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I. For Information on Reconstructability Analysis 
For papers on Reconstructability Analysis, see the Discrete Multivariate Modeling 
section on Dr. Zwick’s research page:  
https://works.bepress.com/martin_zwick/ 
 
For an overview of RA, see the following two papers: 
“Wholes and Parts in General Systems Methodology” 
“An Overview of Reconstructability Analysis” 

II. Accessing Occam 

Occam server location & general use 
Occam is at: http://dmit.sysc.pdx.edu/. It can also be accessed from the DMM web page.  
 
Occam runs on a PSU server. The user uploads a data file to this server, provides input 
information on a web input page, and then initiates Occam action. When the computation 
is complete, Occam either returns HTML output directly to the user or a .csv output file 
that can be read by a spreadsheet program such as Excel. If the computation is not likely 
to finish rapidly, the user can provide an email address and Occam will email the output 
(in .csv form) to the user when it is done. 

Occam as an open-source project 
Occam has become an open-source project. More details can be found at the main site for 
the project: https://www.occam-ra.io/. The code for the site can be on GitHub, along with 
a guide for installation: https://github.com/occam-ra/occam. Since Occam is still in the 
process of transitioning to the open-source world, installation may not be as smooth as 
one would like. If you have any issues with the software or would like to contribute to the 
project, please contact us through the GitHub site. 

Notify us of program bugs & manual obscurities/errors 
If you encounter any bugs or mysterious output, please check to see that your input file 
matches the format requirements specified below. If you are confident that your input file 
is formatted correctly, please contact us via the GitHub site, or at the email address on the 
first page. Please include the settings used on the web page, a description of the problem, 
and the Occam output if available. (If your input file is large, please zip it before 
attaching to your email.)  
 
We also need your support in maintaining this user’s manual. Please let us know if there 
is information missing in this manual that you need, if explanations are obscure, or if you 
see any errors. 

Action 
When one brings Occam up, one first must choose between several Occam actions. The 
modeling options are: “Do Fit,” “Do Search,” “Do SB-Fit,” and “Do SB-Search.” There 
are also options for “Show Log” and “Manage Jobs,” which allow the user to track the 
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status of jobs submitted for background processing. You can see this first web page by 
clicking on: http://dmit.sysc.pdx.edu/weboccam.cgi.  
 
There is one additional available action, “Do Compare”, which is a specialized tool for 
doing pairwise comparisons between related datasets, explained in Appendix 5. Finally, 
for any of the Search and Fit actions, there is a checkbox for “Cached Data Mode,” which 
allows uploading the Occam input in separate parts. This is explained in Appendix 6. 
 
When an option is selected, Occam returns a window specific to the choice made. Search 
assesses many models either from the full set of all possible models or from various 
partial subsets of models. Fit examines one model in detail. In an exploratory mode, one 
would do Search first, and then Fit, but in a confirmatory mode, one would simply do 
Fit. The options for SB-Fit and SB-Search function similarly, but for state-based 
models, rather than the default variable-based models. Let’s focus first on the main option 
of “Do Search.” 

III. Search Input 
On the first line, the user specifies a data file, which describes the variables used and 
provides the data to be analyzed. The data file allows the user to set certain parameters, 
but parameters should be specified on the Occam web input page, since parameters set on 
the web page override any in the data file. The only parameters that currently can be 
specified only in the data file are the two parameters that govern the iterative method, 
IPF, used in Occam. These should be modified only if there is reason to believe that IPF 
is not converging properly; see Appendix 3 for further information. (The capacity to 
specify parameters in the data file is designed for command line use of Occam within a 
Unix environment; such use of Occam is not currently functional but may be restored to 
functionality in the future.) The data file will now be discussed, and then the other 
parameters on this web input page will be explained. 

Data file 
The user must specify a data file on the user’s computer by typing its name (and location) 
in or finding it by browsing. The data file is then uploaded to the Occam server. This is 
actually all that is needed to submit an Occam job, if the user is satisfied with the default 
setting of all the parameters. 
 
Data files should be plain-text ASCII files, such as those generated by Notepad, Word, or 
Excel if the file is saved in a .txt format. (Note that in Excel, you should not use the 
“Space Delimited Text” format, with the .prn extension, as it can be incompatible with 
Occam.) Each line of the data file has a maximum length, currently set to 1000 
characters. Occam will give an error if this is exceeded. If your data set requires lines 
longer than this limit, please contact the feedback address listed above.  
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A minimal data file might look like the text below. (Data are taken from the “Wholes & 
Parts” paper.) 
 

:nominal 
alpha, 2,1,a 
beta, 2,1,b 
gamma, 2,2,c 

 
:data 
0 0 0 143 
0 0 1 253 
0 1 0 77 
0 1 1 182 
1 0 0 227 
1 0 1 411 
1 1 0 46 
1 1 1 139 

 
This simple file has 2 parts: (1) specification of the variables (the ‘variable block’), and 
(2) the data to be analyzed (the ‘data block’). Each block in this example begins with a 
command line of the form :parameter, where parameter is “nominal” or “data”. 

Variable specification 
Variable specification begins with :nominal, which reminds the user that nominal 
(categorical, qualitative) variables must be used. (For tips on binning quantitative 
variables, see FAQ #6.) After :nominal, the variables are specified, one per line. White 
space between values is ignored. In the above example, the first line is: 
 

alpha, 2,1,a 
 
“alpha” is the name of the first variable. The second field indicates that it has 2 possible 
states (a “cardinality” of 2). The third field (shown above as 1) is 0, 1, or 2. A value of 1 
defines the variable as an “independent variable” (IV) or input. A value of 2 defines it as 
a “dependent variable” (DV) or output. A value of 0 means that the variable (and the 
corresponding column in the data) will be ignored. This allows the user to have data for 
more variables than can be analyzed at any one time; the user could then easily alter 
which variables are to be included in the analysis and which are to be omitted. If the 
value in the third field is 0, any rebinning string (described below in Appendix-1) will be 
ignored. If all variables are designated as IVs (1) or as DVs (2), the system is “neutral.” If 
some variables are IVs, and one is a DV, the system is “directed.” At present, only one 
variable can be a DV. Occam cannot analyze multiple DVs simultaneously; they must be 
analyzed separately one at a time. The above data file is for a directed system. A useful 
but not obligatory convention (it is in fact not followed in the above input file) is to give 
the DV the short name “Z”, and name all the IVs from the beginning of the alphabet. 
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The fourth field is a variable abbreviation, ideally and most simply one letter. Lower case 
letters may be used, but will appear in Occam output with the first letter capitalized. In 
the above example, variable “alpha” will be referred to in Occam output as “A”. If there 
are more than 26 variables, one can use double (or triple, etc.) letters as abbreviations, for 
example “aa” or “ab”. Such variables would appear in model names as AaB:AbC, for 
example. The capital letters help one to see the variables as separate. If State-based 
Search or Fit will be used, variable abbreviations must be only letters. Numbers (e.g., 
A2) or other symbols may not be used to abbreviate variables, since numbers are reserved 
for use as the names of specific states in State-Based RA.  However, if you are sure that 
you will not be using State-Based Search or State-Based Fit, you may use numbers in 
your variable names. 
 
Although data submitted to Occam must already have been binned (discretized), an 
optional fifth field tells Occam to “rebin” the data. Rebinning allows one to recode the 
bins by selecting only certain bin values for consideration or for omission, or by 
aggregating two or more bins. This is discussed in depth in Appendix-1. 

Data specification 
The second part of this file is the data, which follows the “:data” line. In the data, 
variables are columns, separated by one or more spaces or tabs. The columns from left to 
right correspond to the sequence of variables specified above, i.e., the first column is 
alpha, the second beta, and the third gamma. Following the variable columns there can be 
an additional column that gives the frequency of occurrence of the particular state 
specified by the variable values. The frequency value does not have to be integer, so 
frequencies that become non-integer because some weighting has been applied to them 
are OK. However, frequency values may not be negative. 
 
Note that since non-integer frequencies are allowed, one can use Occam to analyze–and 
compress–arbitrary functions of nominal variables. Occam simply scales the function 
value so that it can be treated as a probability value, and then does a decomposition 
analysis on this pseudo-probability distribution. In the work of Bush Jones, this is called 
“g-to-k” normalization. However, if Occam is used in this way, statistical measures that 
depend on sample size (e.g., Alpha, dLR, BIC, AIC) do not have their usual meaning. 
This use of Occam, and two other approaches to continuous DVs, is documented in the 
paper “Reconstructability of Epistatic Functions” available from the DMM page. 
 
Since variables are nominal, their values (states) are names. Normally, these will be 
0,1,2… or 1,2,3… but the character “.” is to be used to designate missing values. When 
using “.” it must be included in the cardinality of the variable; that is, if the variable has 3 
possible values, but a value is sometimes also missing, the cardinality of the variable is 4. 
No other non-numeric characters are allowed as variable states. To avoid confusion, it is 
best to start the labeling of all variables either with 0 or with 1, i.e., it is best not to start 
one variable with 0 and another with 1 (though Occam can handle such inconsistencies of 
convention). The user should know the number of different states that occur for each 
variable and indicate the cardinality of the variable correctly in the variable specification. 
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Data can be provided to Occam without frequencies, where each line (row) represents a 
single case. The rows do not have to be ordered in any particular way. Occam will 
generate the frequencies itself, but it needs to be told that the data do not include 
frequencies, as follows: 
 
:no-frequency 
 
:data 

0 0 0 
1 1 1 
0 1 1 
1 0 1 
0 0 1 
0 1 0 
0 1 1 
0 0 1 
1 0 0 
1 0 1 
1 1 0 
1 1 1 

 
Uploading data will be faster if the data provides frequencies, so if the data file is big, the 
user might consider doing this operation before calling Occam. 

Test data specification 
Optionally, a data file can include “test data.” Typically, test data are a fraction of the 
original data that has been set aside, so that models can be measured against data that 
were not used in their creation. In Search, if test data are present and the “Percent 
Correct” option is checked, the report will include the performance of the models on the 
test data. In Fit, the performance of the model on test data is shown automatically, 
whenever test data are present. To include test data in a data file, use the “:test” 
parameter, followed by lines of data in the same format used for “:data”. 
 
:test 

0 0 0 70 
0 0 1 125 
0 1 0 26 
0 1 1 100 
1 0 0 120 
1 0 1 190 
1 1 0 25 
1 1 1 80 
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Comments in the data file 
A line beginning with “#” will be ignored when Occam reads the data file, so this 
character can be used to begin comment lines. Also on any given line, Occam will not 
read past a “#” character, so comments can be added at the end of lines which provide 
actual input to the program. Comments do not count toward the maximum line length 
mentioned above. 

Web input 
We now discuss the other parts of the Search web input page. 

General settings 

Starting Model 
Occam searches from a starting model. This can be specified on the browser page as 
“Top” (the data or “saturated model”), “Bottom” (the independence model), or some 
structure other than the top or bottom, e.g., “AB:BC”. (Lower case “top” and “bottom” 
are also OK.) This field can also be omitted, in which case Occam uses the starting model 
specified in the data file (after the variable specification and before the data), as follows: 
 
:short-model 
AB:BC 
 
(“Short” refers to the variable abbreviations.) If the data file also does not specify a 
starting model, Occam uses the default starting model, which for both directed and 
neutral systems is “Bottom.”  
Note that when working with a directed system, the component containing all the IVs can 
be abbreviated as “IV” if it is the first component in the model. That is, “IV:ABZ:CZ” is 
acceptable as a starting model. This same notation is used in the Search output for a 
directed system. Similarly, in neutral systems, the abbreviation “IVI” can be used as the 
first component of a model; it represents all of the single-variable components. (“IVI” 
stands for “individual variables independently.”) For a 5-variable neutral system, the 
independence model of “A:B:C:D:E” could be written simply as “IVI”, and a more 
complex model such as “A:B:C:DE” could be written as “IVI:DE”. This notation also 
appears in Search output. Both notations are especially useful when modeling data with 
many variables. The rationale for this is that we’re interested in associations between 
variables, and don’t see all the variables not currently associated with any other variable. 

Reference Model 
Assessing the quality of a model involves comparing it to a reference model, often either 
Top or Bottom. If the reference model specified in the browser page is left as default, it 
will be “bottom” for both directed and neutral systems (the same as the convention for 
the starting model). If the reference model is Top one is asking if it is reasonable to 
represent the data by a simpler model. If the reference model is Bottom one is asking 
whether the data justifies a model more complex than the independence model. 
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The reference model can be the starting model. When the starting model is neither Top 
nor Bottom, this can be used to determine whether “incremental” changes from the 
starting model are acceptable, as opposed to whether “cumulative” changes from the top 
or bottom are acceptable. The starting model may be a good model obtained in a prior 
search, and one may now be investigating whether it can be improved upon. At present, if 
the reference model is chosen to be the starting model, the starting model must be entered 
explicitly on the browser input page; Occam will not pick it up from the data file. 

Models to Consider 
Occam offers a choice between (a) all, (b) loopless, (c) disjoint, and (d) chain models. 

a. All models 
“All” means there are no restrictions on the type of model to be considered. One controls 
the extent of this search with parameters “Search Width” and “Search Levels,” both of 
which are specified on the web page. Their current default values are 3 and 7, 
respectively, which are modest settings for beginning a search. Occam generates all 
“parents” of a model if search direction is “up” or all “children” if search direction is 
“down”. It then retains the best “Search Width” number of models, where best is 
determined by the parameter “During Search, Sort By,” whose default setting is “dBIC.” 
(At the starting level, there is only one model, but at subsequent levels there will always 
be “Search Width” models.) 

b. Loopless models 
Loopless models are a subset of the full Lattice of Structures. For example, AB:BC is 
loopless, but AB:BC:AC has a loop, and would not be included in a loopless search. 
Doing a loopless search will be faster than an “all” search for two reasons: (1) the 
iterative procedure (Iterative Proportional Fitting, or IPF) used to generate model 
probabilities converges in a single cycle for loopless models, but requires several and 
possibly many cycles for models with loops, and (2) the lattice of loopless models is 
smaller than the full lattice. 
 
An important use of a loopless search is for variable screening (also known as feature 
selection or dimensionality reduction)  in directed systems. In a directed system, all 
models have one component that includes all the IVs, and all other components include 
the DV. (At present, Occam cannot consider multiple DVs.) Call a component that 
includes a DV a “predicting component”; these are shown in bold in this paragraph and 
the next. A single-predicting-component (SPC) model, e.g., AB:AZ, will never have a 
loop, but multiple-predicting-component (MPC) models, e.g., AB:AZ:BZ, will always 
have loops. So a loopless search looks only at SPC models. This is valuable for screening 
IVs, i.e., for eliminating IVs that don’t impact the DV(s) very much. Suppose one had 
100 IVs and 1 DV, and wanted to find out which of the 100 IVs has predictive value for 
the DV. A loopless search will provide this information. 
 
For a loopless search, “Search Levels” determines how many IVs will be in the SPC, and 
“Search Width” determines how many such models are considered at each level. To 
illustrate: suppose one has four IVs, A,B,C,D, and one DV, Z, and one starts the search at 
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the bottom. If “Search Width” is 2 and “Search Levels” is 3, then at the first search level 
Occam generates all parents of ABCD:Z, i.e., all one-IV SPC models: ABCD:AZ, 
ABCD:BZ, ABCD:CZ, ABCD:DZ. On the basis of the Sort parameter specified in the 
browser input page, Occam then picks the best 2 of these, say ABCD:BZ and ABCD:DZ. 
Then, at the second search level, all parents of these 2 models are considered. These will 
include predicting components of ABZ, CBZ, DBZ, and ADZ, BDZ, CDZ. The best 2 
of these 5 models will be retained. Say these are ABCD:ABZ and ABCD:BDZ. Occam 
then examines, at the third search level, all parents of these models, and again keeps the 
best 2. 
 
If one wants to do an exhaustive search of all SPC models with a certain number of IVs 
in the predicting component, one needs to set the width parameter high enough. For 
problems with many variables, if the number of IV predictors one wants to consider is 
high, this may be impractical. A heuristic selection of good SPC models may then have 
to be done, using reasonable values of “Search Width” and “Search Levels.” 
 
In neutral systems, one might want to consider doing a run with width very high to get a 
list of associations, ordered by their strength, as assessed by dBIC, dAIC, or Information, 
or by their significance, as assessed by Alpha (p-value). 

c. Disjoint models 
“Disjoint” means non-overlapping; that is, any two components of a model do not 
overlap in their variables. For neutral systems, the idea of a disjoint model is 
straightforward. A disjoint model search would reveal what are the best “cuts” of a 
system into non-overlapping subsystems, e.g., for a 4-variable system, AB:CD or 
AC:B:D. Such a search could also be used as a rough search, after which one might do a 
downward search relaxing the constraint of disjointness. 
 
For directed systems, the notion of a disjoint model is not as straightforward. Only the 
independence model and the saturated model are disjoint in a strict sense. For example, in 
a four-variable directed system with A,B,C as IVs and Z as the DV, every model must 
have an ABC component, so only ABC:Z and ABCZ are disjoint. What one is really 
interested in here is the disjointness of the IVs in the predicting components. A disjoint 
model, for a directed system, will thus be defined to mean that there is no overlap in the 
IVs of any two predicting components. That is, the influence of subsets of the IVs on the 
DV is separable, and has no interaction effects. For example, directed system 
ABC:AZ:BZ is disjoint, but directed system ABC:ABZ:BCZ is not. Note that if 
ABC:AZ:BZ were a neutral system, it would not be considered disjoint. 
 
In summary, for neutral systems, disjoint models partition all the variables into non-
overlapping subsets. For directed systems (with one DV), disjoint models partition all the 
IVs which affect the DV into non-overlapping subsets. 

d. Chain models 
AB:BC:CD:DE illustrates the idea of a chain model. All components have two variables, 
and every component, except for the ends, overlaps the component to the left with one 
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variable and the component to the right with the other. Chain model searches are not 
searches in the sense of starting with a model and going either up or down the lattice. 
Occam simply generates and evaluates all chain models. Chain models have been used 
for studies on the use of RA to prestructure genetic algorithm genomes. One could 
compare all lineal causal chains, of form A ® B ® C ® D, by using chain models. 

Search Direction 
The default direction is up for both  directed and neutral systems. For some purposes one 
might wish to do downward searches. The Search Direction should not be confused with 
the Reference Model. Model assessments depend on the Reference Model, not on the 
Search Direction. 

During Search, Sort By 
The browser page offers a choice of sorting by Information, Alpha, % Correct, dBIC or 
dAIC. This criterion determines the best “Search Width” models at every level to be 
retained for going to the next level. 
 
Information is constraint captured in a model, normalized to a range of 0 to 1. It is linear -
with uncertainty (Shannon entropy), likelihood-ratio Chi-square, and %-reduction of 
uncertainty (for directed systems with one DV), so sorting on information is equivalent to 
sorting on one of these parameters. 
 
Alpha is obtained from Chi-square tables using the likelihood-ratio Chi-square and dDF 
(delta-degrees of freedom) as inputs. It is the probability of a Type I error, namely the 
probability of being in error if one rejects the null hypothesis that a model is really the 
same as the reference model. Note that if the reference model is “Bottom,” a model is 
good, in the sense of being statistically different from the independence model, if Alpha 
is low, so the “standard” cut-off of 0.05 could be used. If the reference model is Top, a 
model is good, in the sense of being statistically the same as the data, if Alpha is high, so 
the standard 0.05 makes no sense. However, we don’t want Alpha to be too high, or the 
model will be too complex. In one log-linear book, an Alpha of .1 to .35 is recommended, 
but the choice of Alpha really depends on the user’s purposes. The fact that the standard 
of 0.05 makes sense for Bottom as reference but doesn’t make sense for Top as reference 
is one of the reasons that the default reference model in Occam is Bottom for both 
directed and neutral systems. 
 
The currently recommended choice is to sort by dBIC, since the currently recommended 
criterion for the ‘best model’ among the three best models offered by the summary output 
of Occam for directed systems is dBIC; see the section, “Search Output: Output for a 
directed system” below. BIC is conservative; it penalizes models for their complexity 
more than the other criteria considered by Occam, and it thus favors models which 
includes only the strongest, and thus the most reliable, associations.  

When Searching, Prefer 
At every level Occam chooses the best “Search Width” out of a set of candidate models 
by using the sorting criterion. When this criterion is Information, one obviously prefers 
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Larger Values, but when the sort criterion is Alpha, one might prefer either “Larger 
Values” (if the reference model is Top and one cares a great deal about fidelity to the 
data) or “Smaller Values” (if the reference model is Bottom and one cares a great deal 
about the statistical justifiability of complex models). 

Alpha Threshold 
This applies only to searches sorted by information, which uses incremental alpha to limit 
the search. Alpha Threshold is the maximum value of Incremental Alpha allowed when 
considering a search step from a ‘progenitor’ model to a new model. Incremental alpha is 
the chi-square p-value assessing the statistical significance of the difference between 
these two models. With the default (standard) value of this parameter, the search is 
limited to models with a chi-square p-value of less than 0.05. For searches with the 
independence (or some other simple) model as the reference, typically done upwards to 
models with greater complexity, low values of the threshold result in a more restrictive 
search and high values result in a more permissive search. For searches with the data (or 
other complex) model as the reference and typically done downwards to models with 
greater simplicity, the opposite holds: low values of the threshold are restrictive and high 
values are permissive. Upwards searches are recommended unless there is a specific 
reason to do a downwards search. 

Search Width 
This is the number of the best models to retain at every level. If the value is specified it 
overrides any value specified in the data file. If the value is omitted, the value in the data 
file is used, and if it also does not specify a value, the default value of 3 is used. 

Search Levels 
This is the number of levels to be searched, including the starting model. If the value is 
specified it overrides any value specified in the data file. If the value is omitted, the value 
in the data file is used, and if it also does not specify a value, the default of 7 is used. 

Report settings 

In Report, Sort By: 
Output can be sorted by (a) Information, (b) Alpha, (c) dDF, (d) Level, (e) % Correct, (f) 
dBIC, and (g) dAIC. (NB: the measure used to sort the Occam output report need not be 
the same as the measure used to sort during the search process.) dDF is the change of 
degrees of freedom relative to the reference model. Sorting by levels allows the user to 
have output which truly follows the order of the Lattice of Structures; this is not actually 
accomplished by sorting on dDF, because different variable cardinalities can result in a 
model at a lower level still having a higher dDF than a model at a higher level. 

In Report, Sort: 
Occam output can be printed in either (a) Descending or (b) Ascending order of the 
magnitudes of the sorting measure. For example, if the report is sorted on Information in 
a descending order, then the most complex, high information, models will appear in the 
output at the top of the page. 
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Include in Report: 
Many of the search criteria and other output measures can be turned on or off as desired. 
A standard set is turned on by default. Some of these options are described below. 

Include in Report: Incremental Alpha 
When selecting this option, the Search report includes the statistical significance of each 
step through the lattice. This provides another method for selecting the best model in a 
Search. Two columns are added to the report: "Inc.Alpha" and "Prog." The first of these 
columns lists the (incremental) chi-square alpha between the model and the ‘progenitor’ 
model from which it was derived. When searching up from the bottom, the progenitor 
will be a model lower on the lattice; when searching down from Top, it will be a model 
higher on the lattice. The “Prog.” column lists the row ID of the progenitor. When there 
are multiple progenitors—multiple ways to reach the model in the search—the listed 
progenitor is one with the best incremental alpha. When searching from the bottom, 
smaller alpha values are preferred; from the top, larger. 
A typical way to use this feature is in a Search up from the bottom. When selecting a best 
model, such as by highest information value, you might select one where every step also 
has an alpha less than the Alpha Threshold (default 0.05). To assist in this, each model 
that is “reachable” (that is, where every step has alpha less than the threshold) is marked 
by an asterisk in the ID column. 

Include in Report: Percent Correct 
If checked, Occam will add Percent Correct to the measures outputted. This is a measure 
of model goodness very different from information or amount of uncertainty reduced. It 
is relevant where one wishes to predict from the values of the independent variables what 
the value will be for the dependent variable. Percent Correct is defined as 
(1/N) ∑k N( k, jmax(k) ), where N is the sample size, k is an index which runs over IV 
states, j is an index which runs over DV states, N(k,j) is the number of cases having IVk 
and DVj, jmax is the j which gives the highest calculated probability, q(DVj | IVk), for the 
model under consideration. If test data are included in the input file, Percent Correct will 
also be displayed for them. 

Include in Report: % Coverage of Data 
This option measures what portion of the IV state space of a model is present in the data. 
For example, if all possible combinations of a model’s IV states are present in the data 
table, the model has 100% cover. This can be useful for determining which models are 
based on a small sample of their state space. This statistic is relevant only for Directed 
models, and appears in the results in a column labeled “%cover.” Because of the way it is 
computed, %Correct will always be included along with it in results. 

Include in Report: % Missing in Test 
This option measures what portion of the Test data was not present in the Training data, 
for each model. That is, relative to the IVs present in a model, it measures what percent 
of the Test data cases have IV state combinations that were not seen in training. This 
measure will typically have a lower value at the bottom of the lattice, increasing as you 
move up the lattice of models. This is especially pronounced when your data represent a 
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small portion of the state space. It is only available for Directed models, and only when 
Test data are present. It shows up in the Search report in a column labeled “%miss.” 

Return Data in Spreadsheet Format 
If this is selected, Occam returns its output as a .csv (comma separated columns) file, 
where the first name of the file is the first name of the input file. The .csv format is one of 
the standard input formats for spreadsheet applications (like Excel), so one can open it 
directly in such a program and see the Occam output as a spreadsheet for further 
processing. (If the web browser asks the user to either open or save the .csv file, it is 
suggested that the user save the file and open it manually, or risk losing the output.) 

Print Option Settings 
When selected (which is the default), Occam echoes the parameter settings that have been 
specified in both the browser input page and the data file before it displays the actual 
output of the Occam run. This allows the user to document what data file and parameter 
settings produced the Occam output. An associated option, “but don't print variable 
definitions,” allows the user to suppress the output of variable information as specified in 
the data file. This can be used to reduce clutter when working with many variables. 

Use Inverse Notation for Models 
When this option is enabled, model names in the report will be printed with an alternate 
notation, showing only the variables that are not included in each model. Omitted 
variables are shown in square brackets. For example, for IVs A, B, C, D, E, the directed 
model "IV:ABCEZ" is displayed as "IV:[D]Z". The neutral model "ABC:BCD:ABD" is 
displayed as "[D]:[A]:[C]". This notation can be more concise and understandable, 
particularly near the top of the lattice. This notation is also useful in particular 
applications, such as when a researcher needs to compare a pair of models like "IV:AZ" 
and "IV:[A]Z". Occam output for the model IV:AZ, with the reference being IV:Z, gives 
the reduction of uncertainty of Z, given A; this is equivalent to T(A:Z), the transmission 
(the strength of association, the mutual information) of A and Z. Suppose one wants to 
evaluate the association between A and Z, controlling for B, C, D, and E. This is given by 
TBCDE(A:Z) = T(ABCDE:BCDEZ) = T(IV:[A]Z); this quantity is reported by Occam as 
the reduction of uncertainty for model IV:[A]Z. The difference between this uncertainty 
reduction and the uncertainty reduction of IV:AZ is precisely the uncertainty reduction of 
Z, given A, controlling for BCDE. 
 
Inverse notation can also be used to specify the Starting Model in a Search, whether or 
not the “Use inverse notation” option is selected for the report. 

Run in Background, Email Results To: 
For jobs that are likely to take too long to wait for immediate browser output, type in 
your email address, and Occam will email the results to you in spreadsheet format. 
 
You can check the status of your job by choosing Show Log on the main Occam page 
and typing in your email address. The log contains two lines for every job submitted for 
background running. When the job is submitted, the log adds the line “Job started: 
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data/filename.” When the results are emailed to the user, a second line is added: “Results 
for data/filename sent to username@emailaddress.” 

Subject line for email (optional): 
When using the “Run in Background” option, you may optionally specify a subject line 
for the resulting email. This can be used to easily differentiate between multiple runs with 
the same data set, for instance, by placing the search options used into the subject line. 

Send 
This sends the browser page to the Occam server. Occam will return its output in a new 
window. This makes it easy for the user to change parameter settings on the browser 
input page, and resubmit. 
 
When jobs are submitted to run in the background, the browser will first say: “Batch job 
started.” When the data file has been read in, and the background job has been started, 
the browser will add: “data file: filename, received from username@emailaddress”. Do 
not close this browser window until after you see this second line appear. 

IV. Search Output 
If “Print options settings” has been selected, the Occam output will begin by echoing the 
parameter settings from the web input page and from the data file. Occam also outputs 
the values of “Search Levels” and “Search Width,” even if these have not been explicitly 
specified in the data file; this tells the user what the default values currently are. 
 
Occam will always print out, as it goes from level to level, how many models are 
generated at each level and how many of these are kept. This lets the user track the 
progress of Occam. It also shows whether an exhaustive search is being done (all models 
generated are kept) or only a partial (heuristic) search is being done (only some generated 
models are kept, i.e., the lattice is being pruned). It also informs the user about memory 
used in the computation. 

Output for a directed system 
Below is a sample output of a directed system with Z as the DV and the other variables as 
IVs. (This is data from the Kramer et al 2012 study on Alzheimer Disease; a paper, given 
at Kobe, Japan, on this study can be downloaded from the DMM web page.) The output 
has been sorted on Information. Values in tables output by Occam are rounded to four 
digits after the decimal. However, to make the example shown here fit on the page, the 
values were rounded to two digits after the decimal. The lower case “d” in dDF, dLR, 
%dH(DV), dAIC, and dBIC means “delta” (i.e., it is a difference from the reference 
model). 
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• The ID column gives a unique ID number for each row. This number can 

be used to refer to a particular row in the output, when Model names are 
too cumbersome. 

• In the Model column, “IV” stands for a component with all the IVs in it 
• Level is the level of the search, relative to the starting model. 
• H is information-theoretic uncertainty (Shannon entropy). 
• dDF is delta-Degrees of Freedom, the difference in DF between the model 

and the reference model. The value is calculated as DF(upper model) – 
DF(lower model), relative to the lattice, so it is always a positive value. 
That is, DF is always highest for Top, and lowest for Bottom. The model 
for which dDF=0 is the reference model. 

• dLR is the delta-Likelihood-Ratio chi-square (sometimes written as L2), 
which is the error between a model and the reference model. As is 
customary in statistics, it is calculated as LR(lower model) – LR(upper 
model), and so will always be positive. (LR is highest for Bottom, and 
lowest for Top.) LR is calculated as 2*ln(2)*N*T, where N is sample size 
and T is transmission. 

• Alpha is the probability of making a Type I error; that is, the probability 
of being in error if one rejects the null hypothesis that the model is the 
same as the reference model.  

• Inf is Information, the amount of constraint in the data that is captured in a 
model, normalized to the range [0,1]. Inf = [T(Bottom) – T(model)] / 
T(Bottom) = [H(Bottom) – H(model) / H(Bottom), where T is 
transmission (Kullback-Leibler distance). Inf is always 1.0 for Top, and 
0.0 for Bottom. 

• %dH(DV) is the percent reduction in uncertainty of the DV, given the IVs 
in the predicting components. While Information is a standardized 
measure, scaled from 0 to 1, so it tells the user how much of the constraint 
in the data is captured in the model. %dH(DV) is the actual reduction of 
uncertainty achieved by any model.  A model could capture all (100%) of 

ID MODEL Level H dDF dLR Alpha Inf %dH(DV) dAIC dBIC Inc. Alpha Prog. %C(Data) %cover %C(Test) %miss
13* IV:ApAZ:CZ 4 9.21 7 80.54 0.00 0.17 17.35 66.54 39.84 0.01 10 71.04 100.00 59.55 0.00
12 IV:ApZ:SxZ:CZ:KZ4 9.22 7 79.36 0.00 0.17 17.09 65.36 38.67 0.00 8 70.45 83.33 58.43 2.25
11* IV:ApZ:CZ:KZ 3 9.22 6 78.47 0.00 0.17 16.90 66.47 43.58 0.00 6 69.25 87.50 53.93 0.00
10* IV:ApZ:AZ:CZ 3 9.23 5 71.22 0.00 0.15 15.34 61.22 42.15 0.00 5 68.06 100.00 57.30 0.00
9 IV:ApSxZ:CZ 4 9.24 5 70.10 0.00 0.15 15.10 60.10 41.03 0.04 8 68.36 100.00 59.55 0.00
8 IV:ApZ:SxZ:CZ3 9.25 4 65.91 0.00 0.14 14.20 57.91 42.65 0.30 7 68.66 100.00 62.92 0.00
7* IV:ApZ:CZ 2 9.25 3 64.83 0.00 0.14 13.96 58.83 47.39 0.00 3 68.96 100.00 64.04 0.00
6* IV:ApZ:KZ 2 9.26 4 61.15 0.00 0.13 13.17 53.15 37.90 0.00 2 68.06 100.00 62.92 0.00
5* IV:ApZ:AZ 2 9.27 3 52.64 0.00 0.11 11.34 46.64 35.19 0.03 4 68.06 100.00 62.92 0.00
4* IV:ApZ 1 9.29 1 45.93 0.00 0.10 9.89 43.93 40.11 0.00 1 68.06 100.00 62.92 0.00
3* IV:CZ 1 9.34 2 21.12 0.00 0.05 4.55 17.12 9.49 0.00 1 61.19 100.00 46.07 0.00
2* IV:KZ 1 9.35 3 15.85 0.00 0.03 3.41 9.85 -1.59 0.00 1 58.81 100.00 48.31 0.00
1* IV:Z 0 9.39 0 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0 51.04 100.00 56.18 0.00
ID MODEL Level H dDF dLR Alpha Inf %dH(DV) dAIC dBIC Inc. Alpha Prog. %C(Data) %cover %C(Test) %miss

Best Model(s) by dBIC:
7* IV:ApZ:CZ 2 9.25 3 64.83 0.00 0.14 13.96 58.83 47.39 0.00 3 68.96 100.00 64.04 0.00
Best Model(s) by dAIC:
13* IV:ApAZ:CZ 4 9.21 7 80.54 0.00 0.17 17.35 66.54 39.84 0.01 10 71.04 100.00 59.55 0.00
Best Model(s) by Information with all Inc. Alpha < 0.05:
13* IV:ApAZ:CZ 4 9.21 7 80.54 0.00 0.17 17.35 66.54 39.84 0.01 10 71.04 100.00 59.55 0.00
Best Model(s) by %C(Test):
Warning: models should not be selected based on %correct(test).
7* IV:ApZ:CZ 2 9.25 3 64.83 0.00 0.14 13.96 58.83 47.39 0.00 3 68.96 100.00 64.04 0.00
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the constraint in the data, but this constraint might only minimally reduce 
the uncertainty of the DV. That is, Information is a relative number; %dH 
is an absolute number. But these two measures (and H and dLR) are 
linearly related: %dH(DV) = Information * %dH(DV) for the top 
(saturated) model. For more information on these measures, see the 
“Wholes and Parts” and “Overview of Reconstructability Analysis” papers 
mentioned above. 

• dAIC and dBIC are differences in the Akaike Information Criterion and 
the Bayesian Information Criterion. dAIC is calculated as AIC(reference 
model) – AIC(model), and similarly for dBIC. AIC and BIC are measures 
of model goodness that integrate error and complexity and that do not 
require–as does Alpha–that the models being compared are hierarchically 
related. A “best” model is the one having a minimum AIC (or BIC) value, 
and hence a maximum dAIC (or dBIC) value. This means that, when using 
dAIC or dBIC to select a model, the highest positive value is preferred. 
This is true regardless of whether Top or Bottom is chosen as the 
reference. 

• Inc. Alpha is the Incremental Alpha between the model and its progenitor, 
given in the next column Prog. This is the chi-square p-value between the 
model distribution and the progenitor model distribution. When this value 
is low, the two models have similar distributions.  

• If you selected “Add to Report: Percent Correct,” the report will also 
contain a column labeled %C(Data), showing the performance of each 
model on the given data, and a column labeled %cover giving the 
coverage of data, the portion of the state space of the IVs in the predicting 
relations of the model (not all the IVs, which are collected together in the 
“IV” relation) that is present in the data. If your input file included test 
data, a second column labeled %C(Test) is included, showing the 
performance of each model on that data, and a column labeled %miss 
giving the portion of the predicting IV states that occur in the test data that 
were not seen during training. (The model thus has no basis to make 
predictions for these IV states).  

 
Note that Level depends on the choice of starting model, while dDF, dLR, Alpha, dAIC, 
and dBIC depend on the choice of reference model. Values for H, Information, and 
%dH(DV) are “absolute” and do not depend on starting or reference model.  
 
At the end of the Search output, after the list of models found during the search (the 
number of these models is width*levels), the best of these models are summarized. These 
include the models with the best (highest) values of dBIC and dAIC. (Lower absolute 
values of BIC and AIC are normally preferred, but Occam reports these measures as 
differences between a reference and a model, and for such differences, higher values are 
better.) There may be more than one such model if there is a tie between models for best 
score. Similarly, the best model by Information is reported, considering – for Bottom as 
reference and searching upwards – only models that can be reached from the starting 
model with Incremental Alpha less than the Alpha Threshold (default 0.05) at each step 
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of increasing complexity.  Also, note that the models with Incremental Alpha less than 
Alpha Threshold at each step are marked with a * next to their name in the search report. 
 
The user should normally select a model from among these summary best models. Choice 
of the dBIC-best model is nearly always a conservative choice: in upwards searches with 
independence as the reference, the dBIC-best model will usually be less complex than the 
dAIC-best or Information-best (Incremental Alpha-best) models. This dBIC model will 
often ‘underfit,’ i.e., it will be less complex and thus less predictive than what is 
statistically warranted. The best dAIC and Incremental Alpha (at the 0.05 default) 
models, however, will usually ‘overfit,’ i.e., they will be more complex than what is 
statistically warranted, although in some cases (e.g., when sample sizes are large), these 
models may not over-fit and thus may be preferred. Thus, dBIC and the other two criteria 
usually bracket the ‘sweet spot,’ i.e., the model complexity that is optimal for 
generalization to new data.  Since underfitting is normally considered (by statisticians) as 
not as bad as overfitting, choosing a model based on dBIC is recommended. 
 
Finally, if test data was included in the input file, Occam will also report the best model 
by accuracy (%C) on the test dataset. This is potentially useful for evaluating how well a 
model chosen by another score (dBIC, dAIC, or Information) does on the test set, and 
this can be valuable for research on RA methodology. However, %C(test) may not be 
used as a method of selecting a model in data analysis projects. The purpose of test data 
is to validate a model selected by other criteria, and thus test data must not be involved in 
any way, even indirectly, in model selection. (However, if the test data given to Occam is 
really pseudo-test data – also known as cross-validation data – and the user has held out 
real test data to be used later to assess the selected model, then using this pseudo-test data 
to select a model is OK.) 

Output for a neutral system 

 
Using the same data file (from the “Wholes and Parts” paper) as shown above in the Data 
files section of III. Search Input, if C is regarded as an IV along with A and B, then the 
system is neutral. Below are the measures for the lattice of neutral systems. Note that the 
column for uncertainty reduction is omitted because there are no DVs. Values in the table 
are rounded to four digits after the decimal. 

ID MODEL Level H dDF dLR Alpha Inf dAIC dBIC 
1 ABC 0 2.7612 0 0.0000 1.0000 1.0000 0.0000 0.0000 
2 AB:AC:BC 1 2.7616 1 0.7646 0.3818 0.9875 1.2354 6.5338 
3 AB:BC 2 2.7618 2 1.3143 0.5183 0.9785 2.6857 13.2826 
4 AB:AC 2 2.7663 2 10.5837 0.0050 0.8266 -6.5837 4.0132 
5 AB:C 3 2.7664 3 10.6122 0.0140 0.8261 -4.6122 11.2832 
6 AC:BC 2 2.7864 2 51.7065 0.0000 0.1528 -47.7065 -37.1097 
7 A:BC 3 2.7864 3 51.7350 0.0000 0.1523 -45.7350 -29.8397 
8 AC:B 3 2.7910 3 61.0044 0.0000 0.0005 -55.0044 -39.1091 
9 A:B:C 4 2.7910 4 61.0329 0.0000 0.0000 -53.0329 -31.8391 
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V. State-Based Search 
The differences between state-based RA and variable-based RA are too lengthy to 
describe here. For a better description, see the paper, “State-Based Reconstructability 
Analysis” at http://www.sysc.pdx.edu/download/papers/mjpitf.pdf.  
  
In the operation of Occam, the main difference for the user is that state-based RA will 
consider many more models than variable-based RA, for a typical input file. This is 
caused by the finer granularity of the Lattice of Structures. For instance, in an all-models 
search, each step will have a dDF of 1, regardless of variable cardinality. With lower 
dDFs at each level, it is easier for a search to move through the lattice while maintaining 
high measures of fitness. The cost of this is that many more models must be considered. 
Occam’s practical limitations on number of variables and state space size are lower for 
state-based RA. We are working on a better understanding of these limitations. If you 
encounter problems while using these new features, try reducing the dimensions of your 
data (for instance, by turning off variables) or the scope of your search (by reducing 
levels or width). An even better approach would be: have only a few IVs (like 2 or 3) 
turned on initially, and see how long it takes for Occam to run; then gradually increase 
the number of IVs. For variables with cardinalities of about 3, it is exceedingly unlikely 
that Occam can handle more than 10 IVs, and 5 IVs might be a more reasonable practical 
maximum. The main point is that going from variable-based searches to state-based 
searches, you must turn off many (perhaps most) of your IVs. 
 
One strategy in shifting from variable-based to state-based searches is to leave on only 
the predictive IVs in the dBIC-best variable-based model, supplementing these variables 
with one or two additional predictive IVs from the dAIC- or Information-best models. 
But keep the number of IVs small, at least initially. 
 
An obvious difference in SB-Search is the model notation. Because relations can be 
composed of variables or individual states, model names look different. A variable 
included in a relation is shown by its abbreviation, (e.g., A), while an individual state is 
shown by the abbreviation combined with the state value (e.g., A1). Because of this, the 
restriction that abbreviations contain only letters and state values contain only numbers is 
strictly enforced for state-based models. Additionally, for directed systems, the relation 
containing only the DV will be included to enforce the constraint of the DV’s marginal 
probabilities. Examples appear below for the models found in an all-model bottom-up 
directed SB-Search (on the left) and a neutral SB-Search (on the right). 
 

 
 
 
 
 
 
 
 
 

MODELS (directed) MODELS (neutral) 
IV:A1B2C1Z1:B1Z1:Z A:A2B1C2D2:B:B1D1:C:D 
IV:A1C1Z3:B1Z2:Z A:A2B1C1D1:A1B1D1:B:C:D 

IV:A1B2C1Z3:B1Z2:Z A:A2C2D1:B:B1D1:C:D 
IV:A1B2C1Z1:Z A:B:B1D1:C:D 
IV:B1Z2:Z A:A1B1D2:B:C:D 
IV:B2C1Z2:Z A:A1B1D1:B:C:D 
IV:Z A:B:C:D 
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The web input page and the output file for a State-Based Search will appear much like 
that for a normal (variable-based) Search, as described above. Some of the search options 
have not been implemented for SB-Search, and these are either missing from the web 
page, or have been disabled. (Disabled options are likely to be implemented, while 
missing options are those that may not make sense for state-based RA.) For instance, 
“disjoint” and “downward” searches are not yet available, but will be in the future. “Use 
Inverse Notation” has been removed, because this option does not make sense with state-
based model notation. Currently, only three main types of state-based search are 
available: directed bottom-up loopless; directed bottom-up all-model; and neutral bottom-
up all-model. 

VI. Fit Input 
The Fit option is designed to give the user a detailed look at a particular model. That is, 
Search examines many models and then outputs different measures to characterize these 
models. Fit outputs many measures for a particular model, but more critically, it also 
outputs the actual model itself, not just its name. That is, it outputs the calculated 
frequency/probability distribution for the model. 
 
Fit takes the same input file described above for Search. The web input page is, however, 
much simpler. Only the data file name/location, and the model to be fit must be specified. 
In addition, the output can be specified to be in spreadsheet format, and Occam can be 
directed to email its output to the user. 

Model to Fit: 
A model name must be specified here. The format for the name is the same as given in 
Search results, and can be copied-and-pasted from there. When working with a directed 
system, the “IV” abbreviation can be used as the first component, to represent the relation 
containing all the IVs, the same as in Search. For example, “IV:ABZ:CZ” is an 
acceptable shorthand for “ABCDE:ABZ:CZ” where the first component includes all the 
IVs in the data that are turned on. Also, like in Search, Inverse notation can be used when 
specifying a model, such as “IV:[D]Z” or “[D]:[A]:[C]”. 

Optional default model: 
When fitting a directed system, a model may be able to generate DV prediction rules for 
all IV states. This can happen when there is a tie between predicted DV states, or when 
evaluating test data that was not present in the training data. In these cases, Fit will use 
the independence model as a default, to break the tie or to fill in the missing data. (When 
there is a tie in the independence model as well, the DV is selected by lexicographical 
order.) When a DV prediction is based on the independence model, it will be marked in 
the output with an asterisk in the “rule” column. 
 
You may be able to provide an alternate default model that is more sensible than the 
independence model. To do so, enter a model in this field that is a descendent of the 
model to fit. That is, the alternate default model should be on the lattice somewhere 
between the model to fit and Bottom, where this alternative default model has at least one 
fewer predicting IV. (Omission of this IV may break the tie, or the predicting IV states 
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may now include all the test IV states). Occam will use this model first when breaking 
ties or filling in missing data. If it too fails to specify a prediction, Occam will fall back to 
the independence model. 

For directed systems: Default (‘negative’) DV state for confusion matrices: 
For directed systems, Occam can output in Fit confusion matrices based on the model 
rule, and for the rules obtained for each component relation in the model. These matrices 
evaluate Occam’s predictions on the training data as well as the test data (if it is present). 
These confusion matrices indicate the correctness of prediction results when the Fit rule 
is used for a binary (“one state-vs-other states”) classification. To use this feature, specify 
a single ‘negative’ DV state, as an integer equal to or greater than 0. This selection 
represents a DV state, after rebinning (or recoding; see Appendix 1). 
 
The selected DV state is treated as the null hypothesis for classification: a “negative” 
result. After obtaining the fit rule, the confusion matrix is populated by counting ‘true 
negative’, ‘false positive’, ‘false negative’, and ‘true positive’ cases. ‘True negative’ 
cases are those where Occam correctly predicted that the DV would be in the selected 
DV state and ‘true positive’ cases are those where Occam correctly predicted that the DV 
would be in any other state; ‘false positive’ cases are those where the DV was actually in 
the selected state but Occam predicted any other state; and ‘false negative’ cases are 
those where the DV was in a state other than the selected state, but Occam predicted the 
selected DV state.  
 
For example, if the DV represents the results of a medical test with state ‘0’ representing 
“no symptoms detected”, state ‘1’ representing “self-reported respiratory symptoms” and 
state ‘2’ representing “anomalous blood test results,” Occam generates a confusion 
matrix representing its prediction as to whether any symptoms are present by selecting 
state ‘0’ as the default (‘negative’) DV state. The resulting confusion matrix has 4 main 
entries: ‘true negative’ counting cases when Occam predicted the DV state ‘0’ and the 
DV state was actually ‘0’; ‘false positive’ counting cases when Occam predicted the DV 
state ‘1’ or ‘2’ and the DV state was actually ‘0’; ‘true positive’ counting cases when 
Occam predicted the DV state ‘1’ or ‘2’ and the DV state was either ‘1’ or ‘2’ (but not 
necessarily the same as the state Occam predicted); and ‘false negative’ counting cases 
when Occam predicted the DV state ‘0’ when the DV state was actually ‘1’ or ‘2’.   
 
With rebinning, multiple DV states can be aggregated into a single state before selecting 
that state as the default (‘negative’) DV state for confusion matrices. For example, if the 
DV represents the results of a medical test with ‘0’ representing “no symptoms reported”, 
‘1’ representing “diagnostically-irrelevant symptom” and additional DV states 
representing diagnostically-relevant symptoms, the data can be rebinned (see Appendix 
1) to aggregate DV states ‘0’ and ‘1’ into a new state ‘0’ and the remaining DV  states 
into a new state ‘1’. Then, if the default (‘negative’) state ‘0’ is selected, Occam will 
output confusion matrices where ‘negative’ represents either “no symptoms” or 
“diagnostically-irrelevant symptom” and ‘positive’ represents any diagnostically-relevant 
symptom. 
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For neutral systems: omit full model and variable tables from output 
For neutral systems, by default, Occam prints out a summary of the Fit results as well as 
tables showing all of the cells for the distributions projected from each relation, and for 
the overall model summarizing over IVI states (see the section “Fit Output: Output for a 
neutral system”, below). Occam can also print out a table showing all of the cells for the 
overall model distribution, including one cell for every combination of states seen in the 
data. However, since this table is very large, it is omitted by default. To enable this table 
in the output, uncheck the box “Omit table showing all states for entire model”. 
Additionally, Occam can print a table for each variable among the IVI, showing the 
margins for that variable. Since these tables are often not particularly informative, and 
since there may be many such tables, they are disabled by default. To enable them, 
uncheck the box labelled “also omit tables for IVI variables”. 
 

Hypergraph Display Settings 
In Fit mode, Occam can generate a hypergraph visualizing the structure of the “Model to 
Fit.” To enable this feature, check the “Generate graph images” box (which is enabled by 
default). Occam can also generate “Gephi” output files, which describe the same graph 
structure in a format suitable for the “Gephi” graph visualization program (by checking 
“Generate Gephi files.  
 
The hypergraph is displayed as a graph with nodes for each variable, and for each 
relation. Variables nodes are connected to the node for each associated relation. Although 
this method of displaying hypergraphs has probably been discovered many times, the 
algorithm in Occam is based on a script by Teresa Schmidt. The hypergraph is 
determined solely by the model description and the “:nominal” variable declaration 
block. The output will look similar to the following example, for the model 
“IVI:ApZ:EdK:AKZ”: 
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By default, the generated graph will omit all of the IV/IVI components that are not 
explicitly present in the model (and, in the case of directed systems, associated with the 
DV). To show these variables as (disconnected) nodes in the graph, uncheck the “Hide 
IV/IVI components” box. 
 
By default, Occam will use the abbreviated variable names (as in the model description) 
to label the variable nodes in the graph. To use the full names given in the “:nominal” 
block, check the “Use full variable names in graph labels” box. 
 
Occam allows some customization of the resulting graph image in the Hypergraph 
Layout Style options. There are 4 basic layout options: 
 
1. Fruchterman-Reingold: attempts to place nodes and hyperedges so that they are evenly 

spaced (Fruchterman and Reingold, "Graph drawing by force-directed placement", 1991) 
2. Reingold-Tilford: attempts to make the layout as symmetric as possible; works especially 

well for systems without loops (Reingold and Tilford, "Tidier drawings of trees", 1981) 
3. Sugiyama: attempts to minimize crossings of the links between nodes and hyperedges; works 

especially well for systems without loops (Sugiyama, Tagawa and Toda, "Methods for visual 
understanding of hierarchical systems", 1981) 

4. Kamada-Kawai: attempts to place nodes and hyperedges so that their distance in the drawing 
is proportional to the graph-theoretic distance between them (Kamada and Kawai, "An 
algorithm for drawing general undirected graphs", 1989) 

 
Additionally, the image width and height, font size, and overall size of the variable nodes 
can be controlled with the 4 text boxes in this section, which accept positive integer-
valued sizes. Note that Occam will choose a node size that is, at minimum, big enough to 
hold each of the variable labels (even if a smaller node size is chosen using the input 
box).  
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At present, Occam is only able to generate graph files for the HTML output or when 
“Return data in CSV format” is enabled, and is unable to include the graphs when 
returning results via email. That is, when “Run in Background, Email Results To:” is 
enabled by entering an email address, Occam will disable graph generation (and return 
the usual results via email). This is a known bug that the programmer will eventually fix. 
 
When returning results as HTML output, Occam includes the graph images as SVG 
format images. When returning results in CSV format, Occam includes graph images as 
PDF files (which are suitable for printing or for inclusion in a Word document).  
 

VII. Fit Output 
After echoing the input parameters (which are requested by default), Occam prints out 
some properties of the model and some measures for the model where the reference 
model is first the top and then the bottom of the lattice. 

Output file for a directed system 
Below is the first Fit table outputted for a sample directed system, where the model is 
Top, “ABC”, where A and B are IVs, and C is the DV. The first columns show all of the 
“IV” state combinations that appear in the data. (Note that these IV states include states 
where the value of B is missing; these are shown as “.”) The next three columns, marked 
“Data”, show the frequencies in the data for each of those IV states, along with the 
observed conditional probabilities for the DV states. The following columns, marked 
Model, show the calculated conditional probabilities for the model, along with the 
selected prediction rule. The prediction rule specifies which DV state is expected given 
some particular IV state (row). The columns labelled “#correct” and “%correct” show the 
performance of those rules on the data. 
 

 

IV  | Data   | Model     
|  obs. p(DV|IV) | calc. q(DV|IV)    

A B | freq C=0 C=1 | C=0 C=1 rule #correct  %correct  p(rule) p(margin) 
0 . | 2.000 100.000 0.000 | 28.530 71.470 1 0.000  0.000  0.543 0.504 
0 0 | 5.000 0.000 100.000 | 14.417 85.583 1 5.000  100.000  0.112 0.092 
0 1 | 15.000 13.333 86.667 | 13.039 86.961 1 13.000  86.667  0.004 0.002 
0 2 | 6.000 16.667 83.333 | 29.331 70.669 1 5.000  83.333  0.355 0.308 
1 . | 1.000 0.000 100.000 | 69.935 30.065 0 0.000  0.000  0.690 0.721 
1 0 | 44.000 54.545 45.455 | 49.537 50.463 1 20.000  45.455  0.952 0.734 
1 1 | 61.000 44.262 55.738 | 46.631 53.369 1 34.000  55.738  0.598 0.390 
1 2 | 34.000 70.588 29.412 | 70.748 29.252 0 24.000  70.588  0.015 0.030 
2 . | 8.000 62.500 37.500 | 71.573 28.427 0 5.000  62.500  0.223 0.271 
2 0 | 98.000 50.000 50.000 | 51.515 48.485 0 49.000  50.000  0.765 0.904 
2 1 | 100.000 50.000 50.000 | 48.604 51.396 1 50.000  50.000  0.781 0.483 
2 2 | 50.000 74.000 26.000 | 72.359 27.641 0 37.000  74.000  0.002 0.004 

| 424.000 52.123 47.877 | 52.123 47.877 0 242.000  57.075   
| freq C=0 C=1 | C=0 C=1 rule #correct  %correct  p(rule) p(margin) 
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The column labeled “p(rule)” shows the chi-square p-value testing the statistical 
significance of the difference between the model distribution of conditional DV states 
obtained from the rule and a uniform distribution over DV states (the uniform distribution 
is the null hypothesis here). For example, in the example table shown, the row for IV 
state A=0, B=1 has p(rule)=0.004, which indicates that the difference between the 
distribution of conditional DVs for this IV state and a uniform distribution over DV states 
is statistically significant assuming the standard threshold of p=0.05. In contrast, the row 
for IV state A=0, B=0 has p(rule)=0.112, indicating that the difference between the 
conditional DV distribution and a uniform distribution is not significant (under the 
standard cutoff). Intuitively, although the rule distribution (.144, .856) differs from a 
uniform distribution (.5, .5), the overall chi-square value is low due to the small sample 
size (5). Similarly, in the row for IV state A=1, B=0 has p(rule)=0.952, indicating that the 
difference between the predicted distribution and a uniform distribution is not significant: 
while this row has a larger sample size (44), the conditional DV distribution is very close 
to a uniform distribution. 
 
The column labeled “p(margin)” is similar, but instead of comparing the conditional DV 
distribution to a uniform distribution over DV states, the conditional DV distribution is 
compared to the marginal distribution of DV states (across all IV states). In the example 
shown, the marginal distribution has C=0 with probability 0.52 and C=1 with probability 
0.48 – which is fairly similar to a uniform distribution – so the p(margin) values are 
generally fairly similar to the p(rule) values. For data with a less evenly distributed 
marginal DV state, the p(rule) and p(margin) results will differ more greatly.  Note that if 
the marginal distribution is heavily skewed to one state, for example if this distribution is 
(.95, .05), an IV state with a conditional distribution of (.6, .4) would still yield the same 
prediction rule (predicting the first of these two states), but the risk of the second state as 
increased by 8X. In such situations, it is p(margin) and not p(rule) that is of interest. 
 
At the bottom of the table, Occam prints out a summary row including the marginal 
frequencies of the DV states, also expressed as percentages. Under the “rule” column for 
the Model, the summary row includes the default rule for the data. This default rule is 
based on the most common DV value. (In cases of ties, the tie is broken by alphanumeric 
order. For example: if a DV has two states “0” and “1” that appear with equal frequency, 
the default rule would be “0”.) 
 
If test data was included in the input file, the remaining columns, marked Test Data, show 
the observed frequencies for the IV states and conditional DV states, the percentage of 
the test cases guessed correctly by the rule obtained from the model fitted on the training 
data. Below the table, Occam also outputs a summary of the model’s test performance. 
This summary compares the model to the default rule and also to the “best possible” rule 
set. The best possible rule set is the set of rules that would best predict the test data for all 
IV states. The actual model rules, gotten from the training data, are thus assessed on the 
test data by comparing these rules to rules that would have given optimum performance 
on the test data. Since the test data is in general stochastic, even the best possible 
prediction rules will err in many cases. (For example, for a binary DV, if the conditional 
DV for an IV state is uniformly distributed in the test data, no possible rule for that IV 
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state can achieve better than 50% accuracy in predicting the DV). A percent improvement 
is given, showing how the model performed, scaled between the default and best possible 
outcomes. 
 
This first table produced by Fit is an integrated table for a whole model, and when the 
model is TOP this table is the only conditional distribution that Fit outputs. If the model 
as multiple predicting components, as in IV:AZ:BZ, then in addition to outputting the 
conditional distribution of Z, given A and B, Fit also outputs separate conditional DV 
distribution tables for each predicting component, here AZ and BZ. 
 
After each conditional DV table (for the main model or for a component relation), if a 
default (‘negative’) DV state for confusion matrices was specified, Occam will print the 
confusion matrix and associated statistics (accuracy, sensitivity, specificity, precision, 
and negative predictive value – along with the definitions for each statistic) for the 
training and test data.  An example of this output is shown below. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Along with the main counts in the confusion matrix, Occam provides the marginal totals 
for all of the ‘actual negative’ and ‘actual positive’ cases from the data, and the ‘rule 
negative’ and ‘rule positive’ cases predicted by the model.  The “diagonal” margin in the 
bottom-right corner indicates the number of correct predictions, obtained by summing the 
true negative and true positive counts. The confusion matrix cells and margins are labeled 
with abbreviations for ‘true negative’ (TN), ‘false positive’ (FP), ‘true positive’ (TP), 
‘false negative’ (FP), ‘actual negative’ (AN), ‘actual positive’ (AP), ‘rule negative’ (RN), 
and ‘rule positive’ (RP), as well as the number of correct predictions (“#correct”).  
  

Confusion Matrix for Fit Rule (Training)  
 
Actual |  Rule 

| Z=0  Z≠0 
Z=0 | TN=114.000 FP=105.000 AN=219.000 
Z≠0 | FN=76.000 TP=126.000 AP=202.000 

| RN=190.000 RP=231.000 #correct=240.000 
 
Additional Statistics (Training) 
Statistic   Definition  Value 
Accuracy  correct / sample size 0.570 
Sensitivity (aka Recall) (TP / AP)  0.624 
Specificity  (TN / AN)  0.521 
Precision  (TP / RP)  0.545 
Negative Predictive Value (TN / RN)  0.600 
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Output file for a neutral system 
For neutral systems, by default, Occam prints out a summary table showing a quick 
overview of all of the dyadic (2-variable) relations in the model, as well as a table 
showing observations for each relation in the model, and for the overall model 
(summarizing over IVI states). Additionally, if requested, Occam can print observations 
for every cell in the model distribution, and for the margins for each variable among the 
IVI (but these tables are omitted by default; see “Fit Input: for neutral systems” above.  

Summary of dyadic relations contained in the model 
The summary of dyadic relations shows a brief overview of each 2-variable relation in 
the model. For example, the following table shows the summary for a (2-component) 
model, “IVI:ApZ:KZ”: 
 

Relation | T H(1) H(2) T/Tmax %DH(1|2) %DH(2|1) | Max.Lift State Freq. 
ApZ | 0.0895 0.932 0.999 0.096 9.6 9.0 | 1.495 1 1 105 
KZ | 0.0266 1.67 0.999 0.027 1.6 2.7 | 1.327 2 0 62 

 
Note that in the H and %DH columns, ‘1’ and ‘2’ refer to the 1st and 2nd variables in the 
relation, not to states of these variables. However, in the ‘State’ column, the numbers 
refer to variable states. 
 
There is 1 row for each dyadic relation in the model; the columns are as follows: 

• Relation shows the name of the relation. 
• T shows the transmission, T(AB) = H(A) - H(A|B) = H(A) + H(B) – H(AB). This 

is the amount of uncertainty removed by the interaction of A and B, compared to 
treating them as independent. 

• H(1) is the entropy for the marginal distribution of the first variable in the 
relation; in the first row of the table above, H(1) = H(Ap). Similarly, H(2) is the 
entropy for the second variable; in the first row of the table above, H(2) = H(Z). 

• T/Tmax shows the value of T divided by Tmax. Tmax shows the maximum 
possible transmission Tmax = H(1) + H(2) - max(H(1), H(2)) = min(H(1), H(2)). 
Tmax is the total uncertainty among all variables, minus the maximum 
uncertainty contributed by a single variable; more simply it is the minimum 
uncertainty of any variable. 

• %DH(1|2) shows the percent reduction of entropy in the margin of the 1st 
variable, given the state of the 2nd variable. For the example above, 
%DH(1|2)=%DH(Ap|Z). Note that %DH(1|2) = 100 * T/H(1). Similarly, for the 
table above, %DH(2|1) = %DH(Z|Ap) = 100*T/H(Z).  

• Max.Lift shows the maximum Lift among all of the states in the model (see the 
section on “Observations for the overall model”, below). Lift is defined as 
Obs.Prob./Ind.Prob. for a state, where Obs.Prob. is the observed probability of 
that state in the data, and Ind.Prob. is the probability of that state in the 
independence distribution. Along with this, State shows the state that maximizes 
Lift and Freq. shows the frequency of that state. If two or more states have the 
same Lift value, ties are broken by favoring the state with the higher frequency. 
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Observations for a relation 
The observations for a single relation are shown in a table with 1 row for each state in the 
margins of the data for that relation, and a single summary row. For example, the 
following table is for a relation, ApEd: 
 

Ap Ed | Obs.Prob. Obs.Freq. | Ind.Prob. Ind.Freq. Lift 
0 0 | 0.038095238 16.000000 | 0.041938776 17.614286 0.90835361 
0 1 | 0.21428571 90.000000 | 0.21435374 90.028571 0.99968264 
0 2 | 0.40000000 168.00000 | 0.39608844 166.35714 1.0098755 
1 0 | 0.026190476 11.000000 | 0.022346939 9.3857143 1.1719939 
1 1 | 0.11428571 48.000000 | 0.11421769 47.971429 1.0005956 
1 2 | 0.20714286 87.000000 | 0.21105442 88.642857 0.98146656 
  | 1.0000000 420.00000 | 1.0000000 420.00000 1.0000000 
Ap Ed | Obs.Prob. Obs.Freq. | Ind.Prob. Ind.Freq. Lift 

 
The columns are as follows: 

• The first few columns, 1 for each variable in the relation, give the state associated 
with the row, in terms of the state of each variable. 

• Obs.Prob. gives the observed (p) probability in the data, projected to the margin 
for the relation. For convenience, the next column, Obs.Freq. gives the observed 
frequency for the same state, which is just Obs.Prob.*sample size. 

• Ind.Prob. gives the probability of the same state in the independence distribution, 
projected to the margin of the variables participating in the relation, where all of 
the variables in the relation are considered independent. For the example shown 
above, this is the probability of the corresponding states in the distribution for 
independence, projected to the margin, “Ap:Ed”. Ind.Freq. gives the frequency for 
this state in the independence distribution, computed by multiplying 
Ind.Prob.*sample size. 

• Lift gives the lift value for the state, computed as Obs.Prob/Ind.Prob, or 
equivalently Obs.Freq./Ind.Freq. This shows how much more or less likely a state 
is in the data than in the independence distribution; a Lift value of 1 would 
indicate that the data and the independence distribution treat the state as equally 
probable, whereas a Lift value between 0 and 1 indicates that the state is more 
probable in the independence distribution, and a state higher than 1 indicates that 
the state is more probable in the actual data. 

 
The single summary row omits the first few columns showing the state, since it is 
summarized across all states in the margin for the relation. The entries in the summary 
row have the following interpretation: 

• Obs.Prob. is the sum of all of the individual Obs.Prob. values for each state. 
Obs.Prob. should be equal to 1.0, since the observed probabilities for each state 
should form a probability distribution. Obs.Freq. is the sum of the individual 
frequencies, which should be equal to the sample size. 

• Ind.Prob. is the sum of the individual Ind.Prob. values. If all of the possible 
combinations of variable states were observed in the data, this should be equal to 
1.0, since the Ind.Prob. values should also form a probability distribution. 
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However, if the states observed in the data do not exhaustively cover the state 
space (i.e. some possible states were never observed), the omitted states will not 
be shown in the table and will not contribute to this sum. In this case, the 
summary Ind.Prob. may be less than 1.0. This indicates that the independence 
distribution assigns non-zero probability to some of the states that were not 
observed in the data. Similarly, Ind.Freq. will equal the sample size if all possible 
states were observed, but may be less if some states were not observed. The 
summary Lift is defined as the summary Obs.Prob. / summary Ind.Prob.; Lift will 
equal 1.0 if Ind.Prob.=Obs.Prob.=1.0, but may be greater than 1.0 if Ind.Prob. is 
less than 1.0. The summary Lift describes the extent to which the independence 
distribution assigns non-zero probability to states that were not seen in the data; a 
low value (close to 0) indicates that the independence distribution assigns 
substantial likelihood to states not observed in the data. 

 

Observations for the overall model (summarizing over IVIs) 
The table for the overall model is similar to the table for a component relation. However, 
in the leftmost columns specifying the state described in each row, there will be one 
column for each variable in the overall model (except for those among the IVI).  
 
In this table, there will be 3 extra columns in the output (between “Obs.Freq.” and 
“Ind.Prob.”): 

• Calc.Prob. shows the calculated (q) probability for the state. In general, this value 
differs from the Obs.Prob. for any model with more than 1 component relation. 

• Calc.Freq. shows the calculated (q) frequency for convenience, calculated as 
Calc.Freq.* sample size.  

• Residual shows the difference between the calculated and observed frequencies, 
Calc.Prob. – Obs.Prob. 

 
Additionally, the “Lift” value is computed as Calc.Prob./Ind.Prob. (instead of 
Obs.Prob./Ind.Prob.; note that for single relations, Calc.Prob.=Obs.Prob, so the 
interpretation is the same as above). So “Lift” shows the extent to which a cell is more 
probable in the model (q) distribution than in the independence distribution. 
 
The summary row has the following interpretation: 

• As before, Obs.Prob. should be 1.0 and Obs.Freq. should be the sample size. 
• The row for Calc.Prob. shows the sum of Calc.Prob. for each state. Similar to 

Ind.Prob., the calculated (q) distribution may assign non-zero probabilities to 
states that were not seen in the data (and thus not included in this table). In this 
case, the Calc.Prob. will be less than 1. If all of the possible combinations of 
variable states were observed in the data, then the summary Calc.Prob. should be 
equal to 1.0. Similarly, Calc.Freq. shows the sum of Calc.Freq. for each cell, 
which will be equal to the sample size if every possible state was observed. The 
summary Residual is just the summary Calc.Prob – summary Obs.Prob., which 
will be 0.0 if every possible state was observed, or a negative value otherwise. 
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• Similarly, the summary Ind.Prob. is the sum of Ind.Prob. for each cell; likewise 
for Ind.Freq. The summary Lift is just the summary Calc.Prob / summary 
Ind.Prob.; again, summary Lift will be equal to 1.0 just in the case that summary 
Obs.Prob. and summary Ind.Prob. are both 1.0. The summary Lift describes the 
extent to which the calculated (q) distribution assigns probability to states not 
seen in the data, compared to the extent to which the independence distribution 
does so. A low value (close to 0) indicates that the calculated distribution assigns 
substantial probability to states not observed in the data (compared to the 
independence distribution), whereas a high value (greater than 1) indicates that 
the independence distribution assigns substantial probability to states not 
observed in the data, compared to the calculated distribution.  

 
If the model has only one component relation, the overall model (summarizing over IVI 
states) will have observed, calculated, and independence values that are the same as those 
contained in the table for that single component relation; in this case Occam will omit the 
table containing these observations (since they are already contained in the table for the 
individual component relation). 
 

Observations for the overall model 
Occam can also print out a much larger table, showing observations for every cell, 
described by a precise combination of variable states including the states of variables 
among the IVI, although this is omitted by default. Like the observations for the overall 
model (summarizing over IVIs), this table includes a row for each observed state, and 
columns for Obs.Prob., Obs.Freq., Calc.Prob., Calc.Freq., Residual, Ind.Prob., Ind.Freq., 
and Lift; these columns have the same interpretation as in the observations for the overall 
model summarizing over IVIs. 
 
Note that the observed and calculated values will be different only for a model that has 
multiple components. The observed and calculated values (of both probabilities and 
frequencies) will be the same for a model with just one component (e.g., BC). 

Observations for each variable among the IVIs 
Similar to the tables for each relation, Occam can also print out a table for each variable 
among the IVIs, although these are omitted by default. These tables contain a row for 
each observed state of the variable. Besides the column denoting these states, the tables 
also include Obs.Prob. and Obs.Freq.; note that for a single variable margin, 
Obs.Prob.=Calc.Prob.=Ind.Prob., so the Calc.Prob. and Ind.Prob (and associated 
frequency) columns are omitted.  
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VIII. State-Based Fit 
State-Based Fit (or SB-Fit) provides the same functionality and output as the standard 
variable-based Fit action. However, it operates on state-based models, such as those 
returned by a state-based search. As such, it has the same restrictions as state-based 
search: in the input file, variable abbreviations must be composed of only letters, and 
state names must be only numbers. Also, the optional “inverse notation” that can be used 
for variable-based models is not allowed for state-based models. 

IX. Show Log 
This lets the user input his/her email address and see the history of the batch jobs that 
have been submitted and the Occam outputs for these jobs that have been emailed back to 
the user. 

X. Manage Jobs 
This allows the user to kill runaway or obsolete jobs. If a job appears to have crashed or 
stalled, please try to quit it using this page. Note that interactive jobs (when results are 
delivered in your browser) are not necessarily ended by closing the web page. Be careful 
to delete only your own jobs, and only the job you intend to delete. If you encounter 
problems with this, please email occam-feedback@lists.pdx.edu. 

XI. Frequently Asked Questions 
0. Are these really frequently asked questions or did you make them up? 
Some of them have actually been asked, but mostly they are made up. These are some 
questions that an Occam user might find it valuable to know the answers to. 
 
1. How do I determine the best predictor or best set of IV predictors of some dependent 
variable? 
Do an upward search, from the independence (bottom) model, IV:DV, using this bottom 
also as the reference model, looking only at loopless models. The best dBIC, dAIC, and 
Information models give you three answers to this question of the best predictors. The 
dBIC model is the most conservative of these answers, i.e., it posits the fewest best 
predictors. The other two best models are more ‘aggressive’ and posit more predictors. 
 
If you are interested only in the best single IV predictor, you need only to do this upward 
search for one level. If you want to see several IVs ranked by their predictive power, set 
“Search Width” to the number of single predictors you want reported. For example, if it 
is set to three, what will be reported is the best single predictor, the 2nd best single 
predictor, and the 3rd best single predictor. If you want the best pair predictors, go two 
levels up; again the width parameter will indicate how many of these will be reported. 
 
2. How do I determine the best multi-predicting component model for some set of IV 
predictors? 
Multi-predicting-component models are models with loops. Do an upwards ‘All models’ 
search from the independence model, with the independence model as reference.  
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3. For what purposes are loopless models used for directed systems? 
Loopless models for directed systems are models that have a single predicting 
component, in addition to a component defined by all the IVs. Loopless models are used 
to find a best set of IV predictors; see question #1. 
 
4. For what purposes are disjoint models used for directed systems? 
For directed systems, disjoint models are models with loops, but do not have any IVs that 
occur in more than one predicting component. For example, ABCD:ABZ:CDZ is a 
disjoint directed system model, while ABCD:ABCZ:CDZ is not, since C occurs in two 
predicting components. Using disjoint models instead of all models can speed the search. 
It also partitions the IVs into separate groups, which makes model interpretation simpler. 
The IVs in each component might be thought of as defining a latent variable. 
 
5. How do I know if there is an interaction effect between IVs in predicting a DV? 
For simplicity consider two predicting IVs, A and B, from a larger set of IVs. Start an 
upward search with a disjoint model where each IV predicts the DV separately, i.e., 
AB:AZ:BZ. Use this model not only as the starting model but also as the reference 
model. (In the Occam input page, for Reference Model, select the choice that sets it as the 
same as the Starting Model.) In the upward search the alpha for ABZ indicates there is an 
interaction effect if its value is acceptably low (statistically significant) and if it reduces 
the uncertainty of Z by more than the reference model. 
 
Suppose one has three IVs: A, B, and C. If one tests whether ABCZ is statistically 
significant relative to a reference model of ABC:AZ:BZ:CZ, one will ascertain whether 
some interaction effect is present, but if one wants to be sure that this interaction effect 
involves all three variables, then one should start the search and use as a reference model 
ABC:ABZ:ACZ:BCZ. If the transition between this model and ABCZ is statistically 
significant, one knows that there actually is an interaction effect involving all three IVs. 
 
6. How many bins shall I bin my quantitative variables into? 
Binning can be done “rationally,” i.e., using substantive knowledge about how 
qualitatively distinct values ought sensibly to be defined, or “technically” by some 
mathematical procedure, without regard to substantive issues of interpretation. For 
example, plotting your data on a histogram and assigning bins to clear and natural groups 
is a rational procedure, but be aware that if these groupings put very many cases into one 
bin and only a few into others, one is losing discriminating power by such a binning 
assignment. If there are conventions in the field you are working in about how variables 
should be binned (for example, there might be conventions about how age groups should 
be defined), these conventions should be used, since you will be communicating your 
results to people in your field, and they will expect these conventions to be followed. 
 
For binning technically, 3 bins is a good default, since it allows detection of non-linear 
relations, while 2 bins do not, but if your sample size is very small, it may be advisable – 
indeed you may be forced to use – 2 bins. More bins give finer discrimination but bins 
should be thought of as a resource to be optimally distributed among all the variables. If 
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one wanted to be able to use the data as your model, a rule of thumb is that the product of 
the number of bins for all variables should be about a fifth of the sample size, or to put it 
the other way, the sample size should be 5 times the number of bins (the size of the state 
space). But one doesn’t normally want to use the data as a predictive model, since this 
would be overfitting, so to use a simpler model is less demanding on the sample size – 
and thus more tolerant of variables with high cardinality (large number of bins). For 
upwards searches from the independence model, with this model also as the reference, a 
rule of thumb is that the sample size should be 5x the delta-degrees of freedom (dDF).  
Occam reports p-values (called ‘alpha’), so you can see for yourself if your sample size is 
too small to allow models of adequate complexity or conversely if your variables have 
too many bins for the sample size that you have.  
 
Viewing the numbers of bins as a scarce resource suggests that predictive variables 
should have more bins while non-predictive variables should have fewer bins. But since 
one doesn’t know in advance which IVs will be predictive, a good strategy is to bin with 
a large number of bins, like 12, a number which is also highly composite, and then rebin 
in the Occam input file, using the rebinning option explained in the Appendix, down to 3 
or 2 bins. Then those variables that turn out to be more predictive can be quickly 
rebinned differently with more bins.  
 
Binning is not included in Occam, but a binning utility program written for Excel is 
available from the DMM page. 
 
7. When should I search upwards and when should I search downwards? 
The Occam default is an upward search for both directed and neutral systems, but you 
could, if you want, do a downward search for either type of system. As a general rule, do 
an upward search when the reference model is the bottom (the independence model). In 
this case, you are interested in ascending the lattice as high as you can–for directed 
systems, to gain maximum predictive power–as long as the complexity of the model is 
statistically justified. Similarly, as a general rule, do a downward search when the 
reference model is the top (the data), when you are interested in getting as low as you 
can–in finding the simplest model that satisfactorily fits the data. 
 
8. I don’t want to search through many models. I just want to test a particular model. 
Can Occam do that for me? 
Yes. To use Occam in a confirmatory rather than exploratory mode, either (a) simply use 
the Fit rather than the Search option or (b) use the Search option with the starting model 
being the model you want to test, choosing the appropriate reference model, and setting 
“Search Width” to 1 and “Search Levels” to 0. 
 
9. Why are models with high alpha better for downwards searches, and how high should 
alpha be? 
In downwards searches, the null hypothesis is usually that a model is the same as (agrees 
with) the data. The probability of a Type I error means the probability of being wrong in 
rejecting this hypothesis that the model agrees with the data. For a model we are hoping 



Occam User’s Manual 1/19/2021 34 

to accept, we want alpha to be relatively high because we want to be sure that we would 
be wrong if we said that the model differs from the data. 
 
How high alpha should be is a user choice, and depends also on how important it is to the 
user that the model obtained be relatively simple. The point is that it should definitely 
greater than the 0.05 that one might use rationally for upwards searches. If one had a 
model with alpha = 0.05, where the reference was the top and not the bottom, one would 
be selecting a model that one is virtually certain is different from the data, clearly an 
irrational choice. The Sage log-linear book suggests that one might therefore increase 
alpha to about 0.3, but this is arbitrary; one could just as well want alpha to be 0.7 or 0.8. 
 
10. In a spreadsheet I found that for directed systems, %reduction in DV uncertainty and 
%information are proportional to one another. Why does Occam bother to print them 
both, if they are so simply related? 
Just to save the user from having to do the extra computing. %Information is equal to 
%uncertainty reduction (%dH(DV)) of a model divided by the %uncertainty reduction of 
the top (saturated) model. %Information is standardized to a 0-100% range, and indicates 
how well any model compares to Top. %reduction in uncertainty gives the actual 
numbers of uncertainty reduction for all models; Top might reduce uncertainty a lot or a 
little. 
 
11. What is the Fit option and how is it different from the Search option? 
One uses Search to find a good model or set of models. One uses Fit to look at a 
particular model in greater detail. 
 
12. How would I test the hypothesis that B “mediates” an effect of A on the DV, Z? 
This hypothesis implies a causal model, A ® B ® Z. In RA terminology, this is model 
AB:BZ. To test the hypothesis that this is a good model, one tests the statistical 
significance of the difference between this model and the data. That is, one has the 
reference model being the top, and one wants the AB:BZ model to have high information 
and also high enough alpha. 
 
Technically, one here would like to know the value of beta, the probability of making an 
error in accepting (not in rejecting) the hypothesis that AB:BZ is the same as the data. 
One would like this beta to be low. Unfortunately, Occam right now does not offer any 
calculation of beta (though it may in the future), and one has to make do with its 
calculation of alpha, which one wants to be relatively high. (In general there is a tradeoff 
between alpha and beta, so that when alpha is high, beta is low, but beta is not simply 
1 –  alpha.) 
 
Note that the model AB:BZ does not actually require the above causal interpretation. It 
could also be interpreted as A ® B ¬ Z or A ¬ B ¬ Z. That is, RA does not and cannot 
distinguish between these situations, and an argument that it is one rather than another 
has to be made by the user. Occam only reports associations; it cannot say anything about 
causation. (Relating what Occam calculates to claims by Judea Pearl that it is in principle 
possible to make assertions about causation is work for the future.) 
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13. I am doing a downward search with the top as my reference model and I find that any 
decomposition results in a severe drop in alpha. Does that mean that I cannot decompose 
the data at all? 
Not necessarily. This effect could be due to your having a very large sample size (at least 
relative to the state space), so that any deviation from the data is statistically significant. 
In such situations, you could base your decisions not on statistical significance, but 
instead on %Information. That is, you can go down the Lattice of Structures as far as you 
can, as long as %Information is greater than some minimal value of your choosing. 
 
14. What are chain models and how are they useful? 
Chain models for directed systems are models like IV:ABZ:BCZ:CDZ, and for neutral 
systems are models like AB:BC:CD. These models were used in a project where RA was 
a preprocessor for genetic algorithms. They may or may not be of more general 
usefulness. 
 
15. Of the Search outputs, what measures depend on the reference model, and what 
measures do not? 
LR (likelihood ratio, a.k.a. L2), alpha, & incremental alpha depend on the reference 
model that is chosen for the Occam run. Entropy (uncertainty), %Information, and 
%Uncertainty reduced do not depend on the reference model; that is, they are ‘absolute’ 
properties of a model regardless of the reference model chosen for the run. Level and 
dDF depend upon the reference model (which by definition has Level = 0 and dDF = 0). 
Level does not depend on the actual data, i.e., is purely about the structures of models and 
not about their distributions. dDF depends on the data only in its dependence on the 
cardinalities of the variables; it does not depend on the actual observed distribution at all. 
 
16. Of what value is the printout of numbers of models generated and kept that gets 
printed before the actual search output? 
By looking at the numbers of models generated and kept at each level, and at the running 
totals for these numbers, you can get a sense of how much the width parameter is pruning 
the search tree, i.e., how many models are being discarded as you go from one level to 
the next. 
 
The “Search Width” parameter has a default of 3, which is a modest initial value. One 
might progress to a larger value for a more thorough search. For instance, a width of 20 
for a four-variable neutral system will generate and keep all models in the lattice; that is, 
it will do an exhaustive search. For more variables, one would have to increase width 
further to do an exhaustive search, and this rapidly becomes impractical, so that one has 
to do a search that only samples the lattice. 
 
17. Loopless searches seem to be pretty fast, but searching all models often takes very 
long. Why is this, and is there some way to speed up all-model searches? 
Loopless searches don’t need IPF, and scale with the data and not the state space. At 
present, all-model searches need IPF and computation time goes with the state space and 
not the data, so these searches will necessarily take a long time.  
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18. What about set-theoretic RA? 
This is not yet implemented in Occam. Set-theoretic RA is available in a separate 
program. 
 
19. What about latent variable models? 
This is not yet implemented in Occam or in any separate RA program. However, latent 
variable log linear programs exist (though they are likely to work in the confirmatory, 
and not the exploratory, mode, so they do not search many models). 

XII. Error And Warning Messages 
The following error and warning messages may appear in the search output. 

1. Cardinality Error: 
If the user specifies a value of Cardinality less than the total number of states present in 
the data for the variable, an error will be issued (“new value exceeds cardinality of 
variable x”) and the program will halt. However, if the specified Cardinality is greater 
than the number of states of the variable in the data, Occam will give a warning that says 
so, and continue. The analysis presented by Occam in such situations may not be valid 
and therefore care should be taken to make sure the specified Cardinality of the variable 
is correct. Specifying a variable Cardinality smaller than its actual Cardinality is the more 
severe of these two errors, but EITHER ERROR SHOULD BE CORRECTED BEFORE 
PROCEEDING FURTHER. In particular, variables with cardinality=1 should be 
removed or disabled for best results. 

2. Start and reference Model Errors: 
If the model specified as Start or Reference Model in the data file or in the web menu 
happens to be an Invalid model (e.g. IV:AD:BD) , Occam will issue an error message and 
will terminate. 
“Error: invalid model name” 

3. Rebin string errors: 
If the rebinning string is incorrectly formed, Occam will issue an error and will terminate. 
It will be a 200 level error. 
“Error 2xx 
Error in Rebinning string” 

4. No data specified error: 
If the “:data” tag is missing or there is no data following the tag, Occam will report an 
error, stating no data was found. 

5. Rebinning an ignored variable warning: 
If a variable is marked to be ignored but a rebinning string is present, Occam will ignore 
the rebinning string and the analysis will be done without rebinning. Occam will issue a 
small warning: “For variable =>x rebinning parameters will not be considered since it is 
marked for no use.” 
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XIII. Known Bugs & Infelicities; Limitations 

Bugs and infelicities 
1. DF for large state spaces. For large state spaces, a calculation of DF would be 
inaccurate if the state space nears a limitation of the underlying computer architecture, 
currently 253 (~1016).  Occam does not calculate DF directly, but rather calculates delta-
DF, which does not actually require a DF calculation. However, if delta-DF exceeds 263 
(~1019), values may become inaccurate. This should be relatively apparent, if one is 
careful to always check that the output makes sense. For example, if delta-DF values 
appear negative, these limitations have likely been exceeded 
 
2. Rounding error and model order. Occasionally, rounding errors will cause some 
model to have higher information content than some model above it in the Lattice of 
Structures. Either this error will occur only in the least significant digits of the measure, 
or, more commonly, it will not be visible at all in the Occam output, being indicated only 
by the placement in the output list of the two models. It is possible that such errors result 
from incomplete IPF convergence; consider increasing the parameter ipf-maxit (the 
maximum number of IPF iterations) or decreasing ipf-maxdev (the maximum error 
allowed in IPF iteration); see the discussion of these two parameters below. 
 
3. Multiple DVs. At the present time, for directed system analyses, Occam should be 
given only one DV. One way to simulate a Search with multiple DVs is to mark them as 
IVs, then do a neutral upward search, manually discarding models that do not include the 
DVs. To minimize the examination of unwanted models, you can specify a custom 
starting model, using what would be the appropriate directed system independence 
model. For instance, suppose you want to search with IVs A,B,C,D,E and DVs Y,Z. 
Mark all variables as IVs, then do a neutral upward search starting from model 
ABCDE:Y:Z. With this method, you would need to discard models that add a DV to the 
IV component. 

Limitations 
Limitations are of computer processor time or storage space or both. Occam calculations 
for models without loops scale with the data and are relatively fast, so it is advisable to 
begin studies with loopless investigations. Calculations for models with loops, e.g., the 
“all” models option, are typically much slower (and at worst scale with the state space). 
(For directed systems, disjoint and chain models have loops; for neutral systems they do 
not.) This would be a very serious limitation if it could not be overcome, since, e.g., thirty 
binary variables have a state space of one billion, and one would not like calculations of 
this order for every iteration. Fortunately, in directed systems, advantage can be taken of 
sparse sampling so that sometimes calculations with loops approximately scale more with 
the data than with the complete state space. To get this benefit, however, the user must 
define the DV (output) as the last variable of the set of variables. Calculations for models 
with loops also scale with the number of components of the model. 
 
The user might plausibly ask one or more of the following questions: How many 
variables can I give Occam? How many data records can I give Occam? Is there a 
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maximum total state space that Occam can handle? Is there some maximum number of 
models that Occam can search? What is the longest running time of any Occam run? The 
answers depend on a number of factors, including the characteristics of the machine 
running Occam, how many tasks Occam is running, and more. 
 
Occam has been run with a few hundred variables. The maximum cardinality for a 
variable is around 50. Input files so far have been as large as about a million records, in 
terms of sample size. Total state spaces have sometimes been extremely large, e.g., 1047. 
Occam has been run for days, but this is strongly discouraged, as this kind of intensive 
use makes it much less available to other users. At present, access to Occam is not 
controlled, but if–or when–computational load exceeds the capacity of the one server and 
inhibits the use of Occam by its multiple users, access will have to be controlled and 
limited. Note that for very large state spaces, if the sparseness of the data is not taken 
advantage of by having the DV be the last variable, all-model searches downwards from 
Top are impossible. In general, large state spaces suggest searches in the upward 
direction because models at or near the bottom of the lattice have very small dDFs. 

XIV. Planned But Not-Yet-Implemented Features 

Preprocessing data 
1. Using inputs only for test data. For directed systems, there should be an option to add 
test set inputs to the training set, and have Occam output either a best prediction of the 
DV for each input record or a conditional probability distribution for the different 
possible DV values. 
 
2. Binning. It should be possible for Occam itself to bin quantitative variables. However, 
binning can be done with a utility program written for Excel available from:  
http://www.pdx.edu/sysc/research-discrete-multivariate-modeling. 
 
3. Missing data. Currently, Occam can only handle missing data, i.e., values of some 
variables being missing in some records, by either (a) assigning “missing” as another 
variable value, or (b) ignoring records with missing values for particular IVs (see the 
section below on Rebinning). Missing values should be coded with a period (“.”). In 
principle, there ought also to be an option for Occam to impute missing values. 

Models considered 
1. Omitting IV (input) component. For directed systems, there should be an option to 
omit the IV component of the model, e.g., the AB of models AB:Z, AB:AZ, etc. This 
would (a) allow some models to make predictions for inputs not in the training set, (b) 
make some models loopless, so they can be assessed algebraically without IPF, and (c) 
make RA more resemble Bayesian networks, which often do not utilize (incorporate) 
such input components in their models. 

Search 
1. Complete implementation of searches of all model classes. Systems are either 
directed or neutral. The user can choose between different classes of models: all, 
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loopless, disjoint, chain. Search direction can also be either up or down. However, not all 
classes of models are actually currently implemented for both up and down search 
directions for both neutral and directed systems. More specifically, what is and what is 
not currently implemented is indicated in the following table. 
 

   Implemented? 

   variable-based 
state-
based 

directed up all yes yes 
directed up disjoint yes no 
directed up loopless yes yes 
directed down all yes no 
directed down disjoint no no 
directed down loopless yes no 
neutral up all yes yes 
neutral up disjoint yes no 
neutral up loopless yes no 
neutral down all yes no 
neutral down disjoint yes no 
neutral down loopless yes no 
directed up* chain yes n/a 
neutral up* chain yes n/a 

* n/a = not applicable. For chain models, "up" vs. "down" searches are meaningless, but 
one needs to specify "up" to get a chain search done. 
 
2. Other types of searches. Currently, only beam searches are done, that is, given a set 
of models at a given level, all of the parents at the next level up or all of the descendants 
at the next level down are considered, and the “Search Width” best models are selected at 
this next level (up or down). This process iterates. Other types of searches, such as depth-
first searches, should also be implemented. 

Model use and evaluation 
1. Prediction algorithm. Models currently are used for directed systems to make 
predictions of test set outputs, using only the most obvious prediction scheme, namely to 
predict the output state that has the highest conditional probability given the inputs. This 
decision rule may sometimes be non-optimal, so the %correct specified for different 
models can be considered a lower bound on the %correct potentially achievable. More 
sophisticated prediction decision rules are under investigation. 
 
2. Other goodness measures. There are other measures of model goodness that it would 
be desirable to calculate and output: beta (probability of a Type II error), transmission, 
absolute rather than relative AIC values, AIC (or dAIC) corrected for small sample sizes 
relative to the state space, minimum description length (MDL), Receiver Operating 
Characteristic (ROC) area under curve, etc. 
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Appendix 1. Rebinning (Recoding) 
This feature allows the user to: 
 

(a) ignore data where some variables have particular values, 
(b) select only data where some variables have particular values, and 
(c) regroup (recode) states of a variable. 

 
(By default this feature is turned ON. If you are not actually using this feature, it being on 
will only add very slightly to the time of a run, but to turn this feature OFF say “:no-
rebin” anywhere before “:nominal” in the data file. This makes Occam deactivate the 
rebinning module and if rebinning parameters are specified in the variable specification 
Occam ignores them. Also, if a variable is marked to be ignored–the third field in the 
variable specification is 0–then any rebinning string that follows is ignored.) 
 
There is a simple way that one can ignore or select a single state of a variable. It involves 
adding a 5th field, as follows. Ignoring a state is done as follows: 
 
Age, 4,1,a,exclude(1) 
 
This will exclude all the information for state 1 of Variable Age from the analysis; that is, 
all data having Age = 1 will not be considered. The motivation for this might be that for 
some cases (records) values may be missing for some variables; or, one might want to 
exclude outliers or other particular values. In SPSS, missing data is marked by the 
character “.”, and this convention may be used in the data given to Occam (see Data 
Specification, below). Thus, to exclude records in which Age is missing, the 5th field 
would be “exclude(.)”. By contrast, 
 
Age, 4,1,a,1 
 
has the reverse effect: only data where Age = 1 will be considered for analysis. Also, 
since Age has only one state for analysis, variable Age will be lost. 
 
One can also regroup several values of a variable into a new value. One might want to do 
this if the variables were originally binned with too many bins, or if one wishes to reduce 
the number of bins for one variable to allow more bins for another variable, or more 
variables. For any given sample size the statistical significance of a result will depend on 
the product of the number of bins of all variables considered. 
 
Regrouping is done by specifying a fifth field in a variable definition surrounded by 
brackets, and having no spaces between any of the characters inside the brackets (the 
rebinning string is “white space intolerant”). For example: 
 
theta, 3,1,t, [1(1,2);2(3)] 
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In this example, theta originally has 3 states but because of rebinning, old states 1 and 2 
now become new state 1 and old state 3 becomes new state 2. The cardinality of theta has 
become 2. The general form of this regrouping specification is 
 
[new_state ( old_state , old_state, …) ; new_state (old_state, …); … ] 
 
An old state cannot be present in more than one bin. Note the commas between old states 
and the semicolons between new states. 
 
Regrouping can also be used to select or ignore more than one state of a variable.  
 
Some uses of Regrouping 
1. To ignore more than one state of a variable: 
 

Age, 4,1,a,[1(1),2(2)] 
 
Values 3 and 4 of Age are excluded; that is, all data records (rows) having such Age 
values are omitted from the analysis. If one uses this approach to exclude a single state, 
the result is equivalent to using “exclude( )” as the 5th field. 
 
2. To select more than one state of a variable, and (thus in effect) omit the variable: 
 

Age, 4,1,a,[1(1,2)] 
 
Only data entries (rows) with Age equals 1 or 2 are considered; data entries with Age 
equals 3 and 4 are ignored. Variable Age is thus lost (the column for Age is ignored). The 
motivation for this usage is that one wishes to do the analysis of other variables only for 
particular values of the specified variable(s). 
 
3. To regroup states, i.e., to reduce the number of states of a variable (this also includes 
non-sequential states). 
 

Age, 4,1,a,[1(1,3);2(2,4)] 
 
The cardinality of A changes from 4 to 2. 
 
4. To combine ignoring and regrouping: 
 

Age, 4,1,a,[1(1,3);2(2)]  
 
This causes data where Age = 4 to be ignored; also old states 1 and 3 become new state 1. 
The cardinality of Age becomes 2.  
 
Finally, there is a wild card character that the rebinning module identifies, which is “*”, 
which means “everything else.” This can be used only in the last bin as in 
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kappa, 5,1,k, [1(1,3);2(4);3(*)] 
 
In this case kappa will be rebinned and original states 1 and 3 will become new state 1, 
original state 4 will become new state 2 and rest of the states of kappa will become new 
state 3 (in this case states 2 and 5). 

Appendix 2. Missing Values in the Data 
In the data that Occam actually sees, a row (case) and column (variable) cannot have a a 
blank in a variable’s field. In preparing data for Occam, a missing value can be handled 
in one of three ways: (a) the row can be deleted from the data, (b) an additional value for 
the variable can be defined, namely “.”, which means “missing”, or (c) the value can be 
assigned randomly based on the observed probabilities of the different values in the rest 
of the data (this must be done by the user before running Occam). Note that the rebinning 
option described above allows one to have Occam omit rows (cases) where variables are 
marked as having missing values indicated as “.”. 

Appendix 3. Additional Parameters in the Input File 
In addition to action, variables, and data, the data file may include additional parameter 
specifications. A parameter specification is either just a single line when the parameter is 
a “switch,” such as the “no-frequency” parameter shown above, or it involves two lines, 
the first giving the parameter name and the second its value. 
 
At present the only parameters that can be set only in the data file (aside from the “:no-
frequency” declaration) and not on the web input page are ipf-maxit and ipf-maxdev, 
which control the Iterative Proportional Fitting Algorithm. The user will in general not 
need to think about these parameters or change them from their default values. IPF 
generates calculated probabilities for some types of models. ipf-maxit is the maximum 
number of IPF iterations; ipf-maxdev is the maximum difference of frequencies (not 
probabilities) allowed between a state in the distribution for a calculated projection 
included in the model and the same state in the observed projection. If Chi-square errors 
are reported in a run, consider increasing “ipf-maxit” and decreasing “ipf-maxdev.” 
 
One can specify in the data file the number of levels to be searched and the search width 
(the number of models retained at each level). For example, to search 10 levels and keep 
the best 5 models at each level, one adds the following lines above the data: 
 
:search-levels 
10 
:optimize-search-width 
5 
 
However, one can specify the number of search levels and the search width on the web 
input page, and it is more convenient to do so there. When search levels and width are 
specified both in the data file and on the web input page, the web input page values take 
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priority. If these values are not specified in either the data file or the web input page, they 
will take on their default values, as follows: 
 

parameter default 
search-levels 7 
optimize-search-width 3 
ipf-maxit 266 
ipf-maxdev .25 

 
Parameter settings are echoed in Occam’s output by checking “Print Options Settings” so 
that one has a record of them. This is good practice, so this option is on by default. 

Appendix 4. Zipping the Input File 
Occam can now accept input files in the “zip” format. Zipping a file creates a compressed 
version that is potentially much smaller, allowing for a faster upload when submitting a 
new job. The file is unzipped on the Occam server, and the data in the file are unaffected. 
Because Occam input files are typically very simple, zip compression can reduce their 
size by as much as 90%. 
 
To zip your input file, first prepare it as you would normally. Once it is ready for 
submission, you must zip it with a compression program. Fortunately, these are now 
included by default in most modern operating systems.  To use this feature, create a new 
document, with the ‘.zip’ suffix. Select this .zip file from the Occam web page, in place 
of your normal input file. As long as you have submitted only a single file, Occam should 
handle the zipped file the same way it handles a text file. 

Appendix 5. Compare Mode 
OCCAM’s Compare mode allows the user to compare best models derived from one or 
more pairs of datasets. This is a specialized mode originally created for Teresa Schmidt’s 
research, which may be of interest for other research projects. Compare uses the Search 
function to find the best model for each dataset, uses the Fit function to define the 
calculated (q) distribution for each best model, and then compares the best models along 
a variety of metrics. Many datasets can be submitted in a single batch job, which allows 
multiple pairs of models to be compared simultaneously.  

Data Files 
The input file to Compare must be a single .zip archive. This archive must contain 1 or 
more pairs of datafiles. A pair of datafiles is 2 files with exactly the same name, except 
for a difference in the character immediately preceding the .txt file extension. For 
example, valid paired names could be ‘fileA.txt’ and ‘fileB.txt’.  Compare 
determines which files are in corresponding pairs by sorting the list of files in the archive 
and checking that adjacent files in the sorted order meet this criterion. Compare will fail 
with an error when file names cannot do not match in this way. The single differing 
character before the extension can be anything in the two files so long as it differs, but the 
output of the analysis will refer to the lexically first filename as variant “A” and the 
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lexically second one as variant “B”, so “A” and “B” are the most intuitive suffix 
characters to distinguish the files in a pair. 

Search Settings 
The search done in this mode always uses the bottom (independence) model as a 
reference, even when conducting a “top down” search. 

Starting model and search direction 
The available choices are “top down” which uses the data as the starting model and 
works downward in the lattice, and “bottom up” which uses the independence model as 
the starting model and works upward. 

Models to consider 
As in standard Search, the models considered in search can be restricted to reduce the 
computation time. Options include only loopless, only disjoint, only chain, or all models. 
By default all models are considered. 

During Search, sort by 
In standard Search, the “Best” model at any step can be chosen in various ways. 
However, at the present time Compare is restricted to sorting best models by either dAIC 
or dBIC, favoring the model with the higher (dAIC or dBIC) value. 

Search width and levels 
The number of levels to be searched and the search width (number of models to consider 
at each level) can be specified for Compare just as in standard Search. 

Report Settings 

Pairwise selection function 
In comparing best models from two datasets, it is sometimes important to identify one of 
the best models as being more complex (qcomplex) and the other as being simpler (qsimple). 
By default, the more complex model is identified as the one with lower entropy, shown as 
“min H”.  Other options are to pick the model which uses more degrees of freedom (max 
DF) or the one which has the lower dAIC (min dAIC) or lower dBIC (min dBIC).  

Data statistics 
One or more statistics of the data distribution (for each of the 2 files in the pair) can be 
included in the report. Currently, the options are entropy (“H”) and total degrees of 
freedom (“DF”).  

Model statistics 
One or more statistics of the model distribution (for all best models being compared) can 
also be included in the report. By default, the statistic used for pairwise selection (dAIC, 
dBIC, H, or DF) is included in the report, but others can be requested as well. dAIC and 
dBIC are computed with the bottom (independence) model as reference. The DF statistic 
is the total degrees of freedom (not dDF, the change in DF from the reference model). 
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Pairwise comparisons 
Several pairwise comparison functions are available to compare the best model picked for 
each of the two files in a pair. These functions are listed below, expressed in terms of the 
calculated probability distributions of each best model in a pair (qcomplex and qsimple), 
which imply one-to-one comparisons of all of their states. 

• absolute distance: L1=∑|𝑞!"#$%&' − 𝑞()#$%&|, a.k.a. the Manhattan distance, or 
sum of absolute differences between corresponding states in each model. This has 
a maximum value of 2, obtained when every state with nonzero probability in 
qcomplex has zero probability in qsimple and vice versa. 

• Euclidean distance: L2= ∑%&𝑞!"#$%&' − 𝑞()#$%&'
*  

• maximum distance: L∞=max(𝑞!"#$%&' − 𝑞()#$%&) a.k.a. the Chebyshev distance, 
or maximum difference between any pair of corresponding states. 

• Hellinger distance: *1 − 𝐵𝐶(𝑞!"#$%&' , 𝑞()#$%&), where 𝐵𝐶&𝑞!"#$%&' , 𝑞()#$%&' =
∑*𝑞!"#$%&' ∗ 𝑞()#$%&. This distance is expressed in terms of the Bhattacharyya 
coefficient (BC). It obeys the triangle inequality and has a maximum value of 1, 
obtained when every state with nonzero probability in qcomplex has zero probability 
in qsimple and vice versa. 

• Kullback-Leibler (KL) distance:∑𝑞!"#$%&' log*
+!"#$%&'

+()#$%&
. A theoretical caveat with 

KL distance is that it relies on an ad-hoc definition of 0 log* 0 = 0 to deal with 
model states that have zero probability. Hence, the calculation of this distance 
works by ignoring states with zero probability in qcomplex or qsimple. 

Additional settings 
Like other OCCAM modes, the results of Compare can be returned in spreadsheet 
format, with or without option settings, and can be returned via email instead of in the 
web browser. 

Appendix 6. Cached Data Mode 
For Search, Fit, SB-Search and SB-Fit, Occam can cache the variable declaration block, 
data block, and test block of an input file for later use. This is useful when working with 
large files, as it eliminates the delay incurred by repeatedly uploading the file.  
 
To cache data in this manner, first navigate to the main page for Search, Fit, SB-Search, 
or SB-Fit mode. Then, click to enable the checkbox labelled “Cached Data Mode”, 
located to the right-hand side of the mode selection header. This will open up a variant of 
the option page for the selected mode; the top input section should now be labelled 
“Cached Data Settings”. Note that toggling “Cached Data Mode” loads a fresh copy of 
the Occam input page, so any options (such as model name) already entered into the 
fields will be reset to the defaults upon toggling this mode. 
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For each Occam mode, the Cached Data variant of the input page will contain all of the 
same input fields as the normal variant, except the Data File selection button will be 
replaced with the “Cached Data Settings” section. 
 
“Cached Data Settings” asks the user to specify the Occam input file in 2 or 3 parts; to 
use this mode, the Occam input file needs to be split into 2 separate files, or into 3 
separate files if test data will be used. 
 
The first required file is the “Variable Declarations File”, which should contain the entire 
“:nominal” block from the original input file, as well as any input file options  
(such as the “:no-frequency” option). This can be prepared by copying everything in the 
original input file up to (and including) the line immediately before the “:data” block. 
“Cached Data Mode” always requires the user to upload the Variable Declarations File. 
 
The second required file is the “Data File”, which should contain the entire “:data” block 
from the original input file. This can be prepared by copying everything starting with the 
“:data” line up to (and including) the line immediately before the “:test” line. Any time 
Cached Data mode is run with a particular Data File input, Occam will report a unique 
name referring to the uploaded Data File. Instead of using the file selection button to 
choose a Data File, Occam also allows the user to input one of these unique names in the 
“Cached Data Name” field. If this is done, no file should be uploaded, and Occam will 
instead use the previously cached data. Similarly, the third file, which is optional, is the 
“Test File”. This should contain everything starting with the “:test” block (if any is 
present), through the end of the original file. As with the “Data File”, the user can also 
upload a Test File once to obtain a unique “Cached Test Name” which can be used in lieu 
of selecting a file for upload. 
 
All of the remaining Occam options are the same as on the original Occam input pages. 
By using the “Cached Data Name” or “Cached Test Name” instead of selecting a file, the 
user can avoid incurring the delay from uploading (potentially large) data files. This is 
intended to facilitate making changes to the Variable Declarations block (such as 
disabling an IV or changing which variable is labelled as the DV), or using a previously 
uploaded data file with a new test file (or vice versa).  
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