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INTRODUCTION: WHAT IS RA?

Reconstructability Analysis (RA) = a probabillistic
graphical modeling methodology

RA = Information theory + Graph theory

Graphs, applied to data, are models:
node = variable; link = relationship

RA uses not only graphs (a link joins 2 nodes),
but hypergraphs (a link can join >2 nodes)




WHY RA MIGHT BE OF INTEREST 1,2

Can detect many-variable or non-linear
Interactions not hypothesized in advance, I.e., it IS
explicitly designed for exploratory search

Transparent -- not a black box like deep learning NNs
Easily interpretable & communicable

Designed for nominal variables

Can also analyze continuous variables via binning
Prediction/classification, clustering/network models
Time series, spatial analyses

Overlaps common statistical & machine-learning
methods, but has unique features



WHY RA MIGHT BE OF INTEREST 2.2

 Analyses at 3 levels of refinement:
— coarse (very fast, in principle many variables)
— fine (slower, 100s of variables) (=500 is max so far)
— ultra-fine (slow, < 10 variables)

 Standard application: frequency data f(A;, B;, Cy, Z)

« Variety of non-standard capabillities
— Data: set-theoretic relations & mappings
— Predict continuous dependent variables
— Integrate multiple inconsistent data sets (not yet in Occam)
— Regression-like Fourier version (not yet in Occam)



OCCAM, SOFTWARE FOR RA

OCCAM, developed by Systems Science Program,
Portland State University, iIs now open source

https.//www.occam-ra.io/

github.com/occam-ra/occam \ /

Contact me If you want to become involved:
zwick@pdx.edu



RA (DMM) WEB PAGE
http://pdx.edu/sysc/research-discrete-multivariate-modeling

Portland State Systems Science Graduate Program | Research: Discrete Multivariate Modeling - Mozilla Firefox

File Edt View History Bookmarks Tools Help -.'v

b Partland State Systems Science Graduate Pr. | + |

(' = Q SJ @ v, pdx. edu)sysc/research-discrete-multivariate-madeling

Portland State

UNIVERSITY

Fesearch N

FEl w System Science » Research » Research: Discrete Multivariste Modeling

Artficial Life Research: Discrete Multivariate Modeling

Computational Intelligence

Discrete Multivariate The methods used are also known in the systems literature as "reconstructability analysis" (RA). RA overlaps
Modeling sighificantly with the fields of logic design and machine learning and with log-linear statistical modeling. The papers
System Dynamics and Simulation "Wholes and Parts in General Systems Methodology" and "An Overview of Reconstructability Analysis" listed below offer
Meural Mets and Fuzzy Systems a concise review of RA methodology.

Systems Theary and Philosaphy
PrDjeCtS Below is the lattice of structures far a 4-variable

divected system with 1 dependent variable {output).
TheorWMethodoIogy Eoxes = relations; lines = variables;

OCCAM: RA software for data bold lines = the dependent variahle.
analysis & data mining

COccam3 fweb accessible; try it out)

User manual {PDF)

EDA: Extended Dependency Analysis —¢-

Heuristic EA search for loopless models.
Download executable, sample files,

and documentation {for Windows) %

RA utility programs 1t




PAST RA APPLICATIONS

BIOMEDICAL

Gene-disease association, disease risk factors, gene expression,
health care use & outcomes, dementia, diabetes, heart disease,
prostate cancer, brain injury, primate health, surgery

FINANCE-ECONOMICS-BUSINESS

Stock market, bank loans, credit decisions, apparel analyses,
market segmentation

SOCIAL-POLITICAL-ENVIRONMENTAL

Socio-ecological interactions, wars, urban water use, rainfall, forest
attributes

MATH-ENGINEERING

Logic circuits, automata dynamics, genetic algorithm & neural
network preprocessing, chip manufacturing, pattern recognition,
decision analysis

OTHER
Textual analysis, language analysis



OVERLAP WITH STATISTICAL, ML METHODS

Closely related to other PGM methods, e.g., log linear (LL)
(& logistic regression) models & Bayesian networks (BN)

Where methods overlap, they're equivalent
These PGM methods totally different from neural nets

%
) )
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FORM OF DATA

Variables

e Type: nominal; bin if continuous (continuous DV needn't be binned)

« Number: few variables to 100s (in principle >1000s coarse analysis)

Data analysis

directed system
— IV-DV distinction: predict/classify a DV from Vs

neutral system
— No IV-DV distinction: model association, clustering

11



FORM OF DATA

» frequency(A,B;,C,,Z) or Individual cases

frequency AlB |C |7

Ao | Bo|Co]Z0]13 case; | Aol Bo| Col Zo

Ao | Bo Co Z4 2
A lBolCilzo| 9 case; | A1 | B> | Cs| 4

Ao |Bo|Ci] 21|11

casen | Ao | Bo | Co | Zo

N

N = sample size

Cases are indexed by
iIndividual (in a population),
time, or

space

frequency(ABCZ) / N = p4,:,(ABCZ)



OCCAM input file, DATA CASES INDEXED BY INDIVIDUAL

ID ,413,0,ID #Index specifying individual

APOE 2,1, Ap

Gend 2,1,S

cducaton 314 DEMENTIA EXAMPLE
AgeLastExam ,3,1,Ag Z =0 no disease; Z = 1 disease

rs1801133 3,1,A
rs3818361 ,4,1,B
rs7561528 ,3,1,C
rs744373 ,3,1,D
rs6943822 3,1,E
rs4298437 3,1,F
rs7012010 3,1,G
rs11136000 ,3,1,H
rs10786998 4,1,

rs11193130 4,1,K
rs610932 3,1,L

rs3851179 ,3,1,M
rs3764650 4,1,N
rs3865444 4,1,P
Dementia 22,7

#ID
101
103
111
112
118
120
121
122
123

©
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DATA CASES INDEXED BY TIME

t 9|10 | 11 10 | 11
original data transformed data

Values are labels for variable states at particular times
XYZ = generating variables

Apply mask (here # lags = 1) to data

Mask adds lagged variables, ABC(t) = XYZ(t-1)
E.g., A(t) = X(t-1), labeled 6

Masking: time series data — atemporal data

14



DATA CASES INDEXED BY SPACE : 1 generating variable

Moore neighborhood
A14,1,A
B,14,1,B _
C,14,1,C AlB|C E =DV
D,14,1,D D lll F A,B,C,D,F,G,H,l =IVs
E,14,2,E GIHT
F,14,1,F
G141.G Vs & DV have 14
H,14,1,H possible states
1,14,1,]
#A B C D E F G H |
71 71 71 71 71 71 71 71 71
71 71 71 71 71 71 71 71 71
71 71 71 71 71 71 71 71 71
71 71 71 71 71 71 71 71 71
71 71 71 71 71 71 71 71 71
71 71 71 71 71 71 71 71 71
71 71 71 71 71 71 71 71 71
71 71 71 71 71 71 71 71 71
71 71 71 95 71 95 71 71 71
95 71 95 95 71 95 71 71 71
95 95 95 95 95 71 71 71 95
71 95 95 90 95 95 71 95 95
95 95 90 90 71 95 95 95 95
95 90 90 90 95 90 95 95 90

15
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MODEL = STRUCTURE APPLIED TO DATA
A structure (graph or hypergraph) is a set of relationships (GT)

Specific structure AB:BC General structure

AAB B BCC

LATTICE OF SPECIFIC STRUCTURES (3 variables)

Neutral df # Directed
ABC* 7 ABZ*
| |
AB:AC:BC p— 6 ABAZBZ <« loop
P ]
AB:AC AB:BC BC:AC 5 AB:AZ AB:BZ
AB:C AC:B BC:A 4 AB:Z*
N/
A:B:C* 3

* Reference model is data or independence
# df (degrees of freedom) values are for binary variables

17



STRUCTURES 4 variables (GT)

‘EJ' oo — OF
H \
L)
ABC-ARD-ACDBCD — ARC-ART:ACD
ABC-ABD:BCT
ABC-ACT:ECT
+ } ARD-ACDECD
" ABCABDCT
a Y
ABC-AST | ABC:BCDAAD

) ABC-ACT | ABEDACDEC
ARCECD ' | aEDEcDac

ABD:ACD ﬁga ACD/BCT-AB
o ﬂ — .{E:IEEI:I: =1 — ABCTADEDC
ACDBCD (" ABD:CATELD
ASCADED [ ACDBABCED
L/

ARCAD  ABC-AD:CD BCL-AB-ACAD
l v \czp AscEDcp  FLF mjmjmp
ABCn  ABDACEC 4 .
ARDAC  ABDACDC L] ,/f ' AB:ACADECEDCD
ABDAC ABDBCLC * /_ R
ARD:D-  ACDABCE AR:-AC B
ACDAB  ACD:ABIE |J_-|E|J_-| [ ABACADECCT
4' AcTncy ACDULETE r [ AB:ACADED:LD
NI
BCDBA AL | ., AR C:
Bora  BCDACAD = e O-11 ACADECED.(D
zooa — OHOF =

e Ny O N . o e ~ ACADSCED
iy - i "~ AB-AD:BCLD

g s “ = I/ aBacsoco
l fpa OO z Dgai QES:I
ABACECD b T
o e Veds B
- DED g B }E;‘E-.M
ooy B

= BBy DADEDC

AB-ACATREC

AB-ACAD-ED
AS-ACECED
AB-AD-BC:HD
AB-AC-ADHCD
AB-ACECLD
AC-AD:BC:CD
AB-ADBINCD
AC-AD-BI-CD
AB-BCEDCD
AD:BC:BI:CD
ACBCEDID




STRUCTURES @1

Combinatorial explosion

# variables 3 4 5 6
# general structureSneutrat | 5 20 180 16,143
# specific structures neurat | 9 114 6,894 7,785,062
one DV directed 5 19 167 7,580
one DV, no loops directed | 4 8 16 32

NEED INTELLIGENT HEURISTICS TO SEARCH LATTICE

Can analyze 100s of variables, & for simple models, many more.

19



TYPES OF STRUCTURES (GT1)
FOR PREDICTION / CLASSIFICATION (directed system)

 Variable-based

— no loops [coarse] many variables (fast)
Iv:ACZ simple prediction, feature selection

— with loops [fine]  up to 100s of variables (slow)
IvV:ABZ:BCZ better prediction

e State-based [ultra-fine] < 10 variables (very slow)
v:Z: A\B.Z : B,C3Z,; best prediction; detailed models

“IV" = ABC (all IVs); Z =DV
All directed system models include an IV component

20



TYPES oF STRUCTURES (GT1)

4 COARSE FINE ULTRA-FINE
Complexity
(degrees of
freedom)
Variable-based State-based

No loops With loops



OCCAM SEARCH of LATTICE of STRUCTURES

beam search, levels = 3, width = 4 (node = model)

(there are many other search algorithms)

I\

I

Independence model

complexity

22



MODEL = PROBABILITY DISTRIBUTION @T)

Neutral system:
 Model = calculated joint distribution,

€.9., Pasc:az:sz( A B; CZ))

Directed system:
e Model = calculated conditional distribution,

€.9., Pasc:azez(4 | A B Cy)

 Distribution gives rule to predict Z from A,B,C
And increase/decrease risk relative to margins

23



SELECTING A MODEL )

1. High information (or low error) in model

Directed system

— Info-theory measure: high 4H, reduction of uncertainty of DV
—  Generic measure: high %correct, accuracy of prediction

2. Low complexity: df, degrees of freedom

3. Information <> complexity tradeoff
—  Statistical significance (Chi-square p-values)
— Integrated measures: AlIC, BIC
(Akaike & Bayesian Information Criteria)
—  BIC a conservative selection criterion

24



UNCERTAINTY REDUCTION: SIMPLE EXAMPLE

2 variables: IV=A; DV = Z; T(A:Z)=mutual information (association)
« Uncertainty reduction is like variance explained
Model AZ = predict Z, i.e., reduce H(Z), by knowing A
e Uncertainty reduced = T(A:Z); uncertainty remaining = H(Z|A)
AH =T(A:Z)  H(Z) fractional uncertainty reduction (express in %)
H(A) H(2)

H(A,Z)

25



UNCERTAINTY REDUCTION: SIMPLE EXAMPLE

H(A) H(Z)

Lo Zy
Ag| .67*5 ] .33*5|.5
A;| 33*5 | .67/*5 |.5
df=3 5 5

* pP(Z)/p(Zy)= 1:1, not knowing A — 2:1 or 1:2, knowing A

e« AH(Z) = T(A:Z) | H(Z) = 8%

* 8% reduction in uncertainty is large (unlike variance!)

26



SELECTING A MODEL bEMENTIA EXAMPLE

Criterion model AH(%) Adf %c ABIC
Variable-based with loops (fine)

BIC v: ApZ.EdZ:KZ 16 5 70 59
p-valuerv: ApZ:EdZ.:KZ:CZ:LZ 18 9 71

AIC  v:(BADZ:EdZ:KZ:CZ 20 11 72
State-based (ultra-fine)

BIC (model below; each interaction = 1 df) 20 6 72 81

IV:Z: Ap;Z @ EdoZ : K,Z : ApoEd,C,Z : ApoEd,C,K,Z : Ap,Ed,CoK,Z

Models integrate multiple predicting interactions

IV = ApEdCKL... (all the independent variables); %c(IviZ) =52

27



PROBABILITY DISTRIBUTION DEMENTIA EXAMPLE

DATA | MODEL wv:ApZ.EdZ:KZ
v obsp(Z|I1V) | calcp(Z]|IV) p-value
Ap Ed K freq Zy Z4 Zy Z; | rule Prule Pap
0 O 0 4 0.0 1.000 122 .878 1 0.131  0.028
0 O 1 8| .125 .875 124 .876 1 0.033  0.002
0 O 2 41 .250 .750 294 .706 1 0.409 0.138
0 1 0 31| .645 .355 .616 .384 0 0.198  0.707
0 1 1 37| .622 .378 .619 .381 0 0.147 0.714
0 1 2 23| .7183 217 827 173 0 0.002 0.072
0 2 0 66| .636 .364 .640 .360 0 0.023 0.894
0 2 1 61| .656 .344 .644 357 0 0.025 0.942
0 2 2 33| .848 152 .842 .158 0 0.000  0.020
0O - - 267| .648 .352 .648 .352 0
1 0 0 1| .000 1.000 .026 974 1 0.343 0.571
1 0 1 7| .143  .857 .026 974 1 0.012 0.134
1 0 2 2| .000 1.000 074 .926 1 0.228 0.514
1 1 0 13| .308 .692 234 .766 1 0.055  0.709
1 1 1 24| .167  .833 237 763 1 0.010 0.633
1 1 2 11| 545 455 478 522 1 0.884  0.146
1 2 0 32| .219 781 254 746 1 0.005 0.732
1 2 1 39| .256 .744 .256 744 1 0.002 0.735
1 2 2 17| 529 471 504 496 0 0.973  0.040
1 - - 146| .281 .719 281 719 1
413 | 518  .482 518 482 0

28



DECISION TREE DEMENTIA EXAMPLE

Obtained from conditional probability distribution
Increase/decrease of risk compared to prediction based only on Ap

Ed,K,, EdK;, Increased risk of disease: predict Z,
Other EdK> )
y Predict Z,
EdK, Decreased risk of disease; predict Z,

Ap, Other EdK
—» Predict Z,

Ed,K _ _ :
2 Decreased risk of disease: predict Z,

29



NEUTRAL ANALYSIS EXAMPLE

LEGACY LAB SERVICES

g
LEGACY EMANUEL 2 ADVEYTIST 1
UEp AERIGA

Before AT

W, ' AD ST 2
OREGON ANESTHESIOLOGY

MULTNOMAH COUNTY \/ | OHSU1
ROVIDENCE 1
QUEST DIAENO =4 ? y A
Y G.l‘-f},l C
;\ i

EPICIKIAG:

IOLOGISTS

'~~(3,“"0u  SPECIALISTS

oA
OVIDENC,
i

LEGACY LAT SERVICES
ACY[ BT HOOD
LEGACY U,

RAD. z};LOGY CONSULTANTS
a @

LEGACY ADVENTIST 1
WERICA
After @C@MS'I‘[C IOLOGISTS
, ST 2
OREGON ANRSTHEAIOLOGY
MULTNOMAH COUNTY
QUEST DIAGN n ' )
& OREGO]
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e ZWick@pdx.edu
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GENERATE MODEL

frequencies shown, not probabilities

data: observed ABC (df=7) model: calculated ABCag:gc

Co Cl CO Cl

B, B.| By, B; | B, B:;| B, B;
A, (143 77253 182]< 2NN A a2 72[254 188
A, | 227 46411 139 A, | 227 52|400 134

2.Composition

By B: By B;
Ag| 396 259 | %> Co| 370 123 |3
A;| 638 185]|°% C,| 664 321 |%°

1034 444 1034 444

model: AB:BC (df=5)

34



GENERATE MODEL (Projection, Composition)

e Projection = sum frequencies or probabilities

e Composition
Maximize model entropy subject to model constraints

Model entropy: H(pmodel) =-X Pmodel |092 Pmodel
E.g., for model AB:BC, maximize H(pag.gc) Subject to

Pag:ac(AB)= Pyata(AB)
Pag:ac(BC)= Pyata(BC)

Composition is critical computational step; done
(a) Algebraically (very fast) loopless models

(b) Iteratively (iterative Proportional Fitting) models with loops
35



EVALUATE MODEL (1/2)

e Evaluation (1 = data dependent; 2 = data independent)

1. [reference=data]

error, T =H - H
model model data data
=2 pdata Iogz(pdata/pmodel)
[reference=independence] T
iInformation, | ,oqel = Hing — Hinodel
model

=X pdata Iogz(pmodellpind)
uncertainty reduction = H(DV) - H,04e(DV | IV) |

2. [reference=independence] ¥ ind
complexity = Adf = df, ;4o — dfing
36



EVALUATE MODEL (2/2)

Trade off information (or error) & complexity, define
best model criterion, via:

Use likelihood ratio Chi-square, LR =k N T
e p-values from ALR, Adf, Chi-square table

Or linear combinations of information & complexity
 AAIC = ALR + 2 Adf
 ABIC = ALR + In(N) Adf

37



BASIC OCCAM ACTIONS

o Search = exploratory modeling, examine many
models, find best or good ones

(OCCAM actions: Search, SB-Search)

* Fit = confirmatory modeling, look at one model in
detail (see probability distribution) & use for prediction

(OCCAM actions: Fit, SB-Fit)

(OCCAM actions: Show Log, Manage Jobs = managerial functions)

38



OCCAM Initial Screen

o CR e ® dmit.syscpdx.edu/weboccam.cgi
UNIVERSITY
m version 3.4.0 — Tue Jun 19 14:41:08 2018
" Do Search ' Do SB-Search C)Do Fit Do SB-Fit | " Do Compare
" Show Log " Manage Jobs | Cached Data Mode

© 2000-2017
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INFORMATION ON RA

Review articles on DMM page

— “Wholes & Parts in General Systems Methodology” (accessible)
— “An Overview of Reconstructability Analysis” (encompassing)

Krippendorff, Klaus (1986). Information Theory.
Structural Models for Qualitative Data (Quantitative
Applications in the Social Sciences Monograph #62).
New York: Sage Publications.

International Journal of General Systems

Kybernetes, Vol. 33, No. 5/6 2004: special RA issue

40
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