FPGA Implementation and Acceleration of Building blocks for Biologically Inspired Computational Models

Mandar Deshpande
Portland State University

Follow this and additional works at: https://pdxscholar.library.pdx.edu/open_access_etds
Let us know how access to this document benefits you.

Recommended Citation
https://doi.org/10.15760/etd.160

This Thesis is brought to you for free and open access. It has been accepted for inclusion in Dissertations and Theses by an authorized administrator of PDXScholar. Please contact us if we can make this document more accessible: pdxscholar@pdx.edu.
FPGA Implementation & Acceleration of Building blocks for Biologically Inspired Computational Models

by

Mandar Deshpande

A thesis submitted in partial fulfillment of the requirements for the degree of

Master of Science

in

Electrical and Computer Engineering

Thesis Committee:
Dan Hammerstrom, Chair
Douglas V. Hall
Xiaoyu Song

Portland State University
©2011
Abstract

In recent years there has been significant research in the field of computational neuroscience and many of these biologically inspired cognitive models are based on the theory of operation of mammalian visual cortex. One such model of neocortex developed by George & Hawkins, known as Hierarchical Temporal Memories (HTM), is considered for the research discussed here. We propose a simple hierarchical model that is derived from HTM. The aim of this work is to evaluate the hardware cost and performance against software based simulations.

This work presents a detailed hardware implementation and analysis of the derived hierarchical model. We show that these networks are inherently parallel in their architecture, similar to the biological computing, and that parallelism can be exploited by massively parallel architectures implemented using reconfigurable devices such as the FPGA. Hardware implementation accelerates the learning process which is useful in many real world problems. We have implemented a complex network node that operates in real time using an FPGA. The current architecture is modular and allows us to estimate the hardware resources and computational units required to realize large scale networks in the future.
Acknowledgements

I am indebted to Dr. Dan Hammerstrom for his advice and suggestions throughout the course of this work. There were numerous meetings and discussions that led to successful completion of this thesis. I would like to thank all the members of our reading group and give a special thanks to Mazad Zaveri who was always there to help me when he was here and even after moving to India.

I am also grateful to the committee members, Dr. Douglas V. Hall and Dr. Xiaoyu Song for reviewing this document and suggesting key changes.

I would like to thank Dr. Branimir Pejcinovic for providing me with an opportunity to be a part of the ECE department as a Teaching Assistant for various courses.

My parents have always supported me in all my decisions and have always encouraged to take on new challenges for that I express my deepest gratitude and love. I would like to thank all my friends Ketan, Abhijit, Priya, Ameya, Soniya, Mihir, Omkar, Mrugesh, Makarand, Shantesh, Rajeev Nain, Ameya, Sudheer, Anish, Kapil, Jairaj for their support and enthusiasm.
Contents

Abstract i

Acknowledgements ii

List of Tables vii

List of Figures viii

1 Introduction 1

1.1 Research Background and Motivation 1

1.2 Objectives and My Contributions 4

1.2.1 Objectives . 4

1.2.2 Contributions . 4

1.3 Thesis Structure . 6

2 Literature Review 10

2.1 Review: Biologically Inspired Hierarchical Cognitive Models 10

2.1.1 Mountcastle . 10

2.1.2 Hierarchical Temporal Memory (HTM) 11

2.2 Model Used In This Dissertation 13

2.3 Vector Quantization (VQ) . 14

2.3.1 Vector Quantization . 15

2.3.2 Choice of Codebook size . 16

2.3.3 Initialization of Codebook . 17
2.3.4	Distance Metric	19
2.3.5	Learning Rate (α) and Epochs	19
2.3.6	Competitive Learning Algorithm	20
2.3.7	Frequency Sensitive Learning	20
2.3.8	Resultant Codebook	20
2.3.9	Hierarchical Vector Quantization (HVQ)	21
2.3.10	Analogy to an Artificial Neuron	22
2.4	Principal Component Analysis	22
2.4.1	Get the data for PCA	23
2.4.2	Calculation of Mean (DataMean)	24
2.4.3	Covariance Matrix	24
2.4.4	Obtain Eigenvectors	25
2.4.5	Projecting an input image with Eigenvectors	28
2.4.6	PCA as a possible candidate for Intelligent System Node	29

3 BIHCM Used In This Dissertation 31

3.1 Combination of PCA & VQ to form a BM Module 31

3.1.1 Architecture 31

3.1.2 Operation of part-A of the BM 33

3.1.3 Operation of part-B of the BM 36

4 Example: Handwritten Character Recognition System 39

4.1 Software Implementation of Recognition System 39

4.1.1 USPS Dataset 40

4.1.2 System Parameters and Configuration 41

4.1.3 Training the System 43
List of Tables

2.1 Codebook at Initialization .. 18
2.2 Input Data for PCA Example 23
4.1 Classification Accuracy Results 45
6.1 Precision Requirement of Input Variables 67
6.2 Precision Requirement of Intermediate Variables 68
6.3 Precision Requirement of Output Variables 69
6.4 Precision Requirement of Input Variables (part-B) 70
6.5 Precision Requirement of Intermediate Variables 71
6.6 Precision Requirement of Output Variables 72
7.1 Verification Data for Data Adjust Block 74
7.2 Verification Data for MAC Unit 74
7.3 Verification Data for Subtractor, Codebook Distances 75
7.4 Verification Data for MinimumIndex Search Block 75
7.5 BM Single Module Parameters 78
7.6 Response time Speedup .. 80
7.7 Update Time Speedup ... 80
7.8 Synthesis Results for two BMs 80
List of Figures

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Typical FPGA Structure</td>
<td>6</td>
</tr>
<tr>
<td>2.1</td>
<td>Mini Column [15]</td>
<td>11</td>
</tr>
<tr>
<td>2.2</td>
<td>VQ Sample Image (Helicopter)</td>
<td>15</td>
</tr>
<tr>
<td>2.3</td>
<td>Processed Image with 287 ‘On’ pixels</td>
<td>16</td>
</tr>
<tr>
<td>2.4</td>
<td>Plot of initial codevectors for VQ example</td>
<td>18</td>
</tr>
<tr>
<td>2.5</td>
<td>Codevectors representing the input image</td>
<td>21</td>
</tr>
<tr>
<td>2.6</td>
<td>(a)-VQ, (b)-Hierarchical VQ</td>
<td>22</td>
</tr>
<tr>
<td>2.7</td>
<td>PCA Data Sample</td>
<td>23</td>
</tr>
<tr>
<td>2.8</td>
<td>Covariance Matrix for the example 2-D Dataset</td>
<td>24</td>
</tr>
<tr>
<td>2.9</td>
<td>Plot of Principal Components showing Variance</td>
<td>28</td>
</tr>
<tr>
<td>3.1</td>
<td>Main Components of BM Module</td>
<td>31</td>
</tr>
<tr>
<td>3.2</td>
<td>Internal Mathematical Blocks of BM Module</td>
<td>32</td>
</tr>
<tr>
<td>3.3</td>
<td>Hierarchical Arrangement of BM Modules</td>
<td>33</td>
</tr>
<tr>
<td>3.4</td>
<td>Flow of the Principal Component Extraction Process</td>
<td>34</td>
</tr>
<tr>
<td>3.5</td>
<td>Forward Mode of PCA</td>
<td>34</td>
</tr>
<tr>
<td>3.6</td>
<td>Iterative Learning for Generating Codebook</td>
<td>36</td>
</tr>
<tr>
<td>4.1</td>
<td>Input Image samples for Numeral-1</td>
<td>40</td>
</tr>
<tr>
<td>4.2</td>
<td>Input Image Perceived by BMs in the Hierarchy</td>
<td>41</td>
</tr>
<tr>
<td>4.3</td>
<td>Classification Accuracy Vs ‘N’</td>
<td>46</td>
</tr>
<tr>
<td>5.1</td>
<td>Flow Diagram of major design steps</td>
<td>48</td>
</tr>
</tbody>
</table>
5.2 FPGA Development Kit

6.1 Hardware Architecture for Online PCA

6.2 part-B: VQ Architecture

6.3 VQ in Vector Comparator Mode

6.4 VQ in Training/Learning Mode

6.5 Sequential Subtractor block

6.6 Floating to fixed point Conversion

7.1 Waveforms for the DataAdj Block

7.2 Waveforms for Row Feature Vector Matrix

7.3 Waveforms for MAC Unit

7.4 Simulation Waveforms for Codebook Vectors

7.5 Simulation Waveforms for Subtractor

7.6 Pipelined Architecture

7.7 Number of Neurons Simulated w.r.t the number of BM Modules

7.8 FPGA Resource Utilization w.r.t the number of Simulated Neurons

7.9 Virtualization of hardware resources: Update Logic

7.10 Effect of Parallelization on Slack and Best Achievable Frequency
Chapter 1

Introduction

1.1 Research Background and Motivation

This chapter will discuss some of latest trends in CMOS process technology, advances in Computer Architecture, and algorithms that are based on the concepts of Biologically Inspired Hierarchical Cognitive Models (BIHCM). We also present an overview of concepts and techniques that we have used in our hierarchical network model. More detailed discussion is included in the respective chapters.

This thesis describes the Field Programmable Gate Array (FPGA) implementation of simple hierarchical model that is derived from George & Hawkins HTM algorithm, and proposes an optimization technique to accelerate the learning process. The model presented here is a generic one and can be used for building the current models as well as future biologically inspired models. We have targeted the primary bottlenecks of these models mainly growing vector length as we go up in the hierarchy and finite memory requirements for a single module in the hierarchy for carrying out vector comparisons. The comparison of a hardware implementation with a Software simulation was done and the results are promising for future work in building large scale prototypes of these networks using FPGA devices.

The rate at which the semiconductor industry has grown over the last four decades is phenomenal and is a result of advances in CMOS process technology. Now the latest Intel processor chips are fabricated at 32 nm and are moving to 22
nm [14]. The deterministic nature of digital circuits soon is becoming more probabilistic at increasingly smaller feature sizes. And their other problems discussed by Hammerstrom [8]:

- Power Density: is one of the main challenges and limiting factors in performance.
- Design complexity: more than 70\% of the time is spent in verifying the functionality
- Density overkill: how to best utilize a billion transistor chip?
- Limited deployment of parallel applications: the operating system and software applications, which sit and run on top of the multi-core and multi-threaded processors, needs to be developed to take full advantage of the underlying hardware.

And although these problems are becoming more serious, Moore’s law continues. Instruction Level Parallelism (ILP), Multi-threading and Multi-Core architectures are prominent examples. However due to the lack of parallelism in existing software applications and Operating Systems which leads to under utilization of the speed-up offered by underlying hardware and it proposes new challenges in the way existing and future applications and operating systems will be developed.

Despite decades of research by the Artificial Intelligence (AI) community and the enormous computing power available in today’s computers, we still struggle with solving some of the very basic problems that animal nervous systems can perform almost instantly which includes problems such as visual pattern and speech recognition.
Biological systems are inherently parallel as opposed to traditional computers which are primarily sequential architecture. This encourages the study of biology. Its mathematical models needs to be explored in much more detail which will help in the long term goal of building truly intelligent systems.

In recent years there has been a growing interaction between people from neuroscience and computer science which has led to the fantastic growth of this new field of biologically inspired computing. The techniques presented in this work are helpful when building custom chips for such intelligent computing models.

One of the active research groups who is looking at building a model of a human neocortex based on the insights from neuroscience and computer science is led by Jeff Hawkins at Numenta, Inc. They call their model Hierarchical Temporal Memory (HTM) [5].

HTM consist of nodes that are arranged in a hierarchical manner. These nodes essentially perform the same computation in all the layers in the hierarchy. This makes their hardware implementation easier since only one node has to be designed, which is then instantiated many times, based on the given hardware resources, the application requirements, or to meet speed requirements of slower devices such as memories. The degree of hardware virtualization [3] can be varied to effectively use the available logic resources. Parallelism can be exploited at the node level. Intra-node parallelism can be a major contributor in the overall speedup.
1.2 Objectives and My Contributions

1.2.1 Objectives

In this thesis we study several characteristics of HTM [5] that are essential for an FPGA building block. Such a system should be adaptive in nature, have large storage capacity per node, exploit the reconfigurable nature of FPGAs for on-line learning and should scale to image size.

1.2.2 Contributions

This section highlights all the problems addressed by this work and our contributions in solving those problems. The main goal of this thesis is to build a simplified model based on the concepts of HTM and propose an optimization technique to accelerate the learning and recognition time of the model and also lower the memory requirement of the proposed Bayesian Memory (BM) module which is an approximation to the HTM node.

- Exploit the fine-grained parallelism that these models offer through hardware implementation, propose a method for improving the performance of the existing algorithm (which has only Vector Quantization (VQ) as its node component) by introducing the use of Principal Component Analysis (PCA) for dimensionality reduction/feature extraction and VQ for data compression.

- Determine the best integer approximation with fixed point precision.
• Compare and contrast Euclidean and Manhattan Distance metrics and compare the PC-MATLAB simulation and FPGA implementation on various parameters to determine whether an FPGA implementation meets our expectations in the performance/price trade-off for building intelligent systems, and analyze whether an FPGA offers performance advantage over PC-MATLAB simulation.

• Although we discuss on-line training in our study, we assume that the feature extraction is carried out in the offline phase and lookup and learning, which are compute intensive, are carried out on-line with the recognition phase being fully implemented in real time.

• We have focused on a single node and have multiple instances running in parallel to increase the throughput of the system.

• We do not consider the inter layer communication or inter node communication.

FPGA ARCHITECTURE AND ITS ANALYSIS
Commercial computers and networked computers are best suited for simulation and development purposes, but in order to build real time applications which can benefit from these pattern recognition models we need to look at custom hardware design space. FPGAs are well matched to such applications as they have a reconfigurable structure and allow arbitrary parallelism. Figure 1.1 shows the basic structure of a typical FPGA which has a matrix of configurable logic blocks (CLBs) and interconnect between CLBs surrounded by I/O blocks. The FPGA used in this work is in the intermediate range in terms of the number of gates and
other functionalities offered.

In this work, our algorithm is implemented on a Xilinx Spartan 3E FPGA. It shows significant speedup improvement over a PC implementation. The results obtained proved the validity of our assumptions in using FPGAs for acceleration and the real time implementation of such BIHCMs.

1.3 Thesis Structure

Chapter 2 covers the review of Biologically Inspired Computing and one of the latest algorithms based on the same terminology. We then present the basic building blocks of such systems and the proposed optimizations with appropriate examples.

Chapter 3 describes how the PCA is used in a HTM implementation and helps in increasing the performance of the system.

Chapter 4 describes the design of a Bayesian Memory (BM) based Hierarchical system and its application as a Handwritten character recognition system. We perform classification over 10 different classes, we also discuss preprocessing techniques and classification accuracy with and without our proposed optimization.
technique.

Chapter 5 provides an overview of FPGA Design and Verification flow adopted in the implementation of BM Module. Also it highlights some of the salient features of the FPGA Device and board that is used for this work.

Chapter 6 describes the detailed hardware design and implementation of the complete BM Module (part-A and part-B) along with Fixed-point precision discussion, internal blocks of the system and on-chip Block-RAM utilization.

Chapter 7 describes the verification techniques used here. It also presents a performance analysis based on the speedup and area parameters. The concept of hardware virtualization is discussed, which plays an important role in implementing algorithms that are fine grained and can exploit parallelism based on the performance/price trade-offs. Finally, the important findings are summarized in the conclusions section and the future work section provides an overview of possible additions and other considerations concerning future work.
Nomenclature

AI Artificial Intelligence

ANN Artificial Neural Network

BIHCM Biologically Inspired Hierarchical Computational Model

BM Bayesian Memory

BMI Bayesian Memory Implementation

CB Codebook

CV Codevector

DVM DataMean Vector Memory

FLP Floating Point

FPGA Field Programmable Gate Array

FV Final Vector is the output of part-A of the BM Module.

FXP Fixed Point

GPU Graphic Processing Unit

HTM Hierarchical Temporal Memory

InpVector Input Vector

LR Learning Rate ‘α’
LUT Look-up Table
MAC Multiply Accumulate Unit
MinIndex The winning index and the output of the BM Module.
PCA Principal Component Analysis
RVFM Row Feature Vector Memory
VQ/HVQ Vector Quantization/Hierarchical Vector Quantization
Chapter 2

Literature Review

This chapter covers the description of the ideas and concepts that are used in this work in developing a model that enables efficient hardware implementation of the compute intensive parts of an HTM. We first review existing Biologically Inspired Hierarchical Cognitive Models and how they are related to the work presented. Later we show how PCA, in addition to the VQ, is an effective solution for hardware implementation of such models.

2.1 Review: Biologically Inspired Hierarchical Cognitive Models

2.1.1 Mountcastle

Mountcastle [16] in his book proposed that the basic unit of the neocortex is a minicolumn and that the neocortex can be represented in columnar fashion. This minicolumn is a vertically structured group of about 80-100 neurons. The combination of several of these minicolumns into a larger group is called a hypercolumn, macrocolumn or simply a column, having dense connections within columns and sparse connectivity between columns. This is shown in Figure 2.1.
The dotted rectangle represents a macrocolumn/hypercolumn and small blue containers within hypercolumn represents a minicolumn which is densely connected where as hypercolumns are sparsely connected.

As can be seen from the Figure 2.1, most of the computations take place in the column and a closer look reveals that the computations within a minicolumn are uniform throughout a macrocolumn, which is the focus of this research work, the hardware implementation of the most compute intensive part of the neocortex, i.e., structure that resembles a minicolumn using reconfigurable hardware such as FPGA. The details are discussed in the next chapter.

2.1.2 Hierarchical Temporal Memory (HTM)

Dileep George in his PhD thesis [6] proposed a theory on ‘how the brain might work’ and introduced the notion of Hierarchical Temporal Memory (HTM). The network is hierarchical in nature and has multiple HTM nodes in each layer of the hierarchy. The HTM node has inputs and outputs and all the nodes perform
identical computations except for the top layer node, which has additional features for performing classification. The HTM node is split into two operations a spatial and a temporal pooler. The spatial pooler stores the unseen patterns from the large set of input samples by making use of quantization. The winning sequences from the spatial pooler are seen as groups by the temporal pooler and these groups are formed using a greedy graphical grouping algorithm based on a time adjacency matrix, which is generated from the first order transitions of spatial pooler’s quantization centers.

As opposed to other learning methods, HTM along with spatial quantization also exploits time as a teacher [10] for invariant pattern representation. This allows the network to use the representations learned from one object in learning another object. The network typically has a tree like structure and inputs are fed to the bottom layer. The learning takes place by presenting to the network a continuous stream of patterns in a movie like fashion.

Learning is done in a layer by layer manner. The bottom most layer receives inputs from sensors and learns most likely temporal sequences by observing the centers in the spatial pooler. Once all the nodes in the bottom layer finish learning, they switch to recognition mode, in this mode all the nodes transmit the index of the winning center in the spatial pooler that is closest to the current input sample. Several of these bottom layer nodes are connected to a single node in the upper layer of the hierarchy, which is the parent node and former is the child node. The winning indices from several child nodes are concatenated and sent as an input to the parent node. After child node learning is complete the parent node goes into the learning mode and performs the same operation as child node. This type of learning takes place throughout the hierarchy. The entire network functions
as a probabilistic inference network based on Pearl’s Bayesian Belief Propagation algorithm (BBP).

2.2 Model Used In This Dissertation

We start with an analysis of existing models and incrementally built our model, which becomes the base model for the hardware implementation and the baseline for future FPGA implementations of BIHCMs.

- Today’s BIHCMs are based on the hierarchical organization of neocortex [11]. So we take that into consideration and organize our network as a hierarchy of layers with each layer having multiple BMs. This approach has the advantage of easier scaling than many traditional neural models.

- The most common characteristic of any BIHCMs is that they are memory intensive, each BM module represents a dense internal interconnect structure which means large memory requirements for a single BM module.

- Quantization, whether iterative or non-iterative, dictates the memory requirements of an HTM node.

- Basic computational units in any model will have a vector quantizer for mapping large number of input samples to a finite number of Codebook vectors. The quantizer and its mathematical analysis is discussed in section 2.3.

- In our model we do not consider the temporal hierarchy in the HTM network.
• The proposed BM module covers the most fundamental computational blocks and could be used to implement the temporal pooler if we were to build a complete HTM.

• The same learning strategy is incorporated into our model, of layer by layer learning. It turns out that this strategy is efficient and practical when hardware implementation of such networks is considered.

• Coupled with layer by layer learning, with the computations being performed by all the nodes in the layer as well as in the network, the concept of Hardware Virtualization [3] can be effectively utilized for our implementation and is discussed in chapter 7.

• The use of on-chip Block RAMs allows lower access times, thus increasing the speed of operation which otherwise would be affected by the off chip accesses to external dRAM.

• The entire network trains in an unsupervised, feed forward fashion [6]. For our implementation, incidental feedback connections are not implemented.

2.3 Vector Quantization (VQ)

The basic vector quantization [7] can be defined as the process of mapping large number of input samples to a smaller number of quantized centers which can be used to reconstruct the original input with minimal sacrifice in the quality. It is a fixed length to fixed length algorithm. VQ is widely used in the communication and speech systems and it has become one of the best methods for data compression of real signals. It is also used in image processing and video compression.
Some of the advantages of VQ are (a) simplicity, (b) adaptive nature and (c) potential parallelism and speed. The algorithm used in this work is explained with the following example.

2.3.1 Vector Quantization

An example image is shown in Figure 2.2. Preprocessing involved conversion to a grayscale image with 2-dimensional data points representing the image. Here we have resized the image to a 50×50 square.

![Figure 2.2: VQ Sample Image (Helicopter)](image)

A preprocessed Image, that is represented by pixels is shown in Figure 2.3.
Figure 2.3: Processed Image with 287 ‘On’ pixels

\[T = [x_0, x_2, \ldots, x_{M-1}] \] (2.1)

The source vectors are k-dimensional, e.g.

\[x_m = (x_{m,1}, x_{m,2}, x_{m,3}, x_{m,4}, \ldots, x_{m,k}), \quad m = 1, 2, 3, \ldots M \] (2.2)

2.3.2 Choice of Codebook size

Once the training dataset is obtained, the next step is to select the number of code-vectors \(CV \) in the the Codebook. Let \(N \) be the total number of codevectors and \(C \) represent the Codebook in Eqn 2.3. Then each codevector will be \(k \)-dimensional
as shown in Eqn 2.4 below:

\[C = (c_1, c_2, c_3, \ldots, c_N) \] (2.3)

Each Codevector will be

\[c_n = (c_{n,1}, c_{n,2}, c_{n,3}, c_{n,4}, \ldots, c_{n,k}), \quad n = 1, 2, 3, \ldots, N \] (2.4)

In our example, the Codebook size can be selected to be a value less than the total number of training samples. In our example we select \(N = 15 \). Now the codebook will have 15 codevectors and \(k = 2 \), which defines the size of the Codebook.

2.3.3 Initialization of Codebook

Having selected the number and dimension of the codevectors, now the initial values can be assigned to these codevectors. There are several ways [7] to do this but we will initialize the Codebook with random points in the input space. The resulting Codebook is as shown in Table 2.1 for a 2-dimensional example.
<table>
<thead>
<tr>
<th>Index of codevector</th>
<th>X</th>
<th>Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.763</td>
<td>0.3117</td>
</tr>
<tr>
<td>2</td>
<td>0.7191</td>
<td>0.2375</td>
</tr>
<tr>
<td>3</td>
<td>0.9897</td>
<td>0.4235</td>
</tr>
<tr>
<td>4</td>
<td>0.0573</td>
<td>0.8507</td>
</tr>
<tr>
<td>5</td>
<td>0.3384</td>
<td>0.2204</td>
</tr>
<tr>
<td>6</td>
<td>0.3679</td>
<td>0.4264</td>
</tr>
<tr>
<td>7</td>
<td>0.5262</td>
<td>0.816</td>
</tr>
<tr>
<td>8</td>
<td>0.3667</td>
<td>0.2651</td>
</tr>
<tr>
<td>9</td>
<td>0.6008</td>
<td>0.9478</td>
</tr>
<tr>
<td>10</td>
<td>0.908</td>
<td>0.7741</td>
</tr>
<tr>
<td>11</td>
<td>0.5626</td>
<td>0.0055</td>
</tr>
<tr>
<td>12</td>
<td>0.6662</td>
<td>0.0645</td>
</tr>
<tr>
<td>13</td>
<td>0.5128</td>
<td>0.266</td>
</tr>
<tr>
<td>14</td>
<td>0.2118</td>
<td>0.0662</td>
</tr>
<tr>
<td>15</td>
<td>0.9491</td>
<td>0.1497</td>
</tr>
</tbody>
</table>

Table 2.1: Codebook at Initialization

Figure 2.4: Plot of initial codevectors for VQ example
2.3.4 Distance Metric

For each new source vector \(x_i \), the winner \(CV \) is selected from the Codebook. The winning \(CV \) is the closest to the given source vector and this is calculated either by a Least Square Error or by a Manhattan Distance Metric or any other measures as described in [7]. Here we will consider only these two distance measures.

The least square measure or Euclidean Distance Measure is defined by the following equation:

\[
d_i = \sum_{i=1}^{N} \sum_{k=1}^{D} (\text{codevector}_{i,k} - x_{i,k})^2)^{1/2}
\]

(2.5)

The Manhattan Distance Metric is defined as:

\[
d_i = \sum_{i=1}^{N} \sum_{k=1}^{D} (\text{abs}(\text{codevector}_{i,k} - x_{i,k}))
\]

(2.6)

2.3.5 Learning Rate (\(\alpha \)) and Epochs

Learning Rate (\(\alpha \)): This parameter decides the rate at which the winning code-vector \(CV \) will be adjusted in order to move it closer to the source vector on each iteration. The general range for \(\alpha \) is set between 0.1 to 0.0001. If the value is too high, the \(CB \) may not best represent the input space so the value is in the lower range.

Epoch: This parameter indicates the number of iterations for which the entire training set of source vectors will be scanned in order to obtain the desired Codebook which represents the input space. Epoch is defined at network initialization. To avoid under or over training of the \(CB \), Epoch was varied from 1 to 100 in order to find the best Codebook that will represent the input space with minimum loss.
of information while reconstructing the original image with quantized codevectors.

2.3.6 Competitive Learning Algorithm

Adaptive Algorithm: Equation 2.7 shows how the codevectors are trained on the source vectors \(X'_i \) to eventually represent the entire input space with codevectors. Usually the number of codevectors is quite a bit less than the total number of InpVectors.

\[
CV_i = CV_i + \alpha \times (X_i - CV_i)
\]

(2.7)

‘i’ in above equation represents the codevector that is closest to the given source vector \(X_i \).

2.3.7 Frequency Sensitive Learning

In case of competitive learning, some codevectors may be lost during learning and are never utilized for data compression. By penalizing the frequently winning codevectors, we can guarantee that all the codevectors are used to represent input space.

2.3.8 Resultant Codebook

After the specified number of Epochs, the Codebook is said to have adapted to represent the entire input space. The red points in the Figure 2.5 represent the Codebook (CB) and the gray points are the original points from input image.
2.3.9 Hierarchical Vector Quantization (HVQ)

In order to simplify the design, it may be possible to use hierarchical vector Quantizer [12] as shown in Figure 2.6. The advantage of using a hierarchy is that the input dimension of the Quantizer node in (b) is two, where as for Quantizer node in (a) it is four. The Quantizer in Figure 2.6 (b) requires a smaller codebook and hence requires less memory for its hardware implementation.
2.3.10 Analogy to an Artificial Neuron

Each codevector is very roughly equivalent to a single artificial neuron based in most ANN models. So the total number of neurons is equal to the number of codevectors in a Codebook. In the analysis section, we will see how to estimate the total count of simulated neurons based on the multiple BM modules running in parallel.

2.4 Principal Component Analysis

In a system where there may be a large number of potential patterns, it is necessary to represent the new input pattern using a set of predefined occurrences.
This can be done by using Principle Component Analysis (PCA) [12]. In the hierarchical model which we present, PCA plays an important role in simplifying the computation of exhaustive search through large Codebooks at the expense of additional memory for storing the Eigenvector matrix and DataMean vector.

2.4.1 Get the data for PCA

Here a simple example of PCA is presented. The idea is to introduce PCA and how it simplifies building a hierarchical model. The dataset is random and 2-dimensional and is generated by MATLAB.

![PCA Data Sample](image)

Figure 2.7: PCA Data Sample

<table>
<thead>
<tr>
<th>X</th>
<th>1</th>
<th>1.2</th>
<th>1.4</th>
<th>0.8</th>
<th>2</th>
<th>2</th>
<th>2.8</th>
<th>3</th>
<th>3.2</th>
<th>2.5</th>
<th>4</th>
<th>4.5</th>
<th>4.4</th>
<th>5</th>
<th>5.1</th>
<th>5.3</th>
<th>5.5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y</td>
<td>2</td>
<td>1.8</td>
<td>2.4</td>
<td>2.9</td>
<td>1.5</td>
<td>2.3</td>
<td>3</td>
<td>1.9</td>
<td>2.5</td>
<td>2.8</td>
<td>3.1</td>
<td>3.6</td>
<td>2.8</td>
<td>3</td>
<td>4.2</td>
<td>4.8</td>
<td>3.9</td>
<td>4.4</td>
</tr>
</tbody>
</table>

Table 2.2: Input Data for PCA Example
2.4.2 Calculation of Mean (DataMean)

In order to compute the covariance, first the average of each dimension needs to be calculated. Equation 2.8 is used to calculate the average of the data in each dimension. We define mean vector as DataMean Vector in coming chapters.

\[
X = \frac{\sum_{i=1}^{d} X_i}{d}, \quad Y = \frac{\sum_{i=1}^{d} Y_i}{d}
\]

(2.8)

2.4.3 Covariance Matrix

The covariance is a measure of how much the dimensions vary from the mean with respect to each other. For an \(M \) dimensional dataset, the covariance matrix will have \(M \times M \) elements, and can be computed using Equation 2.9.

\[
cov(X, Y) = \frac{\sum_{i=1}^{d} (X_i - \overline{X})(Y_i - \overline{Y})}{(d - 1)}
\]

(2.9)

In Equation 2.9 \(\overline{X} \) and \(\overline{Y} \) are the mean values of the respective dimensions. Using Equation 2.9 to generate the covariance matrix for our sample dataset, we get the following:

\[
\begin{bmatrix}
 cov(x,x) & cov(x,y) \\
 cov(y,x) & cov(y,y)
\end{bmatrix} = \begin{bmatrix}
 2.901417 & 1.277549 \\
 1.277549 & 0.873105
\end{bmatrix}
\]

Figure 2.8: Covariance Matrix for the example 2-D Dataset

This matrix provides information about the nature of the data. \(cov(x,y) \) and \(cov(y,x) \) are the same, indicating that the dataset has a positive correlation. If
either covariance value is negative, it indicates that as X increases Y decreases. If
the covariance value is zero it means that X and Y have no correlation.

It is easy to visualize or plot 2D and 3D data but more difficult to visualize
high dimensional dataset which is where covariance is most widely used to find the
relationships between dimensions in high-dimensional datasets.

2.4.4 Obtain Eigenvectors

Given a square matrix A and λ which is the Eigenvalue for a given non-zero
vector X, constrained by Equation 2.11. ‘X’ is the Eigenvector associated with the
Eigenvalue λ for matrix A can be found out by Equation 2.10

$$
\text{det}(A - \lambda \cdot I) = 0 \tag{2.10}
$$

(In Equation 2.10 ‘det’ stands for determinant and ‘I’ stands for Identity Matrix)

$$
A \cdot X = \lambda \cdot X \tag{2.11}
$$

Calculating Eigenvalues for A. A is a covariance matrix from our example.

$$
\begin{bmatrix}
2.901471 & 1.277549 \\
1.277549 & 0.873105
\end{bmatrix} - \begin{bmatrix}
\lambda & 0 \\
0 & \lambda
\end{bmatrix} = \begin{bmatrix}
2.901417 - \lambda & 1.277549 \\
1.277549 & 0.873105 - \lambda
\end{bmatrix}
$$

Solving the above matrix subtraction,
\begin{equation}
\det \left(\begin{bmatrix}
2.901417 - \lambda & 1.277549 \\
1.277549 & 0.873105 - \lambda \\
\end{bmatrix} \right) \\
= (2.901417 - \lambda)(0.873105 - \lambda) - (1.277549)(1.277549) \\
= (2.901417 - \lambda)(0.873105 - \lambda) - 1.63213 \\
= \lambda^2 - 3.77452\lambda + 0.901111 \\
\lambda_1 = 0.256123 \\
\lambda_2 = 3.518452 \\
\end{equation}

These are 2 Eigenvalues for the covariance matrix ‘A’. With covariance matrix and its Eigenvalues now we can compute the Eigenvectors.

For a Given matrix:
\[A = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \]

If the c is not zero then Eigenvectors can be defined as:

\[\text{Eigenvector}_1 = \begin{vmatrix} \lambda_1 - d \\ c \end{vmatrix}, \text{Eigenvector}_2 = \begin{vmatrix} \lambda_2 - d \\ c \end{vmatrix} \] (2.12)

and if b is not zero then:

\[\text{Eigenvector}_1 = \begin{vmatrix} b \\ \lambda_1 - a \end{vmatrix}, \text{Eigenvector}_2 = \begin{vmatrix} b \\ \lambda_2 - a \end{vmatrix} \] (2.13)

Substituting values of \(\lambda_1 \) and \(\lambda_2 \) in 2.12 , We get:
After calculating the Eigenvectors and Eigenvalues of the Covariance Matrix, variance in the original dataset is now available. The star marked points in Figure 2.9 are normalized, i.e., where the mean is subtracted from each point. As can be seen in the same Figure 2.9, two principal components are orthogonal to each other. The first principal component points in the direction of the maximum variance in the data and second principal component is orthogonal to the first component, as it shows the variance with respect to the first one. Eigenvectors are arranged in an ascending order based on their corresponding Eigenvalues. Two lines on the plot in Figure 2.9 are obtained from Eigenvectors.

$$\text{Eigenvector}_1 = \begin{bmatrix} 0.434883 \\ -0.90049 \end{bmatrix}, \quad \text{Eigenvector}_2 = \begin{bmatrix} -0.90049 \\ -0.43488 \end{bmatrix}$$
2.4.5 Projecting an input image with Eigenvectors

The steps discussed in explaining PCA, helps us understand how it works and where it can be applied. The use of PCA for dimensionality reduction in image processing applications is widespread. For a given dataset with sample images, the image can be represented by a single row of concatenated pixels or a single column for each image. The covariance matrix, Eigenvalues and Eigenvectors for this dataset are found out by following the steps discussed earlier.

In our example, these Eigenvectors and the newly formed Eigen space is for the numerals 0-9 and can be called as Eigen digits space. All the Principal Components...
together represent the entire input space. As seen earlier, typically only the first few principal components represent most of the variance in the given dataset. Only using the \(N \) components with high variance, the dimensionality of the input dataset is reduced to only \(N \)-dimensions.

New input image can be represented by any one of the Eigen digits with only \(N \) dimensions. Also Eigenvectors can be used to project the input image by subtracting the DataMean from the input image and multiplying the outcome with Eigenvector matrix.

2.4.6 PCA as a possible candidate for Intelligent System Node

For example if the input image is \(16 \times 16 \), we can partition it into 16 regions of \(4 \times 4 \) each. Each node in Layer-1 takes as input one of the regions of the entire image. Lets consider the (1,1) node which has the receptive field of only the upper left block of the total image. Its input is a \([4 \times 4] = 16\) element wide vector. Four Layer-1 nodes are seen by each Layer-2 node. So the concatenation of the output of four such nodes forms the input vector to the Layer-2 node.

The concatenated vector length grows as the input image has higher resolutions and it becomes difficult to pass these long concatenated vectors up the hierarchy. By introducing PCA as one of the components in the node, now the vector length seen by a VQ in any layer in the hierarchy can be made uniform by selecting only the first \(N \) principal components. This directly reduces the computation time required to compare the input vector with all the codevectors in the \(CB \). As the codevector length reduces, the total memory required for the Codebook is less as compared to the design without the PCA.

An image is represented by a set of pixels. These pixels can be arranged in a
row or column forming a vector. Similarly all the images can be arranged in the same fashion. This forms our image vector matrix. Principal component analysis which resides in the node receives this image matrix and computes Eigenvalues and Eigenvectors in order to compute the first N principle components. This process need only be done once. The Eigenvectors are stored in the node memory along with the DataMean vector for that dataset.
3.1 Combination of PCA & VQ to form a BM Module

In this section, we propose a novel node architecture, and provide all the necessary details on its internal and external operation and subsequent role in the hierarchy. For this implementation we do not consider Temporal Pooling and concentrate only on optimizing Spatial pooling.

3.1.1 Architecture

The architecture of a proposed node is shown in Figure 3.1. We use the term BM to refer to Bayesian Memory (BM). Because under certain conditions the VQ exhibits Bayesian properties [17]; in general, BM is an approximation to the HTM node and refers to a single module and not the entire hierarchical structure.

Figure 3.1: Main Components of BM Module
A single BM module consists of two functional parts: part-A and part-B [9]. During the learning phase, part-A extracts Eigenvectors and DataMean from input dataset and part-B builds a Codebook (CB) based on these projected InpVectors with reduced dimensions. The Row Feature Vector Matrix (RFVM), DataMean Vector (DVM) and CB are in a physical Memory for the proposed BM Module.

Here the necessary mathematical components and one possible optimization technique for implementing Hierarchical Network Models and provide working and synthesizable component modules for future implementations of such algorithms. For the current FPGA implementation we have implemented parallelism at the Module level. All the internal operations are performed sequentially.

Multiple BM modules can be connected in a tree structure to form a hierarchical system as shown in Figure 3.3 (this also has called Hierarchical Distributed Memories in some of the earlier work by our research group [9]. This is illustrated in Fig 3.3 and the details of the operation of BM based hierarchical system as
shown in Figure 3.3 are provided in the following sections. In Figure 3.3 each layer has several BM modules, for example, Layer-1 has 16 BM modules, Layer-2 has 4 BM modules and Layer-3 has only single BM module. Since these BM modules are arranged in a hierarchical manner the network is called a BM based hierarchical network.

3.1.2 Operation of part-A of the BM

The primary function of part-A of the BM is to find the first N Principal Components which requires the Eigenvectors and DataMean vector for all the incoming vectors of the particular BM module. Through this process, RVFM and DVM are built and stored in the respective BM modules. The process of feature extraction or dimensionality reduction is achieved by a single pass through the entire training dataset.
3.1.2.1 Finding Principal Components for the Layer-1 BM

Figure 3.4 shows the step by step process [2] for the formation of RVFM and DVM for a single BM module. The training dataset is directly passed onto all the Layer-1 BM modules. Preprocessing involves the subdivision of input image into non-overlapping regions depending on the size of the image and network configuration.

![Flow of the Principal Component Extraction Process](image)

Figure 3.4: Flow of the Principal Component Extraction Process

Once the Layer-1 BM extracts Eigenvectors and DataMean vector for the training dataset, it then goes in forward mode of operation as shown in Figure 3.5. A BM in forward mode does the following: The mean vector from the training dataset which is called the DataMean vector is first subtracted from the incoming *InpVector*. The resulting vector, which is called the DataAdjust Vector, has the
same dimensions as the $InpVector$. The RVFM that was generated during the learning phase is an $N \times M$ matrix, in which N is the number of principal components that we decided to keep and M is the length/dimension of the original $InpVector$. Next, each of the RVFM vectors is multiplied by DataAdjustVector to generate the FinalVector (FV) which is a projection of $InpVector$ onto an N dimensional Eigen digits space.

3.1.2.2 Finding the Principal Components for Layer 2 and above

In Figure 3.3, consider a Layer-2 BM, we want to find N principal components and form the respective Eigenvector memory/RVFM and DataMean Vector memory/DVM for each Layer-2 BMs. Each Layer-2 BM has several Layer-1 BMs connected to it. Layer-1 BMs receives their inputs directly from the training dataset. Layer-2 BMs receive the concatenated vectors of all the Layer-1 BM winning vectors ($WinV$) they are connected to. So the input to each Layer-2 BM is $InpVector = (WinV_{1,1}WinV_{1,2}WinV_{1,3}WinV_{1,4})$. Note that the $InpVector$ for a Layer-2 BM is not the direct input from sensors, but the quantized version/approximation of input image. The calculation and message passing of winning vectors ($WinV$) is covered under section 3.1.3. Once the Layer-2 BM has finished their learning, they all will go in the forward mode of operation and generate $WinV$ for each subsequent Layer in the hierarchy which in our example is Layer-3. At any given point during the learning phase, a given BM has to only communicate with BMs that are one Layer above itself. So, for example, during the learning of Layer-3 BM it has to communicate with only Layer-2 BM modules and not Layer-1 BM modules.
3.1.3 Operation of part-B of the BM

In part-A of each BM module, we looked at the steps involved in generation of RVFM and DVM. Also we saw that during the training phase of BM, part-A generates FV which is a projection of original $InpVector$ onto an Eigen digits space using Eigenvectors. FV acts as a training vector for the VQ block.

3.1.3.1 Learning the CB for each Layer-1 BM module

The CB is a matrix of size $R \times C$ where R is the number of rows representing unique codevectors having a vector length of C. All the codevectors are randomly initialized. Using Euclidean/Manhattan Distance Metric, the distance d between each CB codevector and FV is determined. After finding the minimum of all
the distances in the distance table, the codevector with this smallest distance is chosen as the winner. An update rule (adaptive algorithm) in 2.3.6 is applied to the winner with fixed α. The epoch size determines the number of iterations & hence the convergence time. In Figure 3.6 we show the iterative learning for CB generation.

Once the CB finishes its learning (i.e. when all training vectors have been presented for defined number of epochs), part B goes into the forward mode of operation as shown in Figure 3.6. In the forward mode the distance between each CB_i codevector and the FV are determined and stored in the distance table along with their unique indices. After finding the minimum of all the distances in the distance table, the codevector with the smallest distance value is chosen as the winning vector ($WinV$) and its associated index represents BM upward outputs. The purpose of sending the index of the $WinV$ is evident when hardware implementation is considered. On FPGA it is not possible to pass the concatenation of $WinV$ to BM in the upper layers, therefore by storing their indices, much less bandwidth is used. Indices can be directly used as a pointer to the memory locations where the $WinV$ are stored.

3.1.3.2 Learning the CB for Layer-2 BM module

Earlier it was shown how $InpVector$ is formed and the N principal components are computed. Once RVFM and DVM are generated for the dataset formed by $InpVectors$; we can proceed with the learning of CB for each Layer-2 BM module. We will denote $FV_{i=2}$ as the Feature Vector at Layer-2 which becomes an input vector for generating Layer-2 CBs. The learning is same as that for Layer-1 BM. Only the difference being, the size of the CB at Layer-2 could be larger or smaller
compared than the rest of the CBs in the hierarchy.

3.1.3.3 Learning the CB for Layer-3 BM module

The learning strategy for the Layer-3 CB is little different in the sense that this BM module has to perform the function of classification as well. In our example, we have 10 different classes and each class represents a unique numeral 0-9. The codevectors in the CB at this Layer are split into 10 classes with groups of several codevectors representing each class. After getting FV_3 from part A of Layer-3 BM, FV dataset is sorted based on the class to which each FV belongs and these individual datasets are used as training data for learning the CB at Layer-3. For analysis of this work, we have considered a 3 level hierarchy. The number of layers in the hierarchy are arbitrary and in this work Layer-3 is the last level that is relevant.
Chapter 4

Example: Handwritten Character Recognition System

4.1 Software Implementation of Recognition System

In this section we show a MATLAB simulation of a hierarchical system which consists of BMs. The system is configured to do a handwritten character recognition. If we remove Temporal pooling from the HTM node, the underlying algorithm and network structure is basically a Hierarchical Vector Quantizer (HVQ) [7]. The very first recognition system we built had VQ only as a node component and the network is Hierarchical Vector Quantizer Network without the PCA as optimization technique. The type of learning is unsupervised and hence we ignore top down (feedback) communication in the hierarchical system.

Increasing vector length coupled with less number of iterations result in high conversion time and poor classification accuracy. Also, Manhattan Distance metric requires large Epochs to improve the classification accuracy. As discussed in section 3.1.2.2, BM nodes in layers other than Layer-1 receive InpVector which is a concatenated version of all the winner vectors from the immediate lower layer BMs connected to it. The growing vector length puts serious limits on the memory requirements of CBs of BMs.

The introduction of PCA along with HVQ allowed faster convergence time and reduced the time for an extensive search for the minimum distance codevector in a large CB. This type of BM requires fewer CB codevectors and WinV search is faster. Also PCA extracts eigenvectors which allow us to project an unknown
input image to the closest possible match from a given set of Eigenvectors.

4.1.1 USPS Dataset

The USPS handwritten numerals dataset is used to test our system. The dataset is readily available in a MATLABb compatible format. It can be downloaded from the web from [18]. It is a very common dataset used extensively in pattern recognition and machine learning research. The USPS dataset consists of 7000 train images and 4000 test images. All the images are grayscale with a resolution of 16×16 pixels and can be converted to their binary version by preprocessing.

![Input Image samples for Numeral-1](image)

Figure 4.1: Input Image samples for Numeral-1

Preprocessing Technique Figure 4.1 above is an image directly obtained from sensors and needs preprocessing before it is input to the recognition system. An overview of BM arrangement in the hierarchical recognition system and how an input image is perceived by BMs in different layers is illustrated in Figure 4.2.
Layer-1 BMs have a limited receptive field and only each see \(\frac{1}{16}\)th of the entire input image. Similarly, each Layer-2 BM see \(\frac{1}{4}\)th of the entire image and only Layer-3 can see the entire image.

4.1.2 System Parameters and Configuration

Overall system configuration for HVQ and PCA-VQ is the same in terms of the number of layers and the number of BM modules at each layer. The preprocessing performed on an input image remains the same for all the variations of the system.

4.1.2.1 Parameters specific to the HVQ System

A vector quantizer, when arranged in a hierarchical structure has three parameters that govern the training and testing of the system.
• Number of codevectors in a CB

The VQ uses fixed number of iterations to train the CB and the number of codevectors, i.e., the size of the CB is variable and needs to be determined via trial and error. It is also dependent on the number of training Epochs. If the number of Epochs is small, the CB size required will be very large in order to store all the variations in the input dataset, and if the epoch size is large, the training time is large and also it impacts the hardware implementation because it increases the demand on the Fixed-point precision (FXP) as values in the trained CB have higher precision requirements.

• Learning Rate (α)

Codevectors are updated on an incremental basis and this increment in the winning codevector is controlled by α. If the codevectors are initialized in the same range as that of input vector range then α could be very small, otherwise between 0.1 to 0.0001 is the usual range for this variable.

• Epoch size

Number of iterations for which the individual input vector is seen by the BMs is variable and completely depends on the size of training dataset, initial values of the CB and α. Epoch size can be defined for individual BMs in a layer or could be same for all the BMs in any given layer.

4.1.2.2 Additional Parameters for PCA-VQ BM System

In addition to the parameters discussed in section 4.1.3.1, we have an additional parameter ‘N’, which is the number of principal components that will be extracted from the input dataset. Note that N cannot exceed the maximum value of
input dimension. For example if the input vector is 16 elements wide, the maximum number of principal components that can be extracted is \(N = 16 \).

The value of \(N \) can be different for different layers in the hierarchical network. For example, at Layer-1 we may extract first 4 principal components out of 16 dimensional input vector and discard the remaining 12 components similarly at Layer-2 we may again extract only first 4 components and so on.

In PCA-VQ BM system, in addition to \(CB \) memory, we have Eigenvectors (RFVM) and DataMean Vector (DVM) memory blocks. These memories are built/generated during the training phase and are active throughout the operation of the network.

4.1.3 Training the System

After preprocessing, each image in both the train and test datasets is subdivided into logical blocks representing 16 non-overlapping regions. We use this newly formed dataset for our system. Each Layer-1 BM receives its InpVector corresponding to one of the 16 blocks of the original image. To capture the entire image, we need 16 Layer-1 BM modules. By concatenating the outputs (WinV) of four adjacent Layer-1 BMs, an input vector to one Layer-2 BM is formed. Similarly all the Layer-2 BM outputs are combined to form an input vector to the Layer-3 BMs. It can be observed that all the inputs going to Layer-1 form a hidden layer and can be labeled as Layer-0 in the hierarchy.

Initialization includes filling up all the \(CBs \) in all the BMs with random values. The user needs to define the \(\alpha \), Epochs and total number of principal components \(N \) to be extracted at each layer in the hierarchy. Note that each layer may have a different \(N \) value.
In the case of the HVQ system, the input vector to Layer-2 and above is a direct concatenation of four of the lower level adjacent BMs. The Layer-3 learning also takes place in the same manner. Each numeral class has a bell shaped probability distribution that is called a Gaussian Window and the classification at Layer-3 is achieved by comparing the output of Layer-3 with each of the class distribution values. In total we will have 10 Gaussian windows representing 0-9 numeral classes.

For the PCA-VQ BM System, all the Layer-1 CBs, RVFMs and DVMs are trained and generated using the procedures discussed in Chapter 3. In order to reconstruct the FV during the testing phase, RFVM and DVM are stored in each BM. Only one layer is trained at a time. This concludes the training of our system.

4.1.4 Testing the System

A trained network consists of BMs with trained CBs, RVFMs and DVMs representing one particular block out of either 16, 4, 1 blocks of input image depending on where the BM is situated in the hierarchy.

During the testing of the network, all the BMs in the network operate in the forward mode of operation. For a given input test image the corresponding FV is generated by part-A of a BM and the closest match out of the CB codevectors is declared a winning vector (WinV) and is the output of the module. This process continues up the hierarchy until Layer-3. The classification task is performed at Layer-3; this is achieved by first arranging the distance values in the distance table in an ascending order, the associated indices represent the location of WinV out of all the CB codevectors. To find an input’s class, the index value is divided by the total number of codevectors that are assigned to each class. For example, if Layer-3 has 50 codevectors in its CB, the index associated with WinV is divided...
by 5 (there are total 10 classes i.e. 5 codevectors per class). The resulting value is rounded off to the nearest integer value that is greater than or equal to the index value.

4.1.5 Results

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Network Configurations</th>
</tr>
</thead>
<tbody>
<tr>
<td>N1, N2, N3, N4, N5, N6, N7</td>
<td></td>
</tr>
<tr>
<td>Layers (1,2,3)</td>
<td>1, 2, 3</td>
</tr>
<tr>
<td>CB Size ($\times 10$)</td>
<td>(3,5,10)</td>
</tr>
<tr>
<td>No. of Principal Components N</td>
<td>(7,5,10)</td>
</tr>
<tr>
<td>(×10)</td>
<td>(10,3,10)</td>
</tr>
<tr>
<td>Epochs (×10)</td>
<td>(20,50,10)</td>
</tr>
<tr>
<td>Learning Rate</td>
<td>0.01</td>
</tr>
<tr>
<td>Multiplier (for random init of codevectors)</td>
<td>10*rand</td>
</tr>
<tr>
<td>Accuracy</td>
<td></td>
</tr>
<tr>
<td>Trainset-1st best match</td>
<td>90.61</td>
</tr>
<tr>
<td>Trainset-1st & 2nd best match</td>
<td>95.29</td>
</tr>
<tr>
<td>Test set-1st best match</td>
<td>89.12</td>
</tr>
<tr>
<td>Test set-1st & 2nd best match</td>
<td>94.1</td>
</tr>
<tr>
<td>Table 4.1: Classification Accuracy Results</td>
<td></td>
</tr>
</tbody>
</table>

The plot in Fig 4.3 shows the classification accuracy for the BM based hierarchical character recognition system. The accuracy is shown as the best predicted and the
second best match for the given input.

![Classification Accuracy Vs 'N'](image)

Figure 4.3: Classification Accuracy Vs ‘N’

It can be observed from the Table 4.1 that, just increasing the Codebook size does not guarantee 100% accuracy. Therefore by the process of feature extraction we can reduce the Codebook sizes without the loss in the recognition accuracy.

Also, the hardware cost of on chip memory for the Codebook is reduced significantly. For example, in a given image, if the input vector is 16 dimensional and we extract principal components and only first 4 are stored then the required memory is 1/4 the original size.
Chapter 5

FPGA Design Flow & Development Tools

The major component of any design process is the description of the design in a suitable form using a hardware description language to program in the FPGA. For verification of the developed RTL, we need to have a reference model with which the hardware results can be compared. The initial design was developed using Floating-point precision in MATLAB. Once the algorithm functionality was verified, then for the FPGA implementation the Fixed-point model of the algorithm was developed in the MATLAB for verification. For debugging of the synthesized design on the FPGA, an interactive user interface and available indicators on the FPGA board were used throughout the design cycle.

The development process consists of two major steps: the MATLAB Design Space for Debug & Verification and FPGA Design Flow for Synthesis, Place & Route and to download the design into an FPGA. The combination of these two forms a complete development flow as shown in Figure 5.1.

5.1 FPGA Design Flow

This section covers all the necessary steps required to realize the design concept in an FPGA, and provides details of the particular FPGA device used in this work. The entire design was developed using the Verilog-HDL [13], synthesizable constructs must be used. Synthesis is the process of converting an HDL design into a device netlist format for the FPGA implementation.

For large, complex designs, the synthesis process can be time consuming.
Therefore as the design complexity increases it is necessary to verify the functionality of the design before proceeding with synthesis. ModelSim 6.5a student edition is a Verilog compiler & Simulation tool that was used for Functional Simulation, Verification and Timing Analysis of our design.
Once the simulation results are verified and correct function is confirmed, we can proceed with the next step in the FPGA Flow which is synthesis. Design implementation consists of the following steps:

- **MATLAB Design Space**: A MATLAB model was a high level simulation of an algorithm used in the design space exploration and system verification. The Matlab model consists of the same design blocks (CB, RVFM, DVM, VQ and MAC) as the hardware implementation. In this way, design and architectural issues can be investigated throughout the design process from Functional Simulation to In-Circuit Verification. There were two MATLAB models developed for the Debug & Verification of the design. The first was a Floating Point model of the algorithm that was developed in the Initial Design Concept phase. Second was the Fixed Point model of the algorithm which was precisely developed keeping in mind its hardware implementation.

- **Simulation Env**: Developed RTL model of the algorithm is simulated in ModelSim and functionality is once again verified against the Fixed Point model in the MATLAB. Only when the simulation results match with the MATLAB Fixed Point model, the design proceeds thorough the remaining stages in the FPGA Flow.

- **Synthesis Stage 1**: The synthesizer converts the given HDL design entry into a gate-level netlist. Xilinx ISE uses built-in synthesizer XST (Xilinx Synthesis Technology). Synthesis report can be used to roughly estimate the resource requirement for a given design. Warnings can be used to avoid simulation and synthesis mismatches. Post synthesis allows the view of RTL Schematic to view gate-level schematic generated by a synthesizer.
• **Post Synthesis:** This process consists of a sequence of three steps: **Translate:** This step combines all the input netlists generated by a synthesis process and constraints to a logic design file. All the information is saved as a NGD (Native Generic Database) file.

Map: process fits the logic defined by NGD file into the targeted FPGA elements Configurable Logic Blocks (CLB), Input Output Blocks (IOB) and generates NCD (Native Circuit Description) file which has physical representation of entire circuit with mapped components of FPGA.

Place & Route (PAR): This program takes as input a mapped NCD file and generates a routed NCD file. It also outputs routing information.

• **Download:** The last step is to program the targeted FPGA with our design. The design must be converted to a format that target FPGA can accept it. The BITGEN program takes a NCD file as its input and generates a bit stream (top_module_name.bit) which can be used to configure the FPGA device. JTAG cable is used to interface the FPGA development board to a PC. The program file can be downloaded into an FPGA using Xilinx iMPACT.

5.2 FPGA Development Board

The FPGA Used In This Work

The particular FPGA used for this work was a Xilinx Spartan-3E XC3S500E. The chip has 1164 CLBs arranged in a 46x34 grid surrounded by I/O blocks as shown in Figure 1.1. Each CLB contains four slices, and each slice contains two Look-Up Tables (LUTs) which implement logic and two storage elements that can be used
as latches. A LUT can be configured as a 16x1 bit synchronous RAM and can be combined with other LUTs to generate larger memories. In addition to the distributed RAM contained in the LUTs, the chip has 360Kbits of block RAMs. The chip has 4 digital delay-locked loops that allow clocks to be multiplied or divided, and can be used to avoid skew problems in complex designs.

The Xilinx Spartan 3E Starter Kit Board as shown in Figure 5.2 is a low cost prototyping board built using the XC3S500E and includes several on-board features:

- 50 MHz Crystal Oscillator.
- 64MB DDR SDRAM, 16 MB parallel NOR Flash (Intel StrataFlash) and 16Mb of SPI serial Flash (STMicro).
- LCD Screen with 2x16 Display, 8 discrete LEDs for display and debug purposes, VGA Display port, Two 9-pin RS-232 ports (DTE- and DCE-style).
- USB-based Program download/debug interface.
- 1 rotary switch, 4 slide switches, 4 push-button switches.
Development Board

Figure 5.2: FPGA Development Kit
Chapter 6

BM Hardware Architecture

This chapter describes the hardware architecture developed for the system proposed in this work. It includes fixed-point precision requirements, storage requirements, hardware components for arithmetic operations, data movement requirements, and control unit design both for part-A and part-B of the BM Module. Also this chapter describes the parallelism that results from the modularized structure of the network. The architecture components are generic and can be reconfigured as needed to create the target systems.

6.1 Hardware Design of part-A on FPGA

For the hardware design of part-A, we assume that the Eigenvectors and DataMean Vector are pre-computed for the given training dataset. Eigenvectors in terms of hardware represent a memory element which we call as Row Feature Vector Memory (RVFM) and the data average for the respective BM training dataset forms a DataMean Vector Memory (DVM). Equations 6.1, 6.2, 6.3, 6.4 summarize the operations that are required to project the $InpVector_D$ onto an N dimensional Eigen digits space. The projected feature vector FV_N then is N dimensional. The equations are split into groups based on the type of operations they perform on the input data.
Figure 6.1: Hardware Architecture for Online PCA

\[\text{Data Adj}_D = (\text{InpVector}_D - \text{Data Mean}_D) \] \hspace{1cm} (6.1)

\[\text{RDA}_D = \text{Data Adj}'_D \] \hspace{1cm} (6.2)

\[\text{FVT}_N = \sum_{j=1, i=1}^{N, i=D} \text{RVF}_{j,i} \times \text{RDA}_i \] \hspace{1cm} (6.3)

\[\text{FV}_N = \text{FVT}'_N \] \hspace{1cm} (6.4)

As can be seen from the Figure 3.4, the training dataset is the input and the mean (average) for the whole dataset is computed in the offline phase. The next step
is to compute a covariance matrix for the training dataset as discussed in section 2.4. Then the Eigen analysis is carried out on the correlation matrix to extract Eigenvectors which then are stored in the Row Feature Vector (RVFM) RAM for on-line analysis. Along with Eigenvectors, DataMean vector is also stored in DVM RAM for on-line analysis.

We next look at the hardware implementation of the on-line mode of operation as shown in Figure 6.1. Following are the design blocks that implement the on-line operation mode of Principal Component Analysis.

6.1.1 On-line operation of part-A on FPGA

The hardware architecture developed for the on-line operation mode of PCA is shown in Figure 3.5. Two memory modules, DVM and RVFM are necessary to store the DataMean vector and Eigenvector Matrix (we denote it as Row Feature Vector Matrix). These memories are local to each BM Module. The input to part-A is direct input from OCR pixels for Layer-1 BMs and from a concatenated vector for Layer-2 BMs. For Layer-1 BMs the InpVector is a D dimensional vector with each element having a binary or grayscale value. Throughout the design, a fixed-point precision used of 23 bits is used. This implies that all the stored vectors in the DVM, RVFM have 23 bit precision. The control unit is responsible for the synchronization of all the functional units in the design. It receives various input signals and based on these input signals, it generates the appropriate control signals. When initialized the system is reset to predefined initial conditions. System operation begins with a Start signal from user controlled on-board slider switch.

The Data Adjust Block (DAB) receives the DataMean vector and InpVector, element by element on every clock cycle. If the test image is a binary image then
it is first sign extended by concatenating zeros to match 23-bit precision. DAB consumes \(D \) clock cycles to generate a \(DataAdj_D \) vector also this module generates \(R1_avail \) signal to indicate completion of operation. On receiving \(R1_avail \), the control unit then triggers the Address generator block which in turn resets the address bits to access DataMean vector for next InpVector. \(DataAdj_D \) is the normalized vector.

The Row Feature Vector Matrix (RVFM) is an \(N \times D \) matrix (\(N \) is retained principal components and \(D \) is dimension of InpVector space). In order to project the InpVector onto an \(N \) dimensional Eigen digits space, vector matrix multiplication is performed with RVFM and \(DataAdj_D \) as shown below:

\[
FV_N = \begin{bmatrix} R_1 & \ldots & R_D \\ \vdots & \ddots & \vdots \\ R_N & \ldots & R_D \end{bmatrix} \times [DataAdj_D]^T \quad (6.5)
\]

In the Multiply Accumulate (MAC) block, each vector element multiplication result is stored in the intermediate buffer not shown in the Figure 6.1. The buffer size is determined by the dimensionality \(D \) of InpVector. After completing \(D \) multiplications, the addition is carried out concurrently, i.e., in one clock cycle described in section 6.2.3. The adder outputs are combined to form a Feature Vector \((FV_N) \). Each row of RVFM represents one of the \(N \) principal components. Along with the \(FV \) the MAC module generates \(FV_avail \) signal, indicating the completion of operation.
6.1.2 Xilinx - Block RAM

If we go for off-chip memories such as DRAM or Flash bases memories for storage, access times are high and slow down the performance as compared to having Block RAMs as storing elements. In this work, we exploit the Block RAMs provided on-chip which provides faster accesses and improves overall system performance.

The DVM and RVFM computed in the offline mode are utilized in the on-line operation of dimensionality reduction. These memory blocks are downloaded onto an FPGA along with the synthesis of the rest of the design. Based on the values of N, RVFM and DVM, estimated Block RAM utilization is shown in Chapter 7.

6.1.3 Ripple Carry Adder

For a D dimensional InpVector (InpVector = (i_1, i_2, \ldots, i_D)), D multiplications are carried out serially, using fixed-point arithmetic. The first summation is accomplished with a chain of ripple carry adders that takes input from an intermediate value register memory. After every D clock cycles, an element of FV_N is computed. So the total time to obtain complete FV_N is

$$T_{CYCLES} = D \times N \quad (6.6)$$

6.1.4 Multiplier Unit

The multiplier unit in the MAC block takes two 23 bit inputs. The growing intermediate variable size is managed by storing intermediate results in the temporary registers, which maintain the sign of the result. Only those output bits are used that are necessary, so only 23 bits are used out of 46 bits from multiplication result
for further processing. Fixed Point multiplication is discussed later in this chapter.

6.2 Hardware Design of part-B

The hardware architecture developed for the part-B implements the Equations 6.7, 6.8 and 6.9. The random generation of codevectors and formation of a Codebook is done in an offline phase and generated Codebooks are downloaded into the FPGA block RAMs during device programming. The equations implemented here are generic and their use in the context of HTM modelling is new, in particular, the use of Principal Component Analysis.
Figure 6.2: part-B: VQ Architecture
In Equation 6.7, d_j is the distance between the FV and a particular codevector j. For the same FV distance is computed for all the remaining codevectors in the Codebook. Equation 6.8 computes the minimum of all the j distances and outputs the MinIndex associated with the closest codevector.

If the VQ is in the training mode, update rule as shown in Equation 6.9 is applied to the winning codevector. Subscript i denotes the index of the winning codevector in the Codebook CB_i and that is updated.

$$d_j = \sum_{i=1}^{N} | codevector_i - FV_i |$$ \hspace{1cm} (6.7)

$$MinIndex = \min (d_j)$$ \hspace{1cm} (6.8)

$$CB_i = CB_i + \alpha \times (FV - CB_i)$$ \hspace{1cm} (6.9)

Figure 6.3: VQ in Vector Comparator Mode

The basic steps in the training mode:

- Accept an input vector from the train/test dataset, the number of iterations (Epochs), and load the Codebook with a user defined number of randomly initialized codevectors.
Figure 6.4: VQ in Training/Learning Mode

- Calculate the distance between each CB_i and the input vector using Manhattan Distance Metric as explained earlier.

- Find the minimum distance value and store its associated index. Select the codevector pointed by the winning index. Increment the selected codevector in the direction of the input vector using the update rule in Equation 6.9.

- Store the updated codevector back into the CB RAM.

- Repeat above for a fixed number of iterations, i.e., Epochs.

The computational units for the VQ then are distance comparison unit, find the winning distance and update the winning distance with an update rule. These units are defined with Equations 6.7, 6.8, 6.9.

The subtractor block receives two inputs: Feature Vector FV_D and the codevector (CV_D) from Codebook RAM. Figure 6.5 shows that the subtraction operation is sequential, i.e., that it operates element by element on two D dimensional vectors.

In order to compute the distances for each of the codevectors in the Codebook, each CV is compared with the FV. The adder block is same as discussed in section 6.1.3 and generates an output only when the last, i.e., the D^{th} difference is
The output is the distance between the FV and one of the CB_i. The Distance Buffer, a small lookup table is filled with the distance values, each corresponding to one of the codevectors in the CB. For example: the first distance value corresponds to the first entry in the Codebook and so on. Each entry in the distance buffer has an index associated with it. The size of Distance buffer is determined by the number of codevectors in the CB.

Once the distance buffer is full, it triggers the comparator block. In the comparator block, a linear search is performed through the distance table. We simply want the index of the winning distance and not the distance value. The output is just the minimum index value which is used for training respective parent modules in training mode, or accessing codevector indicated by index the value of the winning vector as shown in Figure 6.3.

The update block is only active during the training/learning mode. The update rule used to adjust the centroids and bring them closer to the input vector as described by Equation 6.9.
6.3 Precision Requirements of the Design

The number of bits required to represent a single element is the precision. The precision of the system is dependent on the application, hardware resources available and desired performance of the system. The BM architecture in this work is based on fixed-point arithmetic. The main advantage to fixed-point arithmetic, compared to the floating-point arithmetic, is that it simplifies the logic design, the design can be operated at much higher clock rates and Floating-Point precision requires more space to accommodate the logic blocks. This helps in achieving higher speedup relative to the software implementations. However due to limited precision, special care must be taken to achieve accurate results and avoid underflow or overflow. Which requires a careful study of the precision requirements of the algorithm and the intermediate steps involved in the calculations [4], [5].

The general design flow that we followed for converting floating-point to a limited precision fixed-point representation is shown in Figure 6.6.

6.3.1 Floating-point to Fixed-point Conversion

For a given P-bit number, P represents the complete number and Q out of P bits are used to represent the digits after the binary point (fraction component) while P-Q bits make up for the integer part and sign bit. With this scaled integer technique, a floating point number $-2^{P-Q-1} \leq X < 2^{P-Q-1}$ can be represented to a resolution of $\epsilon = 2^{-Q}$ by a two’s complement integer with range $-2^{P-1} \leq y < 2^{P-1} - 1$. It is also possible to convert back to the floating point number. Following are the formulas for converting to and from fixed-point representation.
Figure 6.6: Floating to fixed point Conversion
In order to accommodate the grayscale input values as well as the binary values, the precision of the entire design is set to \(P = 23 \) bits. An example of conversion process is shown below:

\[
X \times 2^Q
\]

\[
\frac{Y}{2^Q} + \frac{\epsilon}{2}
\]

The discussion of precision requirements is important mainly because if the overall precision of the system is changed, then the user must know what are the changes that need to be made to the respective blocks. For example, both part-A and part-B have MAC units and based on the system precision FXP multiplication unit is modified. A simple example showing a FXP multiplication will help us understanding the importance of precision requirements. If two FLP numbers are multiplied, the result is

\[
\frac{4304}{2^{12}} + \frac{0.00024414}{2} = 1.0509
\]

which is no longer a correctly scaled number because the factor’s exponent is doubled. Thus, for each multiply operation that is performed, once scale factor must be eliminated. Doing so gives a correctly scaled result:
\[
\frac{(x \times 2^{P-Q})(y \times 2^{P-Q})}{2^{P-Q}} = xy \times 2^{P-Q}
\]

Bit disposal: In the Verilog design descriptions, the resultant value is sign adjusted to 23 bits by disposing off the unwanted LSB bits, i.e., essentially right shifting the number to implement the division by 2^{12} as shown in the above example. The number of bits to be disposed off depends on the precision of the system, so only 23 MSB bits are preserved and rest are disposed off. Each of the two sections below discusses the individual precision requirements for part-A and part-B of the single BM Module.

6.3.2 Fixed-Point Precision Requirements for Part-A of a BM

Precision requirements for the variables used in the process of calculating Principal Components, the dynamic range of input data are set based on the MATLAB Fixed Point model. Poor assumptions about dynamic range of input data may lead to errors caused by overflow of the MSB and, to a lesser degree, underflow of the LSB of a variable [19].

- **Input Variables Precision:** The fixed point precision settings for all the input variables are as shown in Table 6.1. The precision is set by carefully observing the dynamic range of input variables. The table below, the precision is represented by a \{P.Q\} notation in which P is the number of bits used to represent digits to the left of the binary point (integer component); while Q is the number of bits used to represent the digits to the right of the binary point (fractional component).
<table>
<thead>
<tr>
<th>Variable</th>
<th>Description</th>
<th>Prec.</th>
<th>Location</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>InpVector</td>
<td>The train/test and concatenated output vector from layer-1 BMs</td>
<td>${23,12}$</td>
<td>InpVector RAM</td>
<td>Maximum input range is 0-255 (grayscale) or 0-1 (binary)</td>
</tr>
<tr>
<td>DataMean</td>
<td>The Mean Vector for a given dataset is local and unique to each BM</td>
<td>${23,12}$</td>
<td>DataMean RAM</td>
<td>Values could be negative, so signed FXP is used.</td>
</tr>
<tr>
<td>RVFM</td>
<td>Row Feature Vector matrix is an Eigen Vector Matrix of size $N \times D$</td>
<td>${23,12}$</td>
<td>RVFM RAM</td>
<td>Range is derived based on InpVector and Concatenated Vectors for BMs in higher layers.</td>
</tr>
</tbody>
</table>

Table 6.1: Precision Requirement of Input Variables

- **Precision of Intermediate Variables**: In Table 6.2, The fixed-point precision used during the on-line operation mode of PCA is shown. It includes all the necessary intermediate values and their precision requirements. Most of the operations require signed operands and a hence signed fixed-point representation is used.

 If we design hardware with high precision, then the implementation will be very quickly limited by the number of available resources on the FPGA and long logical, data paths will occupy large areas and maximum operating frequency will be reduced.

- **Output Variables Precision**: InpVector is represented in terms of the principal components having N dimensions. Table 6.3 shows all the output signals that are used for communication and synchronization.

6.3.3 Fixed-Point Precision Requirements for Part-B of a BM

Precision for VQ design is derived based on two main variables: the dynamic range of the input data and the range of the randomly generated codevectors during
<table>
<thead>
<tr>
<th>Variable</th>
<th>Description</th>
<th>Prec.</th>
<th>Location</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data Adjust Block</td>
<td>The mean is subtracted from the new InpVector</td>
<td>{23,12}</td>
<td>Subtractor</td>
<td>All intermediate variables in this block range from 0-22 bits max.</td>
</tr>
<tr>
<td>Result_1</td>
<td>It is the output value generated by the subtraction unit</td>
<td>{23,12}</td>
<td>Input to MAC</td>
<td>Value is sign extended with the MSB being the sign bit.</td>
</tr>
<tr>
<td>RVFM</td>
<td>Row Feature Vector matrix is an Eigen Vector Matrix of size N × D.</td>
<td>{23,12}</td>
<td>RAM</td>
<td>Range is derived based on InpVector and Concatenated Vectors for BMs in higher layers.</td>
</tr>
<tr>
<td>Mult_1</td>
<td>Result of multiplication: [mult_1 = RVFM \times DataAdjVector]</td>
<td>{46,0}</td>
<td>MAC: Multiply Unit</td>
<td>It is the intermediate value generated by multiplication of the RFVM and mean adjusted InpVector.</td>
</tr>
<tr>
<td>Mult_2</td>
<td>Selecting required number of bits from mult_1. [Mult_2 = mult_1[45:12]]</td>
<td>{33,0}</td>
<td>MAC: Multiply Unit</td>
<td>By truncating the least significant bits only 33 bits are stored. Sign is preserved.</td>
</tr>
<tr>
<td>PCA_Vector internal</td>
<td>Only 23 bits necessary to represent the computed value are accumulated with previous result.</td>
<td>{23,12}</td>
<td>MAC: Multiply Unit</td>
<td>The maximum range is derived based on the inputs it receives and the desired output width.</td>
</tr>
<tr>
<td>N bit Adder Block</td>
<td>It performs signed addition of two 23 bit numbers it receives from multiply unit.</td>
<td>{23,12}</td>
<td>MAC: Adder Block</td>
<td>Intermediate values have the same precision as input/output variables of the adder block.</td>
</tr>
</tbody>
</table>

Table 6.2: Precision Requirement of Intermediate Variables
Variable	Description	Prec.	Location	Comment
Final Vector (FV) | Projected InpVector into an Eigen space with first N principal components. | $\{23,12\}$ SFXP | part-A: Output | Each element in the FV has the same Prec. The length of FV is $[1 \times N]$. |
R1_avail | Indicates completion of subtract operation to the controller. | $\{1,0\}$ | part-A: Output signal | Control signal. |
FV_i_avail | Final vector available signal. Connects to the controller. | $\{1,0\}$ | part-A: Output signal | Control signal. |

Table 6.3: Precision Requirement of Output Variables

Initialization. Fixed-Point Precision analysis for VQ can be divided into 3 sections based on the variables being used as an input, for intermediate results and final outputs of the circuit.

- **Precision of Input Variables**

 Table 6.4 lists all the input variables required by VQ and their precision settings. The precision (Prec.) is represented by $\{P,Q\}$ notation in which P is the number of bits used to represent the digits to the left of the binary point (decimal component); while Q is the number of bits used to represent the digits to the right of the binary point (fractional component).

- **Precision of Intermediate Variables** Training/learning is an iterative process and all the variables which are modified during this process needs to be carefully observed before defining their precision requirements. The iterative process was done in the MATLAB and the dynamic range for each variable was determined. Table 6.5 shows all the intermediate variables that are modified in this iterative process.

- **Precision of Output Variables** The output of part-B is the index of the
Table 6.4: Precision Requirement of Input Variables (part-B)

<table>
<thead>
<tr>
<th>Variable</th>
<th>Description</th>
<th>Prec.</th>
<th>Location</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>FinalVector FV<sub>i</sub></td>
<td>Train and Test vector for VQ circuit of BMs.</td>
<td>{23,12} SFXP</td>
<td>FIFO RAM</td>
<td>It is the projection of InpVector into an Eigen space with N principal components.</td>
</tr>
<tr>
<td>Codevector CB<sub>i</sub></td>
<td>Each row of the Codebook represents a codevector of N elements.</td>
<td>{23,12} SFXP</td>
<td>Codebook RAM</td>
<td>Initialized under controlled conditions to avoid underflow or overflow.</td>
</tr>
<tr>
<td>Learning Rate (α)</td>
<td>α is defined at the circuit initialization and is a constant value.</td>
<td>{23,12} FXP</td>
<td>Update Block</td>
<td>"Learning_Rate" is a constant variable.</td>
</tr>
</tbody>
</table>

winner distance computed by performing a linear search through the distances corresponding to each codevector in the Codebook. The winning index is used to point to the codevector in order to form the concatenated vector along with the adjacent winning codevectors from neighboring BMs. The concatenated vector acts as an InpVector to the BMs in the upper layers. Table 6.6 shows the precision settings for output variables of part-B.
<table>
<thead>
<tr>
<th>Variable</th>
<th>Description</th>
<th>Prec.</th>
<th>Location</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Subtractor Block</td>
<td>Difference is calculated between two points and the result is the distance between the points in the current dimension of space.</td>
<td>{24,0}</td>
<td>FXP</td>
<td>Subtractor Block All intermediate variables in this block range from 0-23 bits max.</td>
</tr>
<tr>
<td>sub_val</td>
<td>Difference between FV_i and codevector(FV_i)</td>
<td>{23,12}</td>
<td>FXP</td>
<td>Input to nBitAdder Block It is an absolute value and gets added to previous difference values of FV and CV.</td>
</tr>
<tr>
<td>Codevector (CV)</td>
<td>codevector (centroids) is N dimensional and each element has the same precision.</td>
<td>{23,12}</td>
<td>SFXP</td>
<td>Codebook RAM α and Epoch size affect the precision of CV. The initial values follow the same precision.</td>
</tr>
<tr>
<td>Diff_val (ac_tmp_1)</td>
<td>It is the difference value between FV_i and FV_i.</td>
<td>{24,12}</td>
<td>SFXP</td>
<td>Update Block Intermediate result generated by Subtractor. Sign bit is the MSB and hence 24 bits.</td>
</tr>
<tr>
<td>Multiply_val (ac_tmp_2)</td>
<td>The result of multiplying diff_val by α.</td>
<td>{48,0}</td>
<td>SFXP</td>
<td>Update Block diff_val in the last step is multiplied by the learning rate to update (increment) the weight value.</td>
</tr>
<tr>
<td>Sign_adjust (step1)</td>
<td>Only the sign bit is forwarded and the remaining MSB bits are disposed.</td>
<td>{35,0}</td>
<td>SFXP</td>
<td>Update Block Register size is decided by the operands. Usually twice the width of input variables.</td>
</tr>
<tr>
<td>Addition_val (ac_tmp_12)</td>
<td>This is the new updated value of codevector's element.</td>
<td>{45,0}</td>
<td>SFXP</td>
<td>Update Block It is the output of adding new updated value with old value of codevectors element.</td>
</tr>
<tr>
<td>Updated_codevector_val</td>
<td>In order to maintain the constant bit length for codevector elements, LSB bits of addition_val are disposed.</td>
<td>{23,12}</td>
<td>SFXP</td>
<td>Update Block Without losing precision, this range is decided based on the MATLAB and RTL functional model.</td>
</tr>
</tbody>
</table>

Table 6.5: Precision Requirement of Intermediate Variables
<table>
<thead>
<tr>
<th>Variable</th>
<th>Description</th>
<th>Prec.</th>
<th>Location</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Updated_codevector_val</td>
<td>In order to maintain the constant bit length for codevector elements, LSB bits of addition_val are disposed off.</td>
<td>{23,12}</td>
<td>Update Block</td>
<td>Without losing precision from the first iteration to last iteration this range has been decided.</td>
</tr>
<tr>
<td>Mi (Minimum Index)</td>
<td>Index value.</td>
<td>{5,0}</td>
<td>finalDmin Index Block</td>
<td>The index value corresponding to the codevector that is closest to the given input vector. The range may vary based on the size of CB.</td>
</tr>
<tr>
<td>Mi_avail (index_avail)</td>
<td>Indicates completion of linear search through the distance table.</td>
<td>{1,0}</td>
<td>part-B: Output signal</td>
<td>Control signal.</td>
</tr>
<tr>
<td>Updated_codevector_avail</td>
<td>Updated codevector element available signal. Connects to the controller.</td>
<td>{1,0}</td>
<td>part-B: Output signal</td>
<td>Control signal.</td>
</tr>
</tbody>
</table>

Table 6.6: Precision Requirement of Output Variables
Chapter 7

Results & Analysis

The BM architecture explained in Chapter 6 was implemented using the procedures and tools described in Chapter 5. Here we discuss the verification of our design, the performance results of a BM architecture followed by a brief analysis and discussion of the results.

7.1 Design Verification Methodology

The reference design of the Hierarchical Character Recognition System was implemented in MATLAB with FLP precision and FXP MATLAB model was developed to verify the Verilog simulations and FPGA results. The tables 7.1, 7.2 and 7.3 shows the sample outputs for each of the computational units within the BM. The main columns in each table represents inputs to the and output of that block; subcolumns represent, ‘FLP’ Floating Point MATLAB model results, ‘FXP’ Fixed Point MATLAB model results and ‘Verilog’, i.e., results obtained from Verilog simulation model. It was discussed earlier that how a number in FLP precision is represented with limited FXP precision. Simulation waveforms confirm the functionality of the individual blocks as the Verilog simulation results match with the FXP MATLAB model and FXP MATLAB model results match with the base FLP MATLAB model. The values seen in the waveforms and in that of the tables are the same and hence the design is functionally correct. Waveforms for each sub block of part-A are shown in Figure 7.1,7.2
and 7.3. Figures 7.4 and 7.5 show simulations for part-B of BM. The simulations are shown for $N = 4, Iterations = 1, CB = 25, RVFM = [4 \times 16]$, and $DVM = [1 \times 16], Clock = 50MHz$. Keeping the clock speed constant, system performance can be further improved by adding parallelism within the BM node.

While the results here are only from single iteration, the design was tested for the entire train and test dataset of 11000 images.

<table>
<thead>
<tr>
<th>Data Mean</th>
<th>Input Vector</th>
<th>Data Adjust Block</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLP</td>
<td>FXP</td>
<td>Verilog</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0.0427</td>
<td>174</td>
<td>174</td>
</tr>
<tr>
<td>0.0781</td>
<td>320</td>
<td>320</td>
</tr>
<tr>
<td>0.116</td>
<td>475</td>
<td>475</td>
</tr>
<tr>
<td>0.1634</td>
<td>669</td>
<td>669</td>
</tr>
<tr>
<td>0.0884</td>
<td>362</td>
<td>362</td>
</tr>
</tbody>
</table>

Table 7.1: Verification Data for Data Adjust Block

<table>
<thead>
<tr>
<th>Row Feature Vector</th>
<th>MAC</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLP</td>
<td>FXP</td>
</tr>
<tr>
<td>0.0551</td>
<td>225</td>
</tr>
<tr>
<td>-0.1418</td>
<td>-581</td>
</tr>
<tr>
<td>0.128</td>
<td>524</td>
</tr>
<tr>
<td>-0.2285</td>
<td>-936</td>
</tr>
</tbody>
</table>

Table 7.2: Verification Data for MAC Unit
Table 7.3: Verification Data for Subtractor, Codebook Distances

<table>
<thead>
<tr>
<th>Codebook Vectors</th>
<th>Subtractor Output</th>
<th>Distances</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLP</td>
<td>FXP</td>
<td>Verilog</td>
</tr>
<tr>
<td>2.5759</td>
<td>10551</td>
<td>10551</td>
</tr>
<tr>
<td>-0.8379</td>
<td>-3432</td>
<td>-3432</td>
</tr>
<tr>
<td>0.1189</td>
<td>487</td>
<td>487</td>
</tr>
<tr>
<td>-0.8962</td>
<td>-3671</td>
<td>-3671</td>
</tr>
<tr>
<td>1.978</td>
<td>8102</td>
<td>8102</td>
</tr>
</tbody>
</table>

Table 7.4: Verification Data for MinimumIndex Search Block

<table>
<thead>
<tr>
<th>Minimum Index value</th>
<th>FLP</th>
<th>FXP</th>
<th>Verilog</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>11</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>13</td>
<td>13</td>
<td></td>
</tr>
</tbody>
</table>

75
Please note that the minimum index value obtained in Verilog is one less than the MATLAB values, since memory accesses starts with zero. So if the Minimum index is ‘1’ in MATLAB that means it is the codevector whose start address is 0×00 in the Codebook.

The results shown above are for binary representation of input images but the precision range allows us to have raw input images, i.e., grayscale images directly as the network’s input. The design was tested for grayscale images as well and produced desired results.

7.2 Performance Evaluation

7.2.1 Speedup

Here we discuss the estimated degree of speedup that the FPGA implementation can provide against the MATLAB algorithm running on a 2.1 GHz Intel Core-2 duo computer.

Performance/Hardware analysis of the hierarchical network consisting of several BMs can be derived from the characteristics of a single BM’s performance and response time. The response time is defined as the time from which the BM is presented with an input pattern to the time it produces an output for that particular input pattern.

Pipelining the design as shown in the Figure 7.6 allows us to run the design at higher frequencies. The obvious drawback is that the design takes more than one clock cycle to perform the operation. The values are registered at every stage in the pipeline. If the design is achieved using more combinational logic, it puts the limit on the maximum operating frequency.
In the pipelined architecture shown in Figure 7.6, it takes only 3 clock cycles to access any value from the memory and just one clock cycle to perform the desired operation. For example to perform the 23-bit multiplication, the controller takes 3 clock cycles to fetch operands from memory to the multiplier block and the multiplication is done in just 1 clock cycle. Operating at 50 MHz \((t = 20\text{ns})\), it can be calculated that the total time to perform the multiplication is \((3 + 1) \times (t)\text{ns} = 80\text{ns}\). Similarly, the time required to update an entry in the CodeBook and time to find the winning index in the test mode can be found out by following algebraic expressions. The BM module is currently implemented using the Spartan 3E FPGA board. A single module has parameters as shown in Table 7.5.

To estimate the speedup, we formulate the equations for the response and update time of each block and for the complete BM module based on the time period of the system clock and clock cycles per computation from the Verilog simulation model. To maintain the consistency, time period of the Verilog simulated model was set to 20\(\text{ns}\) and synthesized FPGA model runs on a 50 MHz clock. Following
equations are derived for the BM configuration in Table 7.5.

<table>
<thead>
<tr>
<th>Parameters</th>
<th>CB Size</th>
<th>‘N’</th>
<th>Epochs</th>
<th>RVFM RAM</th>
<th>DVM RAM</th>
<th>Learning Rate (‘α’)</th>
<th>Multiplier (for random init of CB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Layer = 1</td>
<td>BM = (1,1)</td>
<td>25</td>
<td>4</td>
<td>[4×16]</td>
<td>[1×16]</td>
<td>0.01</td>
<td>10*rand</td>
</tr>
</tbody>
</table>

Table 7.5: BM Single Module Parameters

\[R_{t1} = 16 \times (3 + 1) \times 20(ns) \] (7.1)

\[R_{t2} = 16 \times 4 \times (4 - 1) \times 20(ns) \] (7.2)

Equations 7.1 and 7.2 give us the individual response times for Data Adjust Block and Multiply Accumulate Unit of part-A of the BM. Similarly, equations 7.3 and 7.9 are for the response and update time calculations of the VQ block. Update time \(T_{UPDATE} \) is the sum of total response time \(R_{TOTAL} \) and the time it takes to write back the updated values to the block RAMs.

\[R_{t3} = [4 \times (3 + 1) \times 25 \times 20](ns) \] (7.3)

\[R_{TOTAL} = [R_{t1} + R_{t2} + R_{t3}](ns) \] (7.4)

\[T_{UPDATE} = [R_{TOTAL} + [4 \times 3 \times 20]](ns) \] (7.5)

It is necessary to generalize these equations further to estimate the response time of the complete hierarchical network with several BMs connected together.
The parameters that vary in the above expressions are \(N \) and \(CB_i \). We can safely take the time period \(t' \) as a constant for a given design. BMs in the same layer, running in parallel will have the same response time, the number of BMs that can run in parallel is dependent on the available logic resources on the given FPGA device. So our calculation for a single BM can be extended to a hierarchical model by replacing \(N \) and \(CB_i \) with respect to different layer.

\[
R_{t1} = [D \times (3 + 1) \times t](ns)
\]
(7.6)

\[
R_{t2} = [D \times 4 \times (N - 1) \times t](ns)
\]
(7.7)

\[
R_{t3} = [N \times (3 + 1) \times CB_i \times t](ns)
\]
(7.8)

\[
T_{UPDATE} = [R_{TOTAL} + [N \times 3 \times t]](ns)
\]
(7.9)

For a BM, the part-A and part-B calculations do not overlap. Also, internal handshaking avoids contention and data loss. Parallelizing the logic blocks of the BM will shorten its response time and the execution speed of the entire hierarchical system. However, that would be costly in terms of multi-ported BRAMs and additional data paths on chip. Table 7.6 summarizes the FPGA Speedup over the MATLAB simulation time for Response/Update Times of the BM. The total response time \(R_{TOTAL} \) for the MATLAB FLP model is calculated using the stopwatch timer in the MATLAB.
7.2.2 Price (Area)

A single BM for the configuration defined in the Table 7.5, utilizes approximately 25 % of the total logic resources available in the FPGA. It provides us with an opportunity to parallelize the design and run more BMs in parallel. Table 7.8 shows the synthesis results for two BMs running in parallel.

<table>
<thead>
<tr>
<th>Device Utilization Summary (estimated values)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Logic Utilization</td>
</tr>
<tr>
<td>Number of Slices</td>
</tr>
<tr>
<td>Number of Slice Flip Flops</td>
</tr>
<tr>
<td>Number of 4 input LUTS</td>
</tr>
<tr>
<td>Number of bonded IOBs</td>
</tr>
<tr>
<td>Number of BRAMs</td>
</tr>
<tr>
<td>Number of MULT18X18SIOs</td>
</tr>
<tr>
<td>Number of GCLKs</td>
</tr>
</tbody>
</table>

Table 7.8: Synthesis Results for two BMs

For a given FPGA, we were able to run five BMs in parallel. The near-maximum utilization causes routing delays in the design which directly affects the maximum clock frequency at which the device can be operated.

Comparing the number of neurons simulated when a single BM is instantiated and how parallelization at Module level will effectively increase the total number

80
of neurons simulated is summarized by the plot in the Figure 7.7.

![Figure 7.7: Number of Neurons Simulated w.r.t the number of BM Modules](image1)

Also, the area utilization in terms of Look-up tables (LUT), Flip Flops (FF) and Block RAMs (BRAM) can be estimated for up to 100 neurons running in parallel at any given time. The estimated utilization is as shown in Figure 7.8.

![Figure 7.8: FPGA Resource Utilization w.r.t the number of Simulated Neurons](image2)
Newer FPGA devices are densely packed and therefore offers more logic resources. The Xilinx-Virtex series has almost the 3x capacity as compared to the Spartan series. A single BM consumes approximately 1350 slices so depending on the capacity of the Virtex series FPGAs, more BMs are made to run in parallel thus increasing the speedup of the entire system.

7.2.3 Hardware Virtualization

FPGA based designs for biologically inspired computational models are dominated by the available chip area and logic resources. To best utilize the available logic resources, classic space-time trade off is made and for hardware designs it is known as hardware virtualization. “The degree of time-multiplexing of the computational blocks and communication, i.e., address/data buses via hardware resources is defined as the hardware virtualization” [1], [3]. An example from our design is discussed to understand the application of hardware virtualization in our design.

In the training phase, the winning codevector is updated on every iteration. An Update Logic block in the part-B does the job of updating the codevector. Depending on the codevector length, the update operation is performed for each element in the codevector. Figure 7.9 shows how hardware resources can be virtualized to take full advantage of the given logic resources without degrading the overall system performance.

The minimal virtualization shown in Figure 7.9 (a) is the fastest of the three implementations, but also the most expensive in terms of its area on chip and logic resource utilization. The time-multiplexing of available UpdateLogic blocks is demonstrated in Figure 7.9 (b) & (c). Figure 7.9 (c) shows the maximum limit of h/w virtualization by sacrificing the speed, as this design is the slowest of the
Figure 7.9: Virtualization of hardware resources: Update Logic

three, but it consumes the least area and is the cheapest in terms of logic resource utilization amongst the three designs. Therefore, it is observed that the degree of hardware virtualization for a given design can be varied by varying the assignment of available logic resources based on the performance/price trade-offs.

Figure 7.6 exploits the virtualization at the layer level by instantiating a limited number of BM modules and time-multiplexing them to effectively realize the functionality of the complete layer.

The FPGA offers dense interconnect structure, so with all the optimizations throughout the design it is not possible to utilize the 100% resources. As the design
becomes more complex, it affects the maximum operating frequency because of the routing delays and wiring overhead and could soon limit the network size. Figure 7.10 shows the effects of scaling, 4 BM Modules in running in parallel the operating frequency, best case operating frequency and slack as a timing concern. Slack is defined as the amount of time you have that is measured from when an event ‘actually happens’ and when it ‘must happen’. Negative slack implies that the ‘actually happen’ time is later than the ‘must happen’ time, in other words it’s too late and it’s a timing violation. Actual frequency is the 50MHz clock and is constant for the design. Best case achievable frequency is obtained from the synthesis report and changes based on the device logic resource utilization.

![Figure 7.10: Effect of Parallelization on Slack and Best Achievable Frequency](image)

7.3 Conclusion

The thesis proposes a Bayesian Memory which is an approximation to the HTM node. Here we have shown how the Principal Component Analysis can be used
as one of the optimization techniques to make FPGA implementation of such biologically inspired computing algorithms possible. Advantages of using the PCA are:

The PCA technique itself does not require significant logic resources for its hardware implementation.

The number of Epochs is reduced to tens as against 100s to 1000s for only VQ based BM design. Even with the maximum number of Principal Components, the Codebook size does not exceed the available Block RAMs on chip and makes FPGA implementation practical.

The fewer Epochs, FXP precision requirements go down and the complete BM design is achieved with 23 bit precision. The FXP multiplication unit is custom designed for the defined FXP precision and hence can be used as it is for other designs with same precision settings.

Preserving only the $\frac{1}{4}th$ dimensions at all the layers, the classification accuracy of the network is still above or close to 90% which is a good indicator that this technique is effective and can be used in the future designs.

Speedup was evaluated by deriving the response and update time equations. The FPGA implementation is 1000x faster over MATLAB implementation. It shows that, FPGAs can be used for real-time recognition applications built out of these algorithms.

A single BM module, as presented here, occupies approximately 25% of the logic resources of a 500k Spartan 3E FPGA device. For higher end FPGAs, more BM modules can be synthesized for performance improvement of the overall system. The best achievable operating frequency for a single BM was observed to be 110 MHz which is 2x faster than the existing clock speed.
The RTL developed is highly modularized and parametrized, can be easily extended for varying network sizes.

7.4 Future Work

- More functionality like temporal pooling could be added to the existing BM design. Possible hardware optimization and acceleration techniques for the same can be explored.

- In our RTL design the inter-layer communication can be established and a sub-network with 2 child BMs and one parent BM can be synthesized. Also taking it further, now this structure with 3 BMs can be parallelized and throughput can be calculated by equations presented in this work.

- Soft processor cores such as PicoBlaze or MicroBlaze can be added to the design in order to use FPGA as an hardware acceleration adapter for the PC based software simulation. It would be an interesting exercise to find out whether communication overhead for this scheme significantly affects the performance as against using only FPGA for complete operation.

- Hardware Virtualization, i.e., space-time trade-off for hardware designs discussed in this work can be extended to perform the power performance analysis for ASIC based designs. This analysis will be very helpful for present as well as future implementations, as the chip area is becoming smaller and more logic is being added at the same time, thermal power plays an important role in any ASIC design.

- A special on-chip communication bus could to be developed which can handle
data and addresses efficiently and lower logic resource utilization of the target FPGA device.
References

[19] Xilinx. Acceldsp synthesis tool floating-point to fixed-point conversion of