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Abstract

This article presents a framework for performing ensemble and hybrid data assimilation in a
weak-constraint four-dimensional variational data assimilation system (w4D-Var). A practical
approach is considered that relies on an ensemble of w4D-Var systems solved by the incremental
algorithm to obtain flow-dependent estimates to the model error statistics. A proof-of-concept
is presented in an idealized context using the Lorenz multi-scale model. A comparative analysis
is performed between the weak- and strong-constraint ensemble-based methods. The impor-
tance of the weight coefficients assigned to the static and ensemble-based components of the
error covariances is also investigated. Our preliminary numerical experiments indicate that an
ensemble-based model error covariance specification may significantly improve the quality of
the analysis.

Keywords: model error; weak constraint; variational data assimilation; ensemble methods; error co-

variance; error bias

1 Introduction

Four-dimensional variational data assimilation (4D-Var) provides an estimate to the state of
a dynamical system through the minimization of a cost functional that measures the distance
to a prior state (background) estimate and observations [20] over a time window [t0, tN ]. The
analysis fit to each information input component is determined by the specification of the error
covariance matrices in the data assimilation system (DAS).

Unlike the extended Kalman filter, error covariances are typically not updated between 4D-
Var assimilation cycles. A practical approach to improve the quality of the analysis is to include
the “errors of the day” by using an ensemble-based estimate to the background error covariance
matrix. Evensen [11] introduces this Monte Carlo alternative as the ensemble Kalman filter
(EnKF) and it has since been implemented in various studies, e.g. [15], [17], [18]. Lorenc [21]
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and Fairbairn et al. [12] investigate the potential use of EnKF for numerical weather prediction
(NWP) applications and its analysis performance, as compared with 4D-Var.

For large-scale dynamical systems, the number of ensemble forecasts is much smaller as
compared to the dimension of the discrete state vector. Therefore, an ensemble-based repre-
sentation to the background error covariance matrix is of low rank and corrupted by sampling
errors. To alleviate these issues, several approaches have been considered for practical imple-
mentation including covariance localization [15, 16] and the formulation of hybrid methods that
aim to synergistically combine the merits of variational and ensemble-based DA [1, 2].

Weak-constraint 4D-Var (w4D-Var) provides a theoretical framework to account for mod-
eling errors in the analysis scheme. Trémolet [25] investigates some possible implementations
of w4D-Var. In addition to the specification of the background error covariance (B) matrix,
the w4D-Var formulation requires information on the model error statistics and specification
of the model error covariance. Up to now, the increased computational cost associated with
w4D-Var has prevented its practical implementation. Various simplifications to reduce the
computational burden have been considered, including writing the model error covariance as
a scalar multiple of the background error covariance (see [8] for example) and modeling the
model error [14, 26, 27]. Research to implement an ensemble data assimilation approach to
model error covariance estimation in w4D-Var is at an incipient stage. Mitchell and Carrassi
[24] use ensembles to account for model error, but in the context of the ensemble transform
Kalman filter. Desroziers et al. [9] investigate a possible implementation of an ensemble 4D-Var
using a four-dimensional ensemble covariance.

Ensemble data assimilation can estimate not only the model error covariance matrices, but
also bias. Traditionally, an assumption is made that the errors in data assimilation are unbiased
to simplify the computational cost or because the information about error biases is not available.
Bias in data assimilation has been explored in the works by Dee [4], Dee and Da Silva [5], and
Dee and Todling [6], where it is noted that errors in models and the data are often systematic
rather than random. Attempts to correct for error bias have been made in the form of bias
detection and correction methods and “bias-aware” data assimilation methods, including bias
correction in variational data assimilation [7], but not in the context of w4D-Var. Bias-aware
Kalman filters have been explored by Drécourt et al. [10].

This work investigates novel applications of ensemble and hybrid techniques to estimate
the model error statistics in a w4D-Var DAS. The implementation of ensemble-based DA for
w4D-Var is presented. A proof-of-concept and comparison of w4D-Var to the ensemble data as-
similation and hybrid assimilation schemes is made in numerical experiments. The terminology
and notation follow closely to that of Ide et al. [19] and Trémolet [25].

2 Ensemble Data Assimilation

Weak-constraint 4D-Var provides a sequence of time-distributed analyses xa
i ∈ R

n that estimate
the true state xt

i of a dynamical system at time ti of the data assimilation interval [t0, tN ]. The
nonlinear cost functional associated with w4D-Var is defined as

J(x0, . . . ,xN ) =
1

2
[x0 − xb

0]
TB−1[x0 − xb

0] +
1

2

N∑

i=0

[yi − hi(xi)]
T
R−1

i [yi − hi(xi)]

+
1

2

N∑

i=1

[ηi − qi]
TQ−1

i [ηi − qi] (1)
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where xb
0 ∈ R

n is a prior (background) estimate of the true state at time t0, yi ∈ R
pi is the

observation vector at time ti, hi denotes the observation operator that maps the state xi into
observation space, and ηi = xi − Mi(xi−1) represents the error in the forecast model Mi

that advances the state from time ti−1 to time ti. The vector qi is defined as the statistical
expectation of ηi and is referred to as model error bias. The statistical information on the
background error εb = x0 − xb

0, observational errors εoi = yi − hi(xi), and model errors ηi is
used to specify the positive definite matrices B ∈ R

n×n, Ri ∈ R
pi×pi , and Qi ∈ R

n×n, which
represent the background, observation, and model error covariance matrices used in the data
assimilation system.

In some applications, model error bias is not accounted for or is assumed to be zero, which
eliminates the qi term from the cost functional. In a strong-constraint 4D-Var system, a
perfect model assumption xi = Mi(xi−1) is used to completely eliminate the model error
term from (1) and simplify the cost functional so that the only free variable is x0, the initial
condition. By taking into account model error in w4D-Var, the control variable is sequence of
states {x0, . . . ,xN}. Trémolet [25] describes other possible formulations of the control variable,
including {x0,η1, . . . ,ηN}.

Ensemble data assimilation has been used in conjunction with variational methods in an
attempt to capture the “errors of the day” and dynamically update the background error
covariance. Ensembles can also be used to estimate the model error covariances Qi and the
model bias qi by using ensembles for the analysis states xa

i,j . The steps needed to obtain
ensemble estimates of model error are presented next.

2.1 Derivation of the Model Error Ensemble

When the true model error statistics are unknown, the data assimilation system specifications
of the error bias qi �= qt

i and error covariance Qi �= Qt
i are made. The incremental algorithm,

introduced by Courtier et al. [3], may be used to perform w4D-Var over a time window [t0, tN ].
The states xg

i at which the model and observation operators are linearized will utilize the
assumed model error statistics, that is, let

xg
0 = xb

0, xg
i = Mi(x

g
i−1) + qi, i = 1, . . . , N. (2)

The incremental method then produces the four-dimensional analysis

xa = xg +K[y − h(xg)] (3)

where K is the four-dimensional gain matrix analogous to the Kalman gain matrix.
An ensemble of analyses xa

i,j , where i = 0, 1, . . . , N and j = 1, . . . , Ne, is used to produce a
low-rank representation to the model error covariance. The setup is as follows.

• Prescribe the background error statistics B, observation error covariances Ri, and model
error statistics Qi, qi to be used for each w4D-Var problem, the same specification for
each ensemble member.

• From the background state xb
0, form the background ensemble xb

0,j = xb
0 + εbj , where εbj

is generated from the normal distribution N(0,B).

• Perturb the observation yi to form an ensemble yi,j = yi + εoi,j , where the perturbation
εoi,j is normally distributed with mean zero and covariance Ri, for i = 0, 1, . . . , N and
j = 1, . . . , Ne.
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• For each member of the background ensemble xb
0,j , form the corresponding ensemble of

guesses xg
i,j according to (2) using the assumed model error bias qi.

A substitute for using the statistics ofB to perturb the background is to use the approximate
background error

ε = ‖xa
0 − xb

0‖/n (4)

as the standard deviation for the mean zero normally distributed perturbation. A multiplicative
constant β can be included so that the standard deviation of the perturbations is βε.

By performing w4D-Var using the incremental method with data xg
0,j , . . . ,x

g
N,j and obser-

vations y0,j , . . . ,yN,j , we get an ensemble of analysis states xa
i,j . The four-dimensional analysis

ensemble xa
j follows from (3)

xa
j = xg

j +Kj [yj − h(xg
j )] (5)

where the gain matrix Kj may vary with the ensemble member j. In this framework, the best
estimate of the true state is obtained as the ensemble average for each time

x̄a
i =

1

Ne

Ne∑

j=1

xa
i,j . (6)

From (5) and (6), define ensemble estimates to model error

ηi,j = x̄a
i −Mi(x

a
i−1,j) (7)

for i = 1, . . . , N and j = 1, . . . , Ne. With the model error ensemble now available, the model
error bias qt

i is estimated by the ensemble mean

qi,e =
1

Ne

Ne∑

j=1

ηi,j (8)

and the associated ensemble estimates to the model error covariance matrix are

Qi,e =
1

Ne − 1

Ne∑

j=1

[ηi,j − qi,e][ηi,j − qi,e]
T. (9)

Now that estimates for the model error bias and model error covariance are available, qi,e and
Qi,e may be used in a w4D-Var data assimilation system. This procedure is summarized in
Algorithm 1. Possible ensemble-based assimilation schemes are described next.

2.2 Ensemble-based w4D-Var Schemes

Instead of prescribing the model error covariance matrices as static Qi that do not change
between assimilation cycles, one approach is to specify the model error bias and model error
covariance matrices as qi,e and Qi,e, respectively. This choice of specifying qi = qi,e and
Qi = Qi,e utilizes the information from the “errors of the day” to improve the quality of the
analysis. These specifications can be kept up-to-date in future time-steps by computing the
ensemble estimates qi,e and Qi,e in each data assimilation cycle.
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Algorithm 1 Computation of the ensemble estimates of model error.

1: procedure Model Error Ensemble(B, Ri, Qi, qi, Ne)
2: for j = 1, . . . , Ne do
3: xb

0,j = xb
0 + εbj � Perturb the background

4: xg
0,j = xb

0,j � Set the guess states
5: for i = 1, . . . , N do
6: xg

i,j = Mi(x
g
i−1,j) + qi

7: end for
8: for i = 0, 1, . . . , N do
9: yi,j = yi + εoi,j � Perturb the observations

10: end for
11: (xa

0,j , . . . ,x
a
N,j) = w4DVar(B,Ri,Qi,qi,x

g
i,j ,yi,j) � Analysis ensemble

12: end for
13: for i = 0, 1, . . . , N do
14: Compute x̄a

i from equation (6)
15: for j = 1, . . . , Ne do
16: Compute ηi,j from equation (7)
17: end for
18: end for
19: for i = 1, . . . , N do
20: Compute qi,e from equation (8)
21: Compute Qi,e from equation (9)
22: end for
23: end procedure

The ensemble covariance matrices Qi,e may have low rank due to a small ensemble size and
additionally suffer from the presence of sampling error. To reduce this, one may replace Qi in
the data assimilation system by the Schur (elementwise) product of the ensemble covariance
Qi,e with a localization matrix

Qi = Qi,e ◦Ci (10)

where Ci is a properly selected correlation matrix. A popular correlation function to apply is
the fifth-order rational function of compact support, given by equation (4.10) of Gaspari and
Cohn [13].

Another option is to specify the model error covariance matrices as a linear combination of
a static matrix Qi,c and the ensemble covariance

Qi = αiQi,c + (1− αi)Qi,e. (11)

A localization matrix Ci may applied to Qi,e so that (11) is replaced by

Qi = αiQi,c + (1− αi)Qi,e ◦Ci. (12)

Similarly, the model error bias is specified as a linear combination of a static vector qi,c and
the ensemble average using the same parameter

qi = αiqi,c + (1− αi)qi,e (13)
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where 0 ≤ αi ≤ 1. This combination of two specifications of model error is referred to as
hybrid data assimilation. For αi = 1, the specified model error will utilize the current static
specification, or the status quo, while for αi = 0, it will be set to the ensemble model er-
ror statistics. Hybrid data assimilation is designed to combine the merits of both the static
component {Qi,c,qi,c} and the dynamic component {Qi,e,qi,e} with a value of αi satisfying
0 < αi < 1 to improve the quality of the analysis more than the static and dynamic components
can do alone.

3 Numerical Experiments

The performance of ensemble and hybrid formulations of w4D-Var assimilation described in
subsection 2.2 is investigated in comparative numerical experiments performed with the multi-
scale model of Lorenz [22]

dxk

dt
= xk−1(xk+1 − xk−2)− xk − hc

b

J∑

j=1

yjk + F (14a)

dyjk
dt

= cbyj+1,k(yj−1,k − yj+2,k)− cyjk +
hc

b
xk (14b)

where k = 1, . . . ,K and j = 1, . . . , J . The yjk variables vary at a smaller scale than the xk

variables and are arranged as y11, y21, . . . , yJ1, y12, . . . , yJ2, . . . , yJK . They also extend cyclically
so that yJ+1,1 = y11. We will refer to the model given by (14) by LZ96. In this experiment, the
“true” state of the dynamical system is represented by the integration of (14) by the fourth-
order Runge-Kutta method with b = c = 10, h = 1, K = 40, J = 10 and F = 8. By ignoring
the effects of the yjk variables, the Lorenz 40-variable model [23]

dxk

dt
= xk−1(xk+1 − xk−2)− xk + F (15)

will only approximate the true state evolution and model error is now introduced by the un-
represented small-scale dynamics. Thus, for the data assimilation process, the true state xt

i at
time ti will be the x-values produced from the integration of (14), whereas the forecast model
Mi will be the integration of (15) using a constant step-size Δt = 0.05, which identifies to a
6-hour time period. The integration of (14) requires a smaller time step to preserve numerical
stability, so a 6-hour forecast is achieved through ten smaller time-steps with Δt = 0.005.

A data assimilation window consists of the current time t0 and three time-steps, representing
an assimilation window [t0, t3]. Observational data are generated from the true state with the
observational error taken from the distributionN(0, (σo)2) with the standard deviation specified
as σo = 0.55. The observation operator satisfies hi(xi) = xi for i = 1, 2, 3.

An analysis will be produced from w4D-Var after setting up the background error covariance
B by running the extended Kalman filter using the true model error statistics for 700 time-
steps with B initialized to the identity matrix. The background xb

0 for each step of the extended
Kalman filter is taken to be a forecast of the previous analysis perturbed by random noise. After
the spin-up cycle is complete, B will then remain static for w4D-Var assimilation.

A comparative analysis is done to investigate the performance of the ensemble and hybrid
assimilation methods to gauge their benefits. Three w4D-Var schemes (henceforth referred to as
Control, Weak Ensemble, and Weak Hybrid) are run concurrently in order to properly compare
and contrast the results. For each assimilation system, the background and observation error
covariances are specified as described above, whereas the model error statistics are set as follows.
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• (Control) Mis-specified model error covariances specified as Q = 2diag(Qt) and model
bias q = 0 is considered as the status-quo and serves as the basis for comparing against
the other schemes.

• (Weak Ensemble) Use equations (8) and (10) from an ensemble size of 20. The background
was perturbed using (4) and multiplicative factor β = 10, which was used to make sure the
ensemble had sufficient spread. The localization matrix is obtained using the fifth-order
rational function of Gaspari and Cohn [13] with correlation length 8.

• (Weak Hybrid) Use equations (12) and (13) with α = 0.5. The static components are set
to Qc = 2diag(Qt) and qc = 0 and the ensemble covariance with localization is the same
one computed for the weak ensemble scheme.

Additionally, three strong-constraint 4D-Var schemes are considered. With the same observa-
tion error covariances as the w4D-Var systems, the background error covariance matrix is set
as follows.

• (Strong 4D-Var) Set B as the matrix from the spin-up cycle.

• (Strong Ensemble) Set B as an ensemble estimate obtained from an ensemble of 20 strong-
constraint 4D-Var assimilation systems. Further details are in the next paragraph.

• (Strong Hybrid) Use the hybrid B = αBc + (1−α)Be, where the static component Bc is
the covariance produced from the spin-up cycle and Be is the background ensemble error
covariance with localization computed for the strong ensemble scheme. The parameter α
is also set to 0.5 like the weak hybrid scheme.

The ensemble-based schemes for the strong-constraint 4D-Var utilize background perturba-
tions computed using (4) with multiplicative factor β = 5. In this case, the analysis xa

0 in (4) is
obtained from a strong-constraint 4D-Var run. The observations yi are perturbed in the same
manner as described in subsection 2.1. Each analysis ensemble member xa

0,j is forecast to the
beginning of the next assimilation cycle and Be is defined to be the sample covariance from the
ensemble of these forecasts.

To better compare the performance of the control system to the other five assimilation
schemes, the ratio of errors between the five other schemes and the control is considered. For
example, if the weak ensemble scheme outperforms the control scheme, then the ratio of the
weak ensemble errors to the control errors will be less than 1. A ratio of 1 means the schemes
have the same performance and larger than 1 if the weak ensemble scheme performs worse than
the control.

Figure 1 shows the ratio of the monthly (30-day) average analysis errors for each method
to the control, that is, εa(〈method〉)/εa(control), where the analysis error is the difference
between the LZ96 x-values and the w4D-Var analysis. It is noticed that the strong hybrid and
weak ensemble schemes have similar performance, whose ratios fluctuate near 1. The weak
ensemble scheme does not seem to perform much better than the control scheme, however
the weak hybrid errors show an improvement over the entire assimilation period. At month
7, an improvement of about 7% is achieved. The fact that the ensemble scheme ratios are
sometimes slightly larger than 1 can be attributed to two important components: the factor β
that controls the background ensemble spread and the ensemble size. The choice to set β = 10
for w4D-Var ensemble schemes was made to ensure that Qe did not suffer from being orders of
magnitude smaller than Qt. Due to the banded structure of the localization matrix, the model
error correlations are not fully accounted for in the ensemble and hybrid methods. Still, enough
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Figure 1: The ratio of the global monthly anal-
ysis error to the control w4D-Var experiment.

Figure 2: The ratio of the average oma differ-
ences to the control.

of the correlation structure was recovered from the ensembles to reduce the monthly hybrid
w4D-Var error averages.

Figure 2 shows the ratio of the three-year averaged observed-minus-analysis (oma) ‖yi −
hi(x

a
i )‖ difference for each grid point to the control. It shows that the analyses for the weak

ensemble scheme better fit with the observations than the hybrid scheme, even though Figure
1 shows the hybrid scheme had a lower average analysis error. Since the background, obser-
vational, and model error components of w4D-Var are weighted by their corresponding inverse
covariance matrices in the cost functional, the analysis fit to the observations is affected by
the magnitudes of the error covariance matrices. In particular, Qe having a larger magnitude
than the hybrid model error covariance reduces the weight of model error in the analysis and
increases the relative weights of the background and observations. Recalling that B and R
remain unchanged between the two schemes, it can be inferred that Qe has a larger magnitude
and that the hybrid specification better represents the true model error statistics. Some evi-
dence to support this conjecture is shown in Figure 3, which compares the prescribed model
error variance to the ensemble and hybrid model error variances, obtained from the three-year
average covariance matrices.

The performance of a hybrid data assimilation system is closely determined by the weight
assigned to the static and ensemble-based components of the error covariances. This aspect is
investigated by running the hybrid data assimilation scheme for different α for Q = αQc+(1−
α)Qe ◦C, where Qc is the static component of Q specified as the control error covariance. For
α = 0, the system runs in ensemble mode while for α = 1, the system runs as the control, the
status quo. The weight α varies from 0 to 1 in steps of Δα = 0.025 and the ratio of the time-
and space-averaged analysis errors over a three year period to the control verses the choice of
α is shown in Figure 4. The ensemble size for generating Qe is 20, as before. The results show
that the error corresponding to pure ensemble mode provides an improvement over the control
data assimilation system by about 2.5%. Further reduction in the analysis error is achieved
due to the specification of the hybrid covariance with 0 < α ≤ 0.95. In particular, the hybrid
covariance matrix corresponding to approximately α = 0.625 provides the greatest reduction in
the analysis error, about 7.5% improvement over the control.
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Figure 3: A comparison of the prescribed
model error variance to the time-averaged en-
semble and hybrid model error variances.

Figure 4: The ratio of the time- and space-
averaged analysis errors to the control verses
the hybrid scalar weight α for the model error
covariances.

4 Conclusion

This article provides a framework for performing ensemble and hybrid data assimilation in a
w4D-Var setting. A practical approach is considered that relies on an ensemble of w4D-Var
systems solved by the incremental algorithm to obtain an ensemble of analysis sequences, the
best estimates of the true state from which an ensemble of model error estimates are formed.
These model error ensembles provide insight to the true nature of the model error covariance
matrices. Model error bias has traditionally been assumed to be zero, and it may be possible
to incorporate information about model error bias to improve the quality of the analysis with
future research in this area.

In some situations, such as the case when the number of ensemble members is small, the
ensemble covariance matrices will have low rank and may not be a completely reliable repre-
sentation of the true model error statistics. The weighted combination of a static matrix, a
diagonal matrix for example, and the ensemble covariance can prove to be an improvement over
the ensemble matrices alone. A further improvement is to remove the random noise within the
ensemble covariance by using a localization matrix.

The results of our numerical experiments provide a proof-of-concept for using ensembles in
a w4D-Var setting. Specifying the model error covariances as the ensemble covariances with
localization can improve the analysis error. Further improvement can be made in a hybrid
setting with a good choice of the scalar weights.

Further research is needed to improve upon ensemble and data assimilation in w4D-Var.
For a data assimilation window [t0, tN ] of N +1 times, N model error ensembles of size Ne are
formed and are used to estimate each model error covariance Q1, . . . ,QN . When the dimension
of the state space is large, this can be computationally expensive, so it would be desirable to
have a small ensemble size and still obtain a good estimate of the model error statistics. To
do this becomes a question of how to optimally perturb the background and observations when
forming the initial ensemble. Another improvement can be made by determining how to specify
the hybrid scalar weights to get the best improvement in the quality of the analysis.

The numerical results in this study assumed an idealized observing system in which all
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states in the dynamical system are observed. In practical applications, the performance of
the data assimilation system is closely determined by the observing system configuration and
further research is needed to investigate the performance of both ensemble and hybrid w4D-Var
assimilation schemes.
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[25] Y. Trémolet. Accounting for an imperfect model in 4D-Var. Quarterly Journal of the Royal
Meteorological Society, 132(621):2483–2504, oct 2006.

[26] D. Zupanski. A general weak constraint applicable to operational 4DVAR data assimilation sys-
tems. Monthly Weather Review, pages 2274–2292, 1997.

[27] D. Zupanski and M. Zupanski. Model Error Estimation Employing an Ensemble Data Assimilation
Approach. Monthly Weather Review, 134(1994):1337–1354, 2006.

An Ensemble Approach to Weak-Constraint 4D-Var Shaw and Daescu

506


	An Ensemble Approach to Weak-Constraint Four-Dimensional Variational Data Assimilation
	Let us know how access to this document benefits you.
	Citation Details

	An Ensemble Approach to Weak-constraint Four-dimensional Variational Data Assimilation

