May 2nd, 11:00 AM - 1:00 PM

Effects of Chronic Stimulation of Nucleus Accumbens on Binge Drinking and Transcriptome

Dar'ya Pozhidayeva
Portland State University

Evan Firsick
Oregon Health & Science University

Kayla G. Townsley
Oregon Health & Science University

Dan Iancu
Oregon Health & Science University

Angela Ozbum
Oregon Health & Science University

See next page for additional authors

Let us know how access to this document benefits you.

Follow this and additional works at: https://pdxscholar.library.pdx.edu/studentsymposium

Part of the Medicine and Health Sciences Commons

Pozhidayeva, Dar'ya; Firsick, Evan; Townsley, Kayla G.; Iancu, Dan; Ozbum, Angela; and Tran, A.T.D., "Effects of Chronic Stimulation of Nucleus Accumbens on Binge Drinking and Transcriptome" (2018). Student Research Symposium. 15.
https://pdxscholar.library.pdx.edu/studentsymposium/2018/Poster/15

This Event is brought to you for free and open access. It has been accepted for inclusion in Student Research Symposium by an authorized administrator of PDXScholar. For more information, please contact pdxscholar@pdx.edu.
Presenter Information
Dar’ya Pozhidayeva, Evan Firsick, Kayla G. Townsley, Dan Iancu, Angela Ozbum, and A.T.D. Tran
Effects of Chronic Stimulation of Nucleus Accumbens on Binge Drinking and Transcriptome

D.Y. Pozhidyayeva1,2, E.J. Firsick1, A.T.D. Tran1,2, K.G. Townsley1,2, O.D. Iancu1,2 and A.R. Ozburn1,2

1Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, Oregon, 97039; 2Research and Development, Portland Veterans Affairs Medical Center, Portland, Oregon, 97239; Portland State University, Oregon, 97201;

Abstract

The nucleus accumbens (NAc) is an important brain region in alcohol use disorders. Previously, we found increasing NAc activity decreases binge drinking of alcohol, without altering fluid or taint taste. Here, we used clozapine-N-oxide (CNO) to selectively activate muagonetized excitatory G protein-coupled receptors (NM300) in the NAc. We found that the effects of chronically increasing NAc activity produced lasting reductions in binge-like drinking, based on these behavioral results we proposed that transcriptional changes potentially underlie these changes.

Methods: High Drinking In the Dark (HIDD-1) mice were stereotaxically injected with AV2-DIO-MM3Dq-mCherry and Cre-GFP in the NAc. We used a 6 week Drinking the Dark (DID) schedule where mice had 2 hr access to 20% ethanol (EtOH). For 7 days, mice were injected with 1% DMSO in saline (vehicle, IP, 30 minutes prior to DID) to determine baseline intake. Mice were then treated with CNO (1 mg/kg) prior to daily drinking for 28 days. Then, mice were administered vehicle for another 7 days to determine whether the effects of chronic CNO treatment were lasting. There were 3 control groups (ethanol-mice not receiving CNO, and water drinking mice receiving either CNO or vehicle).

Conclusion: Based on these behavioral studies and analyses, we propose that chronically increasing NAc activity (via CNO/DREADD) can induce molecular and cellular plasticity. By using these analyses, we are working to identify changes in gene expression related to harmful binge-like drinking and CNO/DREADD induced reductions in binge-drinking. We plan to identify key hubs for pharmacological manipulation of binge-drinking.

Research Question

What are the effects of changing NAc activity on binge-drinking and gene expression networks? Can we reverse alcohol-induced changes in gene expression using DREADDs?

Using DREADDS to Manipulate Activity in the Nucleus Accumbens

Chronic NAc stimulation produces lasting reduction in binge-like drinking

Experimental Design and Schedule:

HIDD-1 female mice were stereotaxically injected with AV2-DIO-MM3Dq-mCherry into the NAc and allowed to recover for 3 weeks before behavioral testing began.

Methods

Paradigm: Adult female HIDD-1 mice were stereotaxically injected with 0.5%AAV2/5-Cre-GFP and 0.5%AAV2-DIO-MM3Dq-mCherry into the NAc (coordinates: +/- 1.5 M/L, 7.3 A/V, 4.5 D/SA) bilaterally and allowed to recover for three weeks prior to testing. Binge-like ethanol intake was tested using a variation of the Drinking in the Dark (DID) post-week schedule where mice received access to one bottle of 20% ethanol daily for 2 hours. There were 4 experimental groups: Ethanol DIO with or without CNO and Water drinking groups with or without CNO (n = 12-15/group). Mice were from the same selection generation. Mice received daily injections (IP) of either 1 mg/kg clozapine-N-oxide (CNO) or vehicle (1% DMSO in saline) approximately 30 minutes before a 2 hour DID session. For CNO groups: weeks 1 and 6 were vehicle injections and weeks 2, 3, 4, and 5 were CNO injections (1 mg/kg). Vehicle groups were injected with 1% DMSO in saline daily (IP) for 6 weeks. Mice were euthanized via cervical dislocation one day after the last session.

Sample Preparation and Processing: Tissue was mechanically homogenized in Puradex and RNA was isolated using Aurum Total RNA Fatty and Fibrous Tissue kit (Bio-Rad). RNA quality was assessed via Bioanalyzer and sequenced using library preparation and HiSeq 2000 Illumina by the Massively Parallel Sequencing Shared Resource at OHSU.

Analysis: Sequenced RNA was analyzed by aligning sample reads to Mus musculus genome using STAR: universal universal RNA-seq aligner. After alignment, read counts were filtered and normalized to produce a count matrix. To perform Differential expression analysis (DE), DESeq2 (in R) was used to identify modules (co-regulated genes) and hubs (genes coexpressed with a significant number of related expressed modules). The WGCNA package (in R) was used to build a network on the basis of gene-gene correlations. Gene-gene correlations were collected in an adjacency matrix from the count matrix. The adjacency matrix was further processed (using soft threshold) and clustered to detect gene modules (groups of genes that are expressed).

Conclusions

• We found that chronically increasing NAc activity (via CNO/DREADDs) can induce lasting reductions in binge-drinking and propose that molecular plasticity underlies this effect.
• By using these analyses, we are identifying changes in gene expression related to harmful binge-like drinking and CNO/DREADD-induced reductions in binge-drinking.
• We plan to identify key hubs (WGCNA) for pharmacological manipulation of binge-like drinking.

Acknowledgements

Many thanks to Dr. R. Jude Samulski at UNC Viral Vector Core for AAV prep. Supported by NIH grants [U01 AA10760 (JCC, ARO), US Department of Veterans Affairs Awards [IK2 BX002488 (ARO)], Andrews Genomics Fund (ARO)].

Work reported in this poster was supported by the National Institutes of Health Common Fund and Office of Scientific Workforce Diversity under three awards UL1GM118964, R24GM118963, and T44GM118965, administered by the National Institute of General Medical Sciences. The work is solely the responsibility of the authors and does not necessarily represent the official view of the National Institutes of Health.

This work was supported by the Ronald E. McNair Postbaccalaureate Achievement Program supported by grants from the U.S. Department of Education. The authors gratefully acknowledge Suhas Krishna Jha, Dr. Teoeto Falevsa and staff.