feedback
mechanisms, which are important for controlling many param-
eters in locomotion (Pearson, 1993; Peterka, 2003; Buschmann
et al., 2015). Just as in the previous section, equation (18) is used
to find gs for each pathway.

Designing a subtraction network requires that we pay attention
to how the two synapses affect one another. Since the reversal
potentials of hyperpolarizing ion channels are not much more
negative than typical resting potentials, larger gs,2 values are
required to transmit information than for depolarizing ion chan-
nels. This makes it harder to minimize gs like we did in the
previous section. Equation (13) enables us to constrain gs ,2 such
that when Upre ,1 =R and Upre ,2 =R, U∗

post = 0. Starting with the
neuron response in equation (13) for two synaptic currents and
no applied current,

U∗
post =

gs,1/R · Upre,1 · ∆Es,1 + gs,2/R · Upre,2 · ∆Es,2
1 + gs,1/R · Upre,1 + gs,2/R · Upre,2

. (28)

Substituting in Upre ,1 =R, Upre ,2 =R, and U∗
post = 0,

0 =
gs,1/R · R · ∆Es,1 + gs,2/R · R · ∆Es,2

1 + gs,1/R · R + gs,2/R · R (29)

0 =
gs,1 · ∆Es,1 + gs,2 · ∆Es,2

1 + gs,1 + gs,2
(30)

0 = gs,1 · ∆Es,1 + gs,2 · ∆Es,2 (31)

gs,2 =
∆Es,1
∆Es,2

· −gs,1. (32)

Substituting equation (18) for gs ,1,

gs,2 =
∆Es,1
∆Es,2

· −ksyn · R
∆Es,1 − ksyn · R . (33)

To be physically realizable, gs ,2 > 0. Because gs ,1 > 0 and
∆Es ,1 > 0, gs ,2 > 0 if and only if ∆Es ,2 < 0. Thus, it is critical that
∆Es ,2 < 0.

Just as for the addition network, we minimize gs ,1
by maximizing ∆Es ,1. If R= 20mV and ksyn = 1, then
gs ,1 = 115 nS and ∆Es ,1 = 194mV. To tune gs ,2, we first select
∆Es ,2 =−40mV, thenwe solve equation (33) to find gs ,2 = 558 nS.
These design constraints are summarized in Table 1, and
Figure 2B graphically shows the accuracy of the subtraction
network.

3.5. Division
A subnetwork that approximates division of the form

U∗
post =

Upre,1

1 + 1−csyn
csyn·R · Upre,2

(34)
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FIGURE 2 | Data demonstrating the function of arithmetic networks. Each contour plot represents cross sections of the response surface, as depicted at the top.
The network diagram, relevant parameters, and data are shown for addition (A), subtraction (B), division (C), and multiplication (D). Triangular synaptic terminations
stand for excitatory inputs, and filled round terminations stand for inhibitory inputs. For each operation, the contour on the right is the ideal output, and the contour on
the left is the actual operation for the parameter values listed. Free parameters from Table 1 are highlighted in gray.

replicates the function of GABA synapses that regulate activity in
the brain. A key reason for this behavior is that the reversal poten-
tial of GABA-ergic synapses is about equal to the resting potential
of the postsynaptic neuron (Trappenberg, 2009). Equation (26) is
used to find gs for the division pathway.

The synapse from Upre ,1 to Upost is tuned as an excitatory
Signal Transmission pathway with k= 1, as in Sec. 3.1. In our
work, R= 20mV, ∆Es ,1 = 194mV, and equation (18) tells us that
gs ,1 = 115 nS. Such a small gs ensures that the signal from Upre ,1 to

Upost is transmitted without greatly affecting the sensitivity ofUpost
to inputs. That is, the effect of Upre ,1 on the denominator of U∗

post
is very nearly 0.

The synapse fromUpre ,2 toUpost is tuned as a SignalModulation
pathway, as analyzed in Sec. 3.2. Setting ∆Es ,2 = 0 will eliminate
Upre ,2’s influence on the numerator of U∗

post. Substituting this case
into equation (26) and reducing,

gs,2 =
1 − csyn
csyn

, (35)
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where U∗
post = csyn · R when Upre ,1 =Upre ,2 =R, their maximal

value. Equation (35) also reveals that since gs ,2 > 0, 0< csyn < 1.
The steady-state response of the network is the result of these

two synaptic inputs, as written in equation (28). Substituting
equation (35), and specifying that ksyn ,1 = 1, U∗

post simplifies to

U∗
post =

������: 1
gs,1/R · ∆Es,1 · Upre,1 + gs,2/R ·���* 0

∆Es,2 · Upre,2

1 +��* 0gs,1 · Upre,1/R + 1−csyn
csyn · Upre,2/R

≈
Upre,1

1 + 1−csyn
csyn·R · Upre,2

(36)

In our network, we wishedU∗
post = 1 whenUpre ,2 =R, so we set

csyn = 1/R= 0.05, which makes gs ,2 = 19µS. When csyn is close
to 0, Upre ,2 can strongly reduce Upost’s sensitivity to inputs. When
csyn is close to 1, Upre ,2 can only weakly reduce Upost’s sensitiv-
ity to inputs. Figure 2C shows that this network performs the
intended division of the signals. Table 1 summarizes these design
constraints.

3.6. Multiplication
A subnetwork that approximates multiplication of the form
U∗

post = Upre,1 · Upre,2/R can be used to control the gain of
a sensory feedback loop, a frequently observed characteristic of
neural systems that control locomotion (Cruse, 1981; Gabriel and
Büschges, 2007) and posture (Peterka and Loughlin, 2004).

A multiplication network can be assembled by replacing the
Modulatory Pathway in the division network with two identical
Modulatory Pathways in series, connected into a disinhibitory
network (see Figure 2D). This works because the product of
two numbers, a·b= a/(1/b). However, tuning the Modulatory
Pathway for the multiplication network differs from tuning the
division network. This is because the right-side pathway of the
network in Figure 2DmustmakeU∗

post = 0, nomatter how active
Upre ,1 becomes (because a·0= 0, no matter the value of a). Thus,
according to equation (22), csyn = 0, unlike the division network,
for which 0< csyn < 1. Solving equation (26) when csyn = 0 reveals
that

gs,2 = −R/∆Es,2. (37)

To solve for gs ,2, we must first select ∆Es ,2. If ∆Es ,2 = 0 like for
the division network, then equation (37) divides by 0. If∆Es ,2 > 0,
then gs ,2 < 0, which is physically not realizable. Therefore, wemust
choose a value ∆Es ,2 < 0. The more negative ∆Es ,2 is, the more
small-amplitude signals are clipped; however, the less negative
it is, the larger gs ,2 must be. Therefore, gs ,2 is the limiting factor
to maintain biological realism. We have chosen gs ,2 = 20µS and
R= 20mV, making ∆Es ,2 =−1.

Now that we have designed one of theModulatory synapses, we
can calculate the response of the complete multiplication network
seen in Figure 2D, which includes two identical Modulatory
Pathways in series. WhenUpre ,2 is inactive, then it does not inhibit
Uinter, which is tonically active. In this case, Uinter’s activity com-
pletely desensitizes Upost to inputs. When Upre ,2 is active, then it
inhibits Uinter. In this case, Uinter is hyperpolarized, and cannot
desensitize Upost to inputs. To show that this is the case, let us
find the full response of the system.We first calculateU∗

inter, which

has one Modulatory Pathway input and a tonic applied current
Iapp =R. Its response is the same as in equation (21), with the
constraint from equation (37), which causes terms to cancel:

U∗
inter =

gs,2
R · Upre,2 · − R

gs,2 + R

1 − Upre,2
∆Es,2

=
R − Upre,2

1 − Upre,2
∆Es,2

. (38)

Upost has two presynaptic neurons,Upre ,1 andUinter. The synapse
fromUpre ,1 is a Signal Transmission synapse, and the synapse from
Uinter is a Signal Modulation synapse. Its response is found via
equation (13),

U∗
post =

gs,3
R · Uinter · ∆Es,3 + gs,1

R · Upre,1 · ∆Es,1
1 + gs,3

R · Uinter + gs,1
R · Upre,1

. (39)

We showed in Sec. 3.3 that equation (18) can be used to design
a synapse that transmits the presynaptic neuron’s activity to the
postsynaptic neuron, while minimizing its impact on the denom-
inator of the postsynaptic neuron’s steady-state response, U∗

post.
This enables us to approximateUpre ,1’s effect onU∗

post as an applied
current Iapp ≈Upre ,1. Making this substitution in equation (39),

U∗
post ≈

gs,3
R · Uinter · ∆Es,3 + Upre,1

1 + gs,3
R · Uinter

. (40)

Because we previously specified that the Modulatory Pathways
are identical, we can apply the constraint from equation (37),

U∗
post =

Upre,1 − Uinter

1 − Uinter
∆Es,3

. (41)

We can now substitute equation (38) for Uinter,

U∗
post =

Upre,1 − R−Upre,2

1−
Upre,2
∆Es,2

1 − 1
∆Es,3 · R−Upre,2

1−
Upre,2
∆Es,2

. (42)

This expression can be simplified. First, as noted previously,
synapses 2 and 3 are identical, so ∆Es ,2 =∆Es ,3 =∆Es. Second,
we can multiply the first term in both the numerator and denomi-
nator by the factor (1−Upre ,2/∆Es), which enables us to combine
terms. Performing these simplifications,

U∗
post =

Upre,1 − Upre,1 · Upre,2/∆Es − R + Upre,2

1 − Upre,2/∆Es − R/∆Es + Upre,2/∆Es
, (43)

U∗
post =

−Upre,1 · Upre,2/∆Es + Upre,1 + Upre,2 − R
1 − R/∆Es

. (44)

Equation (44) contains a lot of information about how the
multiplication network functions. First, Upost’s response indeed
contains a term that multipliesUpre ,1 andUpre ,2. When ∆Es =−1,
then U∗

post scales with Upre ,1·Upre ,2 in a 1:1 fashion. Second, the
numerator will be≤ 0 if either Upre ,1 = 0 or Upre ,2 = 0, U∗

post ≤ 0.
This is because Upre ,1 and Upre ,2 must each be less than or equal
to R. If either input is greater than R, then their synaptic inputs
to Upost will saturate (see equation (4)), preventing this condition
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from being violated. Third, the denominator does not depend on
the input values. Technically, because of the approximation made
in equation (40), the denominator does change slightly withUpre ,1.
However, with our chosen values of R (20), ∆Es (−1), and gs ,1
(0.115), this change is less than 1%, justifying this approximation.
Figure 2D demonstrates that this network multiplies the two
inputs.

Table 1 summarizes the function, component pathways, con-
straint equations, and free parameters of each network from this
section. This analysis enables direct construction and parame-
ter selection for functional subnetworks that can be assembled
into more complex networks capable of performing real-time
robotic control (e.g., Szczecinski and Quinn (2017) and Szczecin-
ski et al. (2017a)). Additionally, one of the key advantages to
using dynamic neural systems for motor control is the handling of
time varying signals. The next section examines how the dynam-
ics of these neurons can be exploited to perform calculus on
signals.

4. METHODS: DYNAMIC NETWORKS

The differential equation for a single neuron’s response (equation
(1)) can be solved analytically. Solving an equation dx/dt= f (x)
is simplified if the equilibrium state is x∗= 0, so as in Sec. 3,
the substitutionU =V −Er is made. Additionally, the membrane
conductance Gm and capacitance Cm can be combined into a new
parameter τ =Cm/Gm, which is a more intuitive parameter when
discussing dynamic networks. This section uses analysis from the
previous section, plus additional analysis, to derive design con-
straints for networks that differentiate or integrate input signals
over time.

4.1. Differentiation
One dynamic response neural systems are known to utilize is
differentiation of signals. Early examination of neural networks
led to the discovery of the Reichardt detector network (Reichardt,
1961), an autocorrelation network with delays that approximates
the differential of an incoming signal. Other examples include
human balance, which relies on feedback proportional to the
position, velocity, and acceleration of the center of mass (Peterka,
2003; Safavynia and Ting, 2012). Also, positive velocity feedback
plays an important role in insect muscle control (Cruse, 1981).

We have developed differentiation networks based on the
Reichardt detector network, shown in Figure 3A. We can under-
stand its function by examining a neuron’s response to a ramp
input, Iapp =A·t, where A is an arbitrary slope of the ramp. The
response of the network should be a stepwith amagnitude propor-
tional to A, as shown in Figure 3B. Inserting this applied current
into equation (6), a single neuron’s response is

Cm · dUdt = −U + A · t (45)

Cm · dUdt + U = A · t. (46)

The response of the neuron, U(t), is the sum of the particular
and homogeneous solutions to equation (46), Up(t) and Uh(t),
respectively. Simulating the dynamics of equation (46) suggests

TABLE 2 | This table assumed that the designer has already selected a value of R
for the subnetwork.

Operation Components Constraints and
useful relations

Free parameters

Differentiation Neuron 1 Cm ,1 <Cm ,2 τd

Neuron 2 Cm ,2 = τd kd
Cm ,1 =Cm ,2 − kd

Syn. 1, ksyn =1/kd ∆Es ,1, maximize

transmission gs,1 = ksyn·R
∆Es,1− ksyn·R

∆Es ,1 − ksyn·R>0

Syn. 2, gs,2 = ∆Es,1
∆Es,2

· −ksyn·R
∆Es,1− ksyn·R ∆Es ,2, minimize

transmission

Integration Neuron 1 Iapp,1 =R ki ,mean

Cm,1 = 1
2·ki,mean

Neuron 2 Iapp,2 =R

Cm,1 =Cm,2

Syn. 1, ∆Es,1 = −R
gs,1

ki ,range

transmission gs,1 = 2·Cm,1
1/ki,range−Cm,1

Syn. 2, gs,2 = gs,1
transmission ∆Es,2 =∆Es,1

In this table, “minimize” refers to making a value as negative as possible and “maximize”
refers to making a value as positive as possible.

that the particular solution is a ramp of slopeA, which lags behind
the input with a time constant Cm. To confirm this, we can substi-
tute a candidate solution and its derivative into equation (46), and
check for equality. The result is the particular (i.e., steady-state)
response,

Up(t) = A · (t − Cm) (47)
This means that if the same Iapp were injected into neurons

with different Cm values, and then their outputs were subtracted
fromone another with a network from Sec. 3.4, the networkwould
perform a finite-difference approximation of the derivative of Iapp,
once the transient response decays (illustrated in Figures 3A,B).

Calculating the homogeneous solution, Uh(t), informs us how
quickly the transient response decays. The homogeneous solution
to first-order linear equation like equation (46) is well-known,
Uh(t)= b·exp(− t/Cm). The constant b is found by plugging the
initial condition into the full response, U(t)=Up(t)+Uh(t),

b = A · Cm. (48)

To tune this network, the response of Upost is written as the
difference between neuronUpre ,1 withCm ,1 and neuronUpre ,2 with
Cm ,2 >Cm ,1,

Upost(t) = Upre,1(t) − Upre,2(t)
= A · t − A · Cm,1 ·

(
1 − exp(−t/Cm,1)

)
−
(
A · t − A · Cm,2 ·

(
1 − exp(−t/Cm,2)

))
. (49)

Canceling the terms that are linear in t and expanding,

Upost(t) = A · (Cm,2 − Cm,1)

+ A ·
(
Cm,1 · exp(−t/Cm,1) − Cm,2 · exp(−t/Cm,2)

)
.

(50)

Frontiers in Neurorobotics | www.frontiersin.org August 2017 | Volume 11 | Article 379

http://www.frontiersin.org/Neurorobotics/
http://www.frontiersin.org
http://www.frontiersin.org/Neurorobotics/archive


Szczecinski et al. Functional Subnetworks for Synthetic Nervous Systems

FIGURE 3 | (A) A network can exploit neural dynamics to compute the differential of an incoming signal. (B) When given an applied current in the form of ramps, the
network returns steps whose heights are proportional to the slopes of the ramps. (C) The amplification of the differential, kd, and the time constant of the network,
τd, depend on the capacitance of the neurons, Cm ,1 and Cm ,2. (D) Frequency domain analysis enables the identification of the cutoff frequency ωc, enabling the
network to naturally filter out high-frequency noise.

Properly tuning a differentiator network requires tuning Cm ,1
and Cm ,2 to obtain the intended gain of the network, kd, and
an appropriately high cutoff frequency, ωc. Equation (50) reveals
how these may be tuned. First, the steady-state response of this

network to a ramp input defines kd = (Cm ,2 −Cm ,1). Second, the
cutoff frequency ωc = 1/τ d quantifies the frequency of incom-
ing signals (i.e., Iapp =A·sin(ω·t)) above which the network’s
response has less than half the energy of a lower-frequency signal.

Frontiers in Neurorobotics | www.frontiersin.org August 2017 | Volume 11 | Article 3710

http://www.frontiersin.org/Neurorobotics/
http://www.frontiersin.org
http://www.frontiersin.org/Neurorobotics/archive


Szczecinski et al. Functional Subnetworks for Synthetic Nervous Systems

This is especially useful because although differential calcula-
tions amplify high-frequency noise, this network filters out noise
with a frequency ω > ωc. Because Cm ,2 >Cm ,1, the time constant
τ d =Cm ,2.

Figure 3C shows contours of kd and τ d asCm ,1 andCm ,2 change.
The plots show that increasing Cm ,2 relative to Cm ,1 increases
kd, which may be valuable for amplifying signals. However, this
also increases τ d, making ωc impractically low, which will cause
the network’s output to lag behind the input substantially. The
contour for kd = 1 is drawn on the contour of τ d, showing that the
smallest τ d achievable for this gain value is 1,000ms, which would
filter out all incoming signals for which ω >ωc = 1/(1 s)= 1 rad/s
(0.159Hz).

We can gain further insight into tuning τ d using our Feed-
backDesign tool (Szczecinski et al., 2017b). Figure 3D shows
Bode plots for this network’s response, given two different values
for Cm ,2. When Cm ,2 = 1,000 nF, like in Figure 3B, the network
functions properly for inputs with ω < 1 rad/s, as predicted in
the previous paragraph. Lowering Cm ,2 to 50 nF increases ωc
to 20 rad/s (3.18Hz). Lowering Cm ,2 also lowers the magnitude
response as a function of ω, that is, it decreases kd. To regain this
lost gain, wemay increase ksyn in the subtraction network.Figure 4
shows simulation data that explores this tradeoff.Table 2 lists how
to use τ d and kd to tune the entire differentiation network.

4.2. Integration
Our neuron model is a leaky integrator, which means that the
membrane voltage will integrate an applied current, but “leak”

current to return to its resting potential. As a result, data cannot
be stored in individual neurons, because neurons only have one
stable equilibrium point. A network that is constructed to have a
marginally stable equilibrium curve (or subspace) will not leak. A
network will have this property if the determinant of the Jacobian
matrix is 0, or in other words, if it is not full rank (Khalil, 2002).
Instead of leaking, it will maintain its activation when no external
currents are applied; when currents are applied, the state of the
system will change continuously. This is analogous to the position
of a box on a table with friction; it will remain wherever it is placed
indefinitely, unless an external force is applied. In this section,
we expand on previous work (Szczecinski et al., 2017a) to show
how to construct a network that is marginally stable by applying
constraints to reduce the rank of its Jacobian matrix; demonstrate
that such a network can be used to integrate signals over time;
and relate the integration rate, ki, to the parameter values of the
network, such that U̇1 = ki · Iapp.

Marginally stable networks are hypothesized to play an impor-
tant role in navigation (Haferlach et al., 2007) and the regulation
of muscle forces in posture (Lévy and Cruse, 2008). Some mem-
ory models use carefully tuned self-excitation to cancel the leak
current with excitatory synaptic current (Seung et al., 2000). In
a similar vein, our network uses self-disinhibition (Figure 5A)
to produce a line-attractor network in which a continuum of
marginally stable equilibrium states exist. Simulation data in
Figure 5B shows that stimulating U1 with an applied constant
current u causesU1 to increase at an apparently constant rate, and
when u is removed, neitherU1 norU2 leak to their rest potentials.

FIGURE 4 | Simulation data from eight trials with the differentiator network are shown. Different values of Cm ,1 and Cm ,2 were used in each. U∗
post is plotted in blue,

U2 −U1 is plotted in dotted red, and the actual rate of change of the input, d/dt(Iapp), is plotted in gold.
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FIGURE 5 | (A) A disinhibitory network can exploit neural dynamics to compute the integral of an incoming signal. (B) When given an applied current in the form of a
step, the network response is a ramp whose slope is proportional to the amplitude of the step. (C) A plot of this data in the (U1, U2) phase space shows that when
stimulated by applied current u, the system state, x(t)= [U1(t), U2(t)]

T (blue), moves in the X1 direction (green) while maintaining a constant distance from the
equilibrium subspace (dashed violet) in the X2 direction (red). This difference in behavior in each direction is because the eigenvalue associated with eigenvector X1,
λ1 = 0, and the eigenvalue associated with eigenvector X2, λ2 <0. X1 and X2 are drawn in multiple places because they depend on x(t), as shown in Appendix.
(D) The mean rate of integration, ki ,mean (left), and the range of the rate of integration, ki ,range (right), depend on the synaptic conductance of mutual inhibition, gs, and
the membrane capacitance of the neurons, Cm. Note that the x-axis of these plots are 1/Cm, to better space the contour lines.

This is the behavior of an integrator, as described in the previous
paragraph.

Let us write the response of the integrator network as shown
in Figure 5A to find its equilibrium states. Each neuron has leak
current, synaptic current, and a constant applied current. Let
all parameter values be symmetrical between the two neurons.
We make the same substitutions as before; U =V −Er, Er =Elo,

∆Es =Es −Er, and R=Ehi −Elo. If Iapp =R,

Cm · dU1

dt = −U1 + gs · U2

R · (∆Es − U1) + R (51)

Cm · dU2

dt = −U2 + gs · U1

R · (∆Es − U2) + R. (52)
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Moving dynamical terms to the left hand side, and applied
current to the right hand side,

dU1

dt +
1
Cm

(
U1 − gs · U2

R · (∆Es − U1)
)

=
R
Cm

(53)

dU2

dt +
1
Cm

(
U2 − gs · U1

R · (∆Es − U2)
)

=
R
Cm

(54)

Solving equation (53) when dU1/dt= 0 reveals the equilibrium
curve

U2 =
R · (U1 − R)

gs · (∆Es − U1)
. (55)

Solving equation (54) when dU2/dt= 0 reveals the equilibrium
curve

U1 =
R · (U2 − R)

gs · (∆Es − U2)
, (56)

which can be algebraically rearranged to be the same as equation
(55) as long as gs and ∆Es are constrained such that

gs · ∆Es = −R. (57)

Multiplying both sides of equation (56) by the denominator of
the right hand side, and expanding,

gs · ∆Es · U1 − g · U1 · U2 = R · U2 − R2. (58)

Collecting multiples of U2 and applying equation (57),

U2 =
R · (U1 − R)

gs · (∆Es − U1)
. (59)

Thus, equations (55) and (56) are the same equilibrium curve if
gs and ∆Es satisfy equation (57). This curve, drawn on the phase-
space diagram in Figure 5C, describes every equilibrium state
that this network can have. In other words, a [U1, U2] pair is an
equilibrium state of the system if and only if it satisfies equation
(55). In the coming paragraph, we will use eigenvalue analysis to
show that this network always functions as an integrator, as long
as equation (57) is satisfied.

To find the system’s eigenvalues, let us write equations (53) and
(54) together in matrix form,

[
U̇1

U̇2

]
+

1
Cm

·

[
1 + U2 · gs

R
−gs
R · (∆Es − U1)

−gs
R · (∆Es − U2) 1 + U1 · gs

R

]
·

[
U1

U2

]
=

1
Cm

·

[
R
R

]
,

(60)

in which the square matrix is J, the system Jacobian. Because J
contains U1 and U2 terms, it is not constant, but still describes
the stability of the system, given specific values of U1 and U2. To
construct a marginally stable equilibrium subspace for the net-
work, we must show that J has insufficient rank (i.e., the rows are
identical) whenU1 andU2 are at equilibrium (i.e., equation (55) is
satisfied). However, the rows are identical, no matter the values of
U1 and U2, if we apply the constraint from equations (57) to (60),[

U̇1

U̇2

]
+

1
Cm

·

[
1 + gs

R · U2 1 + gs
R · U1

1 + gs
R · U2 1 + gs

R · U1

]
·

[
U1

U2

]
=

1
Cm

·

[
R
R

]
.

(61)

Thus, the system will always have one null direction, and we
do not need to calculate J for specific equilibrium conditions to
determine the system’s stability. To make notation more compact,
let us define

a = 1 + gs/R · U1 (62)

b = 1 + gs/R · U2. (63)

These expressions let us write equation (61) as simply[
U̇1

U̇2

]
+

[
b/Cm a/Cm

b/Cm a/Cm

]
·

[
U1

U2

]
=

[
R/Cm

R/Cm

]
. (64)

Plotting the simulation data of the network’s forced response
from Figure 5B on a phase-space diagram (Figure 5C) suggests
thatu causesU1 andU2 to change in such away that the state of the
system (⃗x(t), blue)moves tangent to the equilibriumcurve (dashed
violet), with some constant distance away from it. These curves
do not overlap because the forced response is not the same as
the equilibrium condition while the external current u is applied.
Motion in the X2 direction is resisted by the neural dynamics,
much how a spring resists the translation of an object with an
applied force.

Nonetheless, these direction-dependent responses suggest that
the state can be generalized into two decoupled degrees of free-
dom in the phase-space: unresisted, marginally stable motion
parallel to the equilibrium curve (X1, green in Figure 5C); and
resisted, stable motion away from the equilibrium curve (X2, red).
The natural coordinates, x⃗ = [U1,U2]T, are transformed into
generalized coordinates, q⃗ = [q1, q2]T, by a matrix X comprised
of the eigenvectors of J. This same transformation matrix is used
to transform J into the generalized coordinate system, yielding
Jq. Jq is diagonal, decoupling the dynamics of the generalized
coordinates and enabling us to quantify how quickly x⃗ moves
parallel to the equilibrium curve.

Appendix shows the calculation of X, with q1 representing
the marginally stable mode and q2 representing the stable mode.
Using X, we can transform the system into generalized coor-
dinates. First, we write the dynamics from equation (64) in a
compact format.

˙⃗x + J⃗x = F⃗, (65)

where J is the square matrix in equation (64) and

F⃗ =

[
R/Cm + u/Cm

R/Cm

]
. (66)

The generalized coordinates, q⃗, are defined as

x⃗ = Xq⃗. (67)

To transform equation (65) into generalized coordinates, pre-
multiply both sides of equation (65) by X−1,

˙⃗q + Jqq⃗ = Q⃗, (68)

where Jq =X−1JX and Q⃗ = X−1F⃗. The top and bottom rows
of equation (68) are decoupled because Jq is a diagonal matrix.
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Furthermore, Ji,iq = λi, meaning that J1,1q = 0, so the system
simplifies even further.

To find the particular solution of this system, we can guess the
form of qp ,1 and qp ,2, and substitute those in to equation (68). We
observe that q̇1(t) = B · u in steady state, where B is a constant
that relates q̇1(t) and u. q1(t) would be the integral of q̇1(t), but
because the top rowof Jq is zeros, it will not appear in the particular
solution, and thus need not be explicitly included.We also observe
that q̇2(t) = 0 in steady state, so q2(t)=D, a constant. We can
calculate Q⃗ = X−1F using X−1, which is calculated in Appendix
(equation (A9)). Solving for the particular solution of this system,
˙⃗qp(t),

˙⃗qp(t) + Jqq⃗p =

[
B · u
0

]
+

[
0 0
0 a+b

Cm

]
·

[
qp,1
D

]

=

[ a·d
Cm·(a+b) · u

R
√

2
Cm

+ b
√

2
Cm·(a+b) · u.

]
(69)

B =
a · d

Cm · (a + b) , (70)

where d is defined in equation (A5). B describes how quickly qp ,1
varies with u, but we want to know how quickly U1 varies with u.
Therefore, we use equation (67) to transform ⃗̇qp = [B · u, 0]T into
natural coordinates to find ˙⃗x,

˙⃗xp = X ˙⃗qp (71)[
U̇1,p(t)
U̇2,p(t)

]
=

[
1/d 1/

√
2

−b/(ad) 1/
√

2

]
·

[
a·d

Cm·(a+b) · u
0

]
(72)

U̇1,p(t) =
a

Cm · (a + b) · u (73)

ki =
a

Cm · (a + b) . (74)

Recall that a and b are functions ofU1 andU2, respectively. This
means that ki, the integral gain of the network, is not a constant.
To place bounds on ki, let us substitute equations (62) and (63)
into equation (74),

ki =
1 + gs/R · U1

Cm · (2 + gs/R · (U1 + U2))
. (75)

We can now plug in different values of U1 and U2 to see how
ki varies. Using equations (55) and (56), we find that the most
extreme cases are when [U1, U2]= [0, R] and [U1, U2]= [R, 0].
We can plug these cases into equation (75) to find the minimum
and maximum values for ki,

ki,min =
1 + gs/R · 0

Cm · (2 + gs/R · (0 + R))
=

1
Cm · (2 + gs)

(76)

and

ki,max =
1 + gs/R · R

Cm · (2 + gs/R · (R + 0))
=

1 + gs
Cm · (2 + gs)

. (77)

The difference between ki ,min and ki ,max:

ki,range =
1 + gs

Cm · (2 + gs)
− 1

Cm · (2 + gs)
=

gs
Cm · (2 + gs)

. (78)

To find the mean rate of integration, we can calculate
ki ,mean = (ki ,min + ki ,max)/2,

ki,mean =
1

2 · Cm
. (79)

This is the same value of ki obtained from computing ki when
U1 =U2. This simple expression is a useful relationship for tuning
the integrator network. One may select Cm to obtain the intended
mean integration rate, and then minimize the variation of the
integration rate by minimizing gs, as long as equation (57) is
satisfied.

Figure 5D graphically demonstrates how ki ,mean and ki ,range
determine Cm and gs. Just as in equation (79), ki ,mean is a function
only of Cm. Therefore, the contour only shows vertical lines. The
value of ki ,range is minimized by decreasing either gs or C−1

m (i.e.,
increasing Cm). Figure 6 shows simulation data of the integrator’s
response to a step input with eight different parameter value
combinations. In every case, the change in U1 is bounded by the
values of ki ,mean and ki ,range. As shown in Figure 5D, increasing
Cm decreases the integration rate, and increasing gs increases the
variation in the integration rate.

Table 2 summarizes the design approach for this integrator
network. The mean and range of the integration rate are free
parameters that are determined by the intended network perfor-
mance. Using these values and the constraint in equation (57), the
neurons’Cm value and the synapses’ gs and ∆Es values can be fully
specified.

5. APPLICATION TO A ROBOT
CONTROLLER

We have used the methods in this paper to tune (i.e., select
parameter values for) several different networks that control
robotic stepping (Szczecinski and Quinn, 2017; Szczecinski et al.,
2017a) and visual tracking (Szczecinski et al., 2017a). Once a
network layout is determined, whether hypothetical or based on
neurobiological findings, individual subnetworks can be identi-
fied and tuned to work together. Figure 7 shows a simplified
joint-control network in which different functional pathways are
color-coded. This illustrates how these functional subnetworks
enable the direct assembly of control networks based on neuro-
biology. The neurobiological inspiration for these networks and
the results of robotic experiments are presented in Szczecinski
and Quinn (2017) and Szczecinski et al. (2017a), and so are
omitted here.

The joint network in Figure 7 uses three simple descending
commands (body heading, stride length, and reference leg load)
to control the walkingmotion of one joint of a leg. The descending
commands modulate the output of a central pattern generator
(CPG) to control the speed of the motion, and sensory feed-
back is used to adjust both the timing and amplitude of motor
output. Addition pathways are drawn in red. These include the
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FIGURE 6 | Simulation data from eight trials are shown. Different values of Cm and gs were used in each. Neural dynamics are plotted as blue lines. The expected
final values of the simulations are plotted in dotted red lines. Regions bounded by ki ,mean ± ki ,range are shaded in violet. In every case, the actual outcome is correctly
bounded. As demonstrated mathematically in the text, ki ,mean only depends on Cm. In addition, ki ,range depends on gs, leading to more variation in ki, as indicated by
larger shaded areas.

mapping between body heading and stride length (i.e., descending
commands, drawn in gray) to the PEP and AEP (Szczecinski
and Quinn, 2017). The PEP can also be modulated by force
feedback, which compares the load on the leg to a reference
value (Szczecinski and Quinn, 2017, in review). This requires
a subtraction network, drawn in orange, to compute if there is
too much or too little load on the leg. The difference is used to
adjust the PEP Memory network, which is an integration net-
work, drawn in blue. This network adjusts the PEP over time,
and remembers the motor command that produces the intended
force.

The output of the CPG, drawn in purple, excites the motor
neurons. Tuning CPG dynamics is discussed in our previous work
(Szczecinski et al., 2017b). The PEP and AEP neurons adjust
the motor output via multiplication pathways, drawn in green,
which scale CPG output to the motor neurons based on the
intended range of motion. Motor neuron activity controls the
motor velocity, and the θ neuron receives position feedback from
the motor via the mappings in Figure 1B. The motor velocity,
computed by the cyan differentiation pathway, reinforces ongoing
CPG behavior through the θ̇ neuron (Szczecinski et al., 2017b).
A division pathway (not shown) can be used to normalize the
velocity feedback to the joint’s commanded range of motion,
simplifying the control of stepping frequency. The θ̇ neuron also
receives some input from the Load neuron, ensuring that stance
phase is stable (Szczecinski and Quinn, 2017, accepted). By using

the functional subnetworks and the design constraints presented
in this paper, we can rapidly and directly assemble models of
neural systems that perform as intended without hand-tuning or
optimization methods.

How are the “Free Parameters” in Tables 1 and 2 chosen?
The free parameters fall into two classes: reversal potentials
(i.e., ∆Es) and dynamical constants (e.g., k, τ , etc.). The rever-
sal potentials are informed by biology. In this paper, we kept
−40<∆Es < 194mV (i.e., −100<Es < 134mV). The modeler
could use reversal potentials from specific synapses if that data
were available. The dynamical constants are informed by the
function of the robot. For example, the ksyn of the subtraction
network in Figure 1B controls the stiffness of the controller, and
may destabilize the system if not tuned to match the mechanical
properties of the robot (Szczecinski et al., 2017b).

As another example, τd and kd of the differentiator network in
Figure 7 determines the robustness of CPG rhythms, and howwell
it entrains to sensory feedback (Szczecinski et al., 2017b). A slow,
adaptively-walking robot may want a high kd to regularize CPG
oscillations, whereas a fast running robot may want a low kd to
be less sensitive to sensory feedback. Picking specific values for
these free parameters ultimately depends on the intended behavior
of the robot. The constraints in this paper enable the designer to
think in terms of more traditional robotics quantities, and use
these to set neural and synaptic parameter values, which may be
less intuitive.
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FIGURE 7 | A simplified joint-control network from our previous work
(Szczecinski and Quinn, 2017; Szczecinski et al., 2017a), with pathways
color-coded based on the functional subnetwork.

6. DISCUSSION

In this paper, we presented analytical methods for setting parame-
ters in dynamical neural networks that can add, subtract, multiply,
divide, differentiate, and integrate incoming signals. Such opera-
tions are at the core of control, and these techniques enable control
networks to be assembled rapidly and tuned directly. This work
primarily identifies constraint equations, not unique values, that
govern how parameters should be tuned. Thus, many different
networksmayperform the same functionwith different parameter
values, as observed in real neural circuits (Prinz et al., 2004).
Since these results are analytical, not based on machine learning
or optimization, there is no concern about these networks over- or
under-fitting training data, and their behavior is provable. These
techniques build on our previous analysis of synthetic nervous sys-
tems (Szczecinski et al., 2017b) and have been validated through
several studies with our robot,MantisBot (Szczecinski andQuinn,
2017; Szczecinski et al., 2017a).

All of the results from this paper make it easier to tune neu-
romechanical models of animals, as well. Many such models have
been created to study the principles underlying insect (Daun-
Gruhn and Tóth, 2010; Szczecinski et al., 2014) and mammalian
(Hunt et al., 2015a; Markin et al., 2016) locomotion alike. Often-
times, parameters of these models are tuned by hand to obtain the
intended motion, which is a painstaking, slow, and imprecise pro-
cess. The analysis in this paper canmake neuromechanicalmodels
come together more quickly, and have more predictable behavior,
leading to more thorough scientific investigations. More precise

tuning methods enable more thorough validation or invalidation
of hypotheses. Faster tuning methods enable more rapid valida-
tion or invalidation of hypotheses. For example, these methods
could be used to improve the coordination our previous cockroach
model (Szczecinski et al., 2014). In the model, curve walking
of varying radii was achieved by modulating muscle activations
with broad descending commands. However, the coordination,
reliability, and repeatability of such motion could be improved
with the methods of this paper, enabling us to improve or reject
the model.

6.1. Simplifications
Some of the calculations in this paper are based on approxi-
mations, which lead to inaccuracies in the calculations of the
subnetworks. One example is that the subtraction network does
not produce linear output. This non-linearity occurs because the
reversal potentials of synapses are rarely much lower than the
resting potentials of neurons, requiring large values of gs ,2 to build
a subtractor where ksyn = 1. A large gs ,2 value increases Upre ,2’s
effect on the denominator ofU∗

post’s response, causing the synaptic
input to reduce Upost’s sensitivity to inputs. This is particularly
noticeable in the differentiator’s response (Figure 4), especially as
ksyn increases.

Another example of a simplification we made is that our cal-
culation of ki only used the particular solution of the system.
This means that a transient response also exists, which we did
not compute. In addition, ki is a function of U1 and U2. This
means that ki is not a constant for this network. However, the
impact of U1 and U2 on ki can be minimized by minimizing gs
and maximizing R, as we showed in Sec. 4.2.

However, the developed networks are not intended to act as per-
fect analogs to their mathematical counterparts. These networks
are intended to act as representations of real neural circuits, which
likely do not act as perfect adders, multipliers, differentiators, etc.
Dynamic and transient effects are a real part of biological control
systems, and effective neural controllers have developed around
these idiosyncrasies and have likely evolved to even exploit many
of these aspects. In spite of these issues, the methods in this paper
are valuable. Our recent robotics work (Szczecinski and Quinn,
2017; Szczecinski et al., 2017a), as well as related work in progress,
is proof of the effectiveness of this approach.

6.2. Why Put Neurons in the Way?
The methods in this paper enable the direct construction of net-
works that perform arithmetic and dynamic calculations. Why
bother building neural networks just to recreate mathematical
operators? We believe there are several reasons to take this
approach. From a neurobiology perspective, the constraints that
we have identified may help explain why certain structures are
common in the nervous system (David Friel, personal correspon-
dence). For instance, mutually inhibitory parallel pathways are
common in the thoracic control of insect locomotion (Büschges
and Wolf, 1995), which may function as subtraction networks
in negative feedback loops. As another example, networks in the
retina of the rabbit are selectively sensitive to motion in one
direction or the other (Barlow and Levick, 1965). Such a network
could be constructed by using adjacent cells in the retina as
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inputs to differentiator networks. This would be consistent with
both the function of direction-sensitivity, as well as the laterally
inhibitive structure. Even though such consistency does not guar-
antee that the animal’s nervous system functions precisely this
way, the design methods in this paper may aid in understanding
the function of neural networks found in animals.

Additionally, the constraints that we identified may be used
to constrain parameter values in large brain models. Rather than
using global search techniques to understand the dynamics of a
large pool of neurons, we believe it may be faster to begin with
a number of functional subnetworks, and then use local search
techniques to tune the connections between them. In this way, the
designer is certain that parts of the network perform specific, use-
ful computations, rather than naively optimizing a large network
(Haferlach et al., 2007;Agmon andBeer, 2013; Izquierdo andBeer,

2013). The end result is something like a genetic program, but in
a neuroscience context.
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APPENDIX

A. Derivation of Integrator Eigenvalues and
Eigenvectors
We find the eigenvalues λ1 and λ2 and the associated eigenvectors
X1 and X2 of the Jacobian matrix by the eigenvalue problem,

det(J − λi · I) = 0 (A1)

J · Xi = λi · Xi, (A2)

where i is the index of the eigenvalue (1 or 2), I ∈ R2×2 is an
identity matrix, and J is the square matrix from equation (64).
Solving for λ,

λ1 = 0, λ2 =
a + b
Cm

> 0. (A3)

Because J is on the same side of the equation as ˙⃗x (see equation
(65)), λ2 > 0 indicates a stable system (e.g., as the stiffness matrix
of a physical system). λ2 > 0∀ x⃗, because a> 0 and b> 0. The
definition of a in equation (62) shows that a> 0 because gs > 0
(it is a physical quantity) and U1/R∈ [0, 1]. The same reasoning
applies to b.

We use the eigenvalues to find their associated eigenvectors,

X1 =
[

1
−b/a

]
. (A4)

Normalizing X1 to 1,

X1 =

 1√
12+(−b/a)2

−b/a√
12+(−b/a)2

 =

[
1/d

−b/(ad)

]
, d =

√
12 + (−b/a)2.

(A5)
Next, we calculate

X2 =
[
1
1

]
. (A6)

Normalizing X2 to 1,

X2 =
[
1/

√
2

1/
√

2

]
. (A7)

We now know the transformation matrix between the natural
coordinates, x⃗ = [U1,U2]T, and the generalized coordinates, q⃗ =
[q1, q2]T:

x⃗ = X · q⃗, X = [X1,X2] =
[

1/d 1/
√

2
−b/(ad) 1/

√
2

]
. (A8)

We will also make use of X−1 when transforming between
natural and generalized coordinates. We can analytically invert X
from equation (A8),

X−1 =
a · d ·

√
2

a + b ·

[
1/

√
2 −1/

√
2

b/(ad) 1/d

]
=

[ a·d
a+b

−a·d
a+b

b·
√

2
a+b

a·
√

2
a+b .

]
(A9)
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