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Abstract

It is not known whether computerized cognitive assessments, like the CogState battery, are 

sensitive to preclinical cognitive changes or pathology in people at risk for Alzheimer’s disease 

(AD). In 469 late middle-aged participants from the Wisconsin Registry for Alzheimer’s 

Prevention (mean age 63.8±7 years at testing; 67% female; 39% APOE4+), we examined 

relationships between a CogState abbreviated battery (CAB) of seven tests and demographic 

characteristics, traditional paper-based neuropsychological tests as well as a composite cognitive 

impairment index, cognitive impairment status (determined by consensus review); and biomarkers 

for amyloid and tau (CSF phosphorylated-tau/Aβ42 and global PET-PiB burden) and neural injury 

(CSF neurofilament light protein). CSF and PET-PiB were collected in n=71 and n=91 

participants, respectively, approximately four years prior to CAB testing. For comparison, we 

examined three traditional tests of delayed memory in parallel. Similar to studies in older samples, 

the CAB was less influenced by demographic factors than traditional tests. CAB tests were 

generally correlated with most paper-based cognitive tests examined and mapped onto the same 

cognitive domains. Greater composite cognitive impairment index was associated with worse 

performance on all CAB tests. Cognitively impaired participants performed significantly worse 

compared to normal controls on all but one CAB test. Poorer One Card Learning test performance 

was associated with higher levels of CSF phosphorylated-tau/Aβ42. These results support the use 

of the CogState battery as measures of early cognitive impairment in studies of people at risk for 

AD.

Keywords

Amyloid; cognitive impairment; cerebrospinal fluid; biomarkers

Key words not in MeSH database

CogState; preclinical Alzheimer’s disease; computerized cognitive testing; neural injury

1 INTRODUCTION

CogState is a computerized cognitive battery spanning domains of memory, executive 

function, and speed of processing. It has been shown to have acceptable stability and test-

retest reliability with minimal practice effects at short test-retest intervals in groups of 

healthy controls and patients at various stages of cognitive impairment and dementia [1, 2]. 

Computerized testing, such as the CogState battery, may hold potential for detecting early 

cognitive dysfunction associated with preclinical Alzheimer’s disease (AD)[3].

Previous studies have demonstrated differences between healthy controls, Mild Cognitive 

Impairment (MCI), and AD, with the most pronounced impairments in the latter two groups 
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on CogState tests of learning and memory [4, 5]. The vast majority of studies investigating 

biomarker correlates of the CogState have focused on neuroimaging biomarkers, with a 

particular focus on PET amyloid imaging. The majority [3, 6–11] but not all [12] have found 

an association with amyloid. One study also found an association with hippocampal volume 

and glucose metabolism [12]. Of note, the majority of published studies that have examined 

biomarkers and the CogState battery have been performed on two cohorts, the Australian 

Imaging, Biomarker & Lifestyle Flagship Study of Ageing (AIBL) and the Mayo Clinic 

Study on Aging. The present study adds the largest long-term study of healthy relatives of 

persons with Alzheimer’s disease, the Wisconsin Registry for Alzheimer’s Prevention 

(WRAP), to the cohorts simultaneously investigating biomarkers and the CogState battery. 

Additionally, there is a dearth of information in the current scientific literature on the 

association between the CogState battery and potentially informative cerebrospinal fluid 

(CSF) biomarkers for Alzheimer’s pathology and neural injury. This is an important gap to 

fill as recent work suggests that CSF biomarkers become abnormal in the earliest stages of 

AD, before changes in amyloid positron emission tomography are apparent [13, 14].

The present study investigated whether CogState is sensitive to pre-dementia cognitive 

dysfunction and early accumulation of AD pathology during late-midlife. First we explored 

relationships between CogState tests and demographic characteristics. Next, we examined 

relationships between CogState tests and three measures of cognitive function: individual 

scores on traditional paper-based neuropsychological tests, a composite cognitive 

impairment index, and cognitive status (cognitively impaired vs. cognitively normal). 

Finally, we investigated sensitivity to underlying AD pathology by examining whether 

biomarkers for amyloid and tau (CSF phosphorylated-tau/Aβ42 and global PET-PiB burden) 

and neural injury (CSF neurofilament light protein) predicted CogState performance 

approximately four years later. We hypothesized that performance on the CogState battery 

would be relatively robust to demographic variability but would be associated with cognitive 

functioning as well as biomarkers for AD pathology. Additionally, to evaluate whether the 

CogState battery may be more robust to demographics and more associated with disease 

outcomes compared to traditional neuropsychological tests, we also examined relationships 

of three traditional tests of delayed memory with demographics, cognitive function, and 

biomarkers and provide effects sizes for comparison between the cognitive measures. By 

examining relationships between the CogState battery and multiple measures of early 

cognitive dysfunction as well as biomarkers for amyloid and neural injury in an at-risk 

cohort, this study investigated whether the CogState battery is sensitive to early cognitive 

and pathological changes suggestive of incipient AD.

2 MATERIALS AND METHODS

2.1 Participants

WRAP is a longitudinally followed cohort designed to identify biological and lifestyle risk 

factors associated with development of dementia due to Alzheimer’s disease [15–17]. The 

WRAP study consists of 1,545 participants (mean age=53.6±6.6 years at first cognitive 

assessment), of which 72.4% have a parental family history of dementia due to Alzheimer’s 

disease. In 2014, the CogState was added to the assessment protocol for each visit; data used 
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in this paper represents first CogState for each person, although the overall WRAP visit 

number varies from 2 to 5 (3.2% of participants were administered the CogState at visit 2, 

19.8% at visit 3, 24.5% at visit 4, and 52.5% at visit 5). Participants were selected for the 

current analyses if they had completed at least one of the seven CogState tests that have been 

added to the WRAP battery. The University of Wisconsin Institutional Review Board 

approved all study procedures, informed consent was obtained for all participants, and the 

work described has been carried out in accordance with The Code of Ethics of the World 

Medical Association (Declaration of Helsinki).

Cognitive status was determined via consensus review conference by a panel of experts in 

cognitive aging and dementia, including clinical neuropsychologists, physicians, and nurse 

practitioners for the same WRAP visit that CogState was administered. The consensus panel 

reviews cognitive performance as well as additional information in the participant’s chart 

(e.g., medical history, social history, informant reports) to determine final cognitive status. A 

cut-off of 1.5 standard deviations below a robust normative sample (e.g., low-risk WRAP 

participants who remained normal throughout the study;[17, 18]) was used to define 

impairment on cognitive measures. A diagnosis of clinical MCI was based on the NIA-AA 

criteria [19, 20] including subjective cognitive decline, objective impairment in one or more 

cognitive domains, and preservation of functional abilities. The construct of early MCI was 

developed to identify cognitive decline expected to precede a clinical MCI diagnosis, and 

identifies individuals who exhibit lower than expected performance on neuropsychological 

measures (e.g., ≤1.5 SD below demographically-corrected robust norms), but do not 

necessarily report subjective cognitive decline. Of the 469 participants who were 

administered the abbreviated CogState battery, 10 met criteria for clinical MCI, another 60 

exhibited subtle deficits indicative of early MCI, and 6 were classified as having a cognitive 

impairment primarily due to depression rather than MCI. The clinical MCI and early MCI 

participants were grouped together into a cognitively impaired group and the remaining 393 

unimpaired participants were considered cognitively normal (Table 1). The 6 individuals 

with potential non-MCI cognitive impairment were included in the total sample but in 

neither the cognitively impaired nor normal groups. None of the cognitively impaired 

participants had dementia.

2.2 Measures of cognition

2.2.1 CogState—Select tests from the CogState battery were administered on a laptop to 

participants after completing the non-computerized assessments. This CogState abbreviated 

battery (CAB) included a test of delayed visual memory through paired associate learning 

(Continuous Paired Associate Learning, CPAL), speed of visual processing (Groton Maze 

timed chase test, GMCT), executive function (Groton Maze learning test, GML), delayed 

recall (Groton Maze learning test delayed recall, GMR), and working memory (One-card 

learning, OCL; One-back memory, ONB; and Two-back memory, TWOB). For CPAL, 

GML, and GMR, total number of errors was assessed; for GMCT moves per second was 

assessed; and for the three card tasks (OCL, ONB, and TWOB) accuracy was assessed using 

the arcsine proportion to correct for normality. Data were only included that passed criteria 

for completion and integrity. To be considered “complete,” at least 75% of all responses 

needed to be observed for the card tasks (OCL, ONB, TWOB), all 28 steps of the maze path 
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needed to be completed for the Groton Maze tasks (GML, GMR), and all rounds needed to 

be completed for CPAL; there is no completion check for GMCT. Integrity checks were 

completed for the three card tasks only and were satisfied if the proportion correct was 

above chance (at least 50% correct). 99.4–100% of participants passed completion checks 

for each of the seven tests and 97.5–99.6% passed the integrity checks for each of the three 

card tasks. Selection of test outcomes, transformations to correct for normality, and tests of 

completion and integrity were performed per the recommendations from the CogState 

manual [21]. Additionally, not all participants finished the full CAB, with more missing data 

for tests administered at the end of the battery. All participants finished at least one test and 

98.7% finished all seven tests. Non-completion of the CAB was due to fatigue, frustration, 

or technical difficulties. Missing data and checks for completion and integrity are 

summarized in Supplementary Table 1.

2.2.2 Traditional neuropsychological battery—A comprehensive neuropsychological 

battery was performed at each WRAP visit. For this analysis, non-computer tests were 

selected that measure memory, language, executive function, or global cognitive function. 

These included Rey Auditory Verbal Learning Test (RAVLT [22]) total trials 1–5 and 

delayed recall; Wechsler Memory Scale-Revised (WMS-R [23]) Logical Memory I and II 

(immediate and delayed recall, respectively); Brief Visuospatial Memory Test-Revised 

(BVMT-R [24]) immediate and delayed recall; Boston Naming Test–2nd Edition (BNT 

[25]); Animal Naming [26]; Controlled Oral Word Association Test phonemic fluency (CFL 

[27]); Stroop Neuropsychological Screening Test color-word interference trial (Stroop [28]); 

Trail Making Test (TMT [29]) Parts A and B; Wechsler Adult Intelligence Scale-Revised 

(WAIS-R [30]) Digit Symbol; Wechsler Adult Intelligence Scale-Third Edition (WAIS-III 

[31]) Letter Number Sequencing and Digit Span subtests; and Mini Mental State 

Examination (MMSE [32]).

2.2.3 Composite cognitive impairment index—A composite cognitive impairment 

index (CCII) was calculated using a set of eight cognitive measures: TMT A and B, WAIS-

III Digit Span forward and backward, RAVLT total trials 1–5 and delayed recall trial, BNT, 

and MMSE. Visits were excluded when fewer than four of these measurements were 

available. We applied the progression score model [33–35] to align individuals along a linear 

cognitive trajectory based on their longitudinal cognitive measure profiles, adjusting for 

inter-individual differences in rates of change. The composite cognitive impairment index 

computed using this method is an individualized summary of the eight cognitive measures, 

with higher values indicating lower cognitive performance in all measures. Different from 

previous approaches, we accounted for correlations among cognitive measures. To remove 

confounding effects of age at entry into WRAP, a composite was estimated at age 65 based 

on an approximate expression for the time derivative of the CCII.

2.3 Biomarker collection

Some WRAP participants were recruited for biomarker substudies which do not necessarily 

correspond to a specific WRAP visit. We examined PET and CSF biomarker data, which 

were collected independently and up to several years prior to the CogState.
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2.3.1 PET-PiB—Detailed methods for [C-11] PiB radiochemical synthesis, PiB-PET 

scanning with a 70 minute dynamic acquisition, and distribution volume ratio map 

generation using the Logan method and the cerebellum as a reference region have been 

described previously [36]. PiB-PET images were registered to a T1-weighted anatomical 

scan collected on a GE 3.0 Tesla MR750 (Waukesha, WI) using an 8 channel head coil [36, 

37]. A composite measurement of global amyloid derived from eight bilateral ROIs (angular 

gyrus, anterior cingulate gyrus, posterior cingulate gyrus, frontal medial orbital gyrus, 

precuneus, supramarginal gyrus, middle temporal gyrus, and superior temporal gyrus) was 

calculated as described previously [38, 39]. N=91 participants underwent PiB-PET imaging 

approximately 4.1 years (SD 0.66, range 2.0–5.3) prior to CAB testing.

2.3.2 Cerebrospinal fluid—CSF was collected as described previously [40, 41]. CSF 

Aβ42 and phosphorylated-tau (p-tau) were quantified with sandwich ELISAs (INNOTEST 

β-amyloid1–42 and Phospho-Tau[181P], respectively; Fujirebio Europe, Ghent, Belgium). 

CSF p-tau/Aβ42 was calculated by dividing CSF p-tau by CSF Aβ42. CSF neurofilament 

light protein (NFL) was measured with a sandwich ELISA method as described by the 

manufacturer (NF-light ELISA kit, UmanDiagnostics AB, Umeå, Sweden). N=70 

participants underwent baseline lumbar puncture approximately 3.7 years (SD 1.11, range 

1.17–5.33) prior to CAB testing.

CSF assays were performed in two batches. We corrected for batch differences using simple 

linear regression (SLR) on a subset of CSF samples (n=96 from the entire CSF database, not 

just from individuals who had also undergone CogState testing) that were assayed in both 

batches. SLR was also used to test whether batch corrections were necessary using null 

hypothesis tests of a slope of 1 and an intercept of 0. If there was insufficient evidence to 

suggest that any of these hypotheses should be rejected, raw values from both batches were 

used; otherwise, predictions were made with SLR on CSF values from batch 2 as if they had 

been tested in batch 1. All analyses for CSF batch corrections were performed using R 

version 3.2.3 using the base “lm” function.

2.4 Statistical analyses

Significance was inferred at a Bonferroni-corrected p-value for seven CogState tests (p<.

05/7=.007) unless otherwise stated.

2.4.1 Correlations between CAB, demographics, and traditional 
neuropsychological tests—For dichotomous characteristics (sex, parental family 

history of AD, and APOE4 carriage), t-tests were performed on the seven CogState 

variables. For continuous variables (total years of education; literacy as measured by 

baseline Wide Range Achievement Test reading raw score; age at testing; depression as 

measured by the Center for Epidemiologic Studies Depression Scale; and traditional paper-

based neuropsychological tests) and ordinal variables (e.g., computer familiarity as 

measured on a Cognitive Activities questionnaire), we performed Spearman rank-order 

correlations. Cohen’s d were calculated for t-tests and effect sizes of .2, .5., and .8 are 

interpreted as small, medium, and large, respectively. Correlation coefficients of .1, .3., and .

5 are interpreted as small, medium, and large effect sizes, respectively [42].
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To determine whether CAB is more robust to education and other demographic 

characteristics compared to traditional paper-based tests, we also examined correlations 

between demographics and select traditional neuropsychological tests. Numerous studies 

have identified delayed episodic memory as one of the earliest cognitive domains to become 

impaired in AD [43–45], likely during the preclinical timeframe; therefore, to reduce the 

number of multiple comparisons, we selected three tests of delayed memory from our 

neuropsychological battery: RAVLT delayed recall, Logical Memory delayed recall, and 

BVMT-R delayed recall. For the analyses described here and as follows, these three delayed 

recall tests served to provide context for interpreting the CAB findings compared to more 

traditional neuropsychological testing formats.

2.4.2 ANCOVA comparing cognitive groups on CAB performance—Scores on the 

CAB of cognitively impaired participants were compared to cognitively normal controls by 

ANCOVA controlling for age, literacy, sex, APOE4 positivity, family history of AD, and 

computer familiarity. Effect sizes by partial eta squared are reported. Small, medium, and 

large effect sizes for eta squared are .01, .06, and .14, respectively [46]. We did not compare 

cognitive groups on the select traditional neuropsychological tests identified in section 2.4.1 

because these tests were evaluated during diagnostic consensus conference.

2.4.3 Associations between the individual cognitive tests and composite 
cognitive impairment index—In addition to examining individual neuropsychological 

tests, we investigated whether CCII, which takes advantage of longitudinally measured 

cognition up to (and including) the visit at which the CAB was administered, is associated 

with performance on the CAB. We ran regression analysis for each of the seven CogState 

tests, with the CAB test as the dependent variable and CCII as the independent variable of 

interest, controlling for age at CAB testing, literacy, sex, APOE4, family history of AD, and 

computer familiarity. Variance inflation factors (VIF) and tolerance were assessed and 

deemed normal if tolerance was greater than .1 and VIF was less than 10. Cohen’s f2 for 

hierarchical regression, R2, and R2-change (the change in R2 after adding CCII to the model) 

are reported. Cohen’s f2 of 0.02, 0.15, and 0.35 are considered small, medium, and large, 

respectively [46]. For comparison, parallel models were run for the three traditional delayed 

recall tests except RAVLT delayed which was used to calculate CCII.

2.4.4 Cognition and biomarker associations

2.4.4.1. Biomarker normalization and dichotomization: Although PiB burden was 

skewed to the right, traditional transformations were ineffective at improving normality. 

Instead, we chose to examine PiB burden untransformed (with and without an outlier) as a 

continuous variable and as a dichotomous variable (i.e., PiB positive vs. PiB negative) with 

the goal of capturing the hypothesized underlying binomial distribution [47]. A cut-off value 

for PiB positivity was determined using receiver operating characteristic (ROC) analysis in 

pROC R Statistical Package [48] bootstrapping 2000 times with replacement and 

stratification of sample. We used expert visual ratings of PiB positive or negative that have 

been described previously as the diagnostic groups [36, 37]. Supplementary Figure 1 depicts 

the ROC plot with an area under the curve of .974. A threshold was determined using 

Youden’s Index which identifies the PiB burden value that maximizes both sensitivity and 
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specificity [49]. A threshold of 1.19 was identified which corresponded to sensitivity of .938 

and specificity of .917.

2.4.4.2. Cognition and biomarkers associations: We performed Spearman correlations 

between CAB variables and three biomarkers of interest: CSF p-tau/Aβ42, CSF NFL, and 

global PiB burden (with and without an outlier). T-tests were performed to compare 

CogState performance between PiB+ and PiB− groups. Furthermore, we investigated 

promising correlations (significant or trending) through multiple regressions with CAB 

scores as the dependent variable and biomarker as the independent variable of interest. In 

addition to the covariates used in the CCII regression models, we additionally controlled for 

the interval from biomarker collection to CAB testing (CSF to CAB 44.3±13.5 months; 

PET-PiB to CAB 49.6±7.9 months) because the biomarker assessments were conducted at 

various time points prior to administration of the CAB. Comparable models with ANCOVA 

were performed for PiB positivity. VIF and tolerance were again inspected. Because we 

expected smaller effect sizes, we optimized statistical power by not adjusting for multiple 

comparisons in these cognition/biomarker analyses (i.e., p<.05 was considered significant). 

For comparison, we also analyzed the relationships between the three traditional 

neuropsychological tests (see 2.4.1) and biomarkers.

3 RESULTS

Participant characteristics are summarized in Table 1.

3.1 Correlations between the CAB, demographics, and traditional neuropsychological 
tests

None of the seven CAB scores or traditional delayed memory scores differed significantly 

by APOE4 status or family history. Females performed better on CPAL (fewer errors; p<.

001, Cohen’s d= 0.39) and on GMCT (more moves per second; p=.004, Cohen’s d=−0.27), 

similar to traditional verbal memory tests [RAVLT delayed (p<.001, Cohen’s d=−0.81) and 

Logical Memory delayed (p=.005, Cohen’s d=−0.26)]. Spearman rank-order correlation 

coefficients are reported in Table 2 for age, education, literacy, depression, and computer 

familiarity. Effect sizes for all associations with demographic and CAB variables were small 

except between age and GMCT and age and TWOB, which were both moderate. A large 

effect size was observed for sex on RAVLT delayed and a moderate effect size was observed 

for literacy on Logical Memory delayed. All other effect sizes were small.

The majority of neuropsychological test scores and CAB scores were significantly 

correlated. A correlation matrix is provided as Table 3 with moderate correlations in bold. 

Within CogState correlations are reported in Supplementary Table 2.

3.2 CAB performance by cognitive status

After controlling for risk factors and demographics, CAB performance differed between 

individuals who were cognitively impaired and cognitively normal controls for all CAB tests 

(p<.007, Table 4, Figure 1) except ONB. All effect sizes were small except GMR, which was 

moderate. There were several other significant (p<.05) predictors in the CogState models. 
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Age and literacy were significant predictors of CogState performance in every model except 

ONB. Sex was a significant predictor for CPAL, GML, and GMR. APOE4 was a significant 

predictor of CPAL and GML. Computer familiarity was significantly associated with GMCT 

and family history was significantly associated with OCL.

3.3 Associations between individual cognitive tests and composite cognitive impairment 
index

VIF and tolerance were in the normal range for all models. CCII significantly predicted 

performance on all CAB tests (p<.007, Table 5, Figure 2). Age at CAB testing (CPAL, 

GMCT, GML, OCL, TWOB) and sex (GML, GMR, TWOB) were common additional 

predictors of CAB performance (p<.05). Computer familiarity also significantly predicted 

GMCT only (p<.05). Logical memory delayed and BVMT-R delayed also significantly 

predicted CCII (p<.007, Table 5). Effect sizes were moderate for CPAL, GMR, Logical 

Memory delayed, and BVMT-R delayed; all others were small.

3.4 Associations between cognition and biomarkers

Based on null hypothesis testing, p-tau/Aβ42 but not NFL required batch correction. Overall, 

biomarkers were not strongly associated with the CAB or delayed recall scores in the subset 

with CSF (n=70) or PiB (n=91), with significant and trending associations only present for 

the CSF biomarkers. Spearman correlations are reported in Table 6. When significant or 

trending correlations were investigated further in regression and ANCOVA models, only 

CSF p-tau/Aβ42 (Figure 3) was a significant predictor of OCL performance (β=−1.13, t=

−3.09, f2=.162, R2=.203, R2-change=.129, p=.003).

4 DISCUSSION

Computer-based psychological batteries offer several advantages over traditional 

psychological (often paper-and-pencil-based) tests including reduced testing time and 

administrative training, standardization of test administration, accurate measures of response 

latencies, and reduced risk of human error [50, 51]. Consequently, there has been a shift in 

interest to computer-administrated psychological batteries. The CogState battery is one such 

computerized battery that has been shown to have good accuracy, efficiency, and stability for 

repeated assessment, as well as demonstrated sensitivity to cognitive impairment and 

cognitive change [52, 53]. Here we evaluated performance on an abbreviated CogState 

battery at a single time point in relation to demographics characteristics, traditional 

neuropsychological tests, cognitive status, a composite cognitive score, and biomarkers in a 

late-middle-aged sample from the WRAP cohort. We also sought to provide a context for 

assessing the sensitivity of the select CogState tests by examining traditional gold-standard 

tests of delayed memory in parallel. Our findings that select CogState tests were associated 

with several measures of early cognitive impairment and a CSF biomarker for AD pathology 

support the use of the CogState battery as a neuropsychological testing tool during the 

preclinical timeframe.

Our results are consistent with previous studies of CogState showing generally weak 

relationships with demographic variables and weak to moderate associations with traditional 
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neuropsychological tests [5, 11, 54]. Associations with demographic characteristics were 

generally small, with the most consistent relationships observed with age and sex. GMCT 

was most affected by demographic characteristics like computer familiarity, education, and 

literacy. Traditional delayed memory tests were more strongly and consistently associated 

with demographic characteristics (e.g., all three tests were significantly correlated with age, 

education, and literacy) than CogState measures, supporting the theory that the CogState 

battery is more robust to education level compared to traditional paper-based 

neuropsychological tests.

The majority of the CAB and traditional tests were significantly correlated, and moderate 

correlation coefficients were generally observed between tests of comparable cognitive 

domains. CPAL was moderately correlated with almost all traditional tests of memory 

examined. The Groton Maze tests combine skills of executive function, learning, and 

memory and correspondingly were moderately correlated with traditional 

neuropsychological tests of memory (RAVLT, BVMT) and executive function (Stroop, TMT, 

WAIS-R Digit Symbol), as well as Animal Naming. Interestingly, GMCT, which is generally 

considered a task to introduce subjects to the Groton Maze learning and delayed recall tasks, 

had the most frequent associations with other neuropsychological tests of the three maze 

paradigms; GML and GMR were both only moderately correlated with BVMT-R immediate 

and delayed recall. Of the card tests, OCL, a visual memory test, was moderately correlated 

with RAVLT delayed recall and TMT Part B; and TWOB, a test of working memory, was 

moderately correlated with three executive functioning tasks: Stroop, TMT Parts A and B, 

and WAIS-R Digit Symbol. Moderate correlations between CogState and traditional 

neuropsychological tests, therefore, were generally consistent with the domains they are 

expected to probe.

Curiously, although ONB is included in CogState’s recommended Alzheimer’s Battery [4], 

it was the most weakly correlated with any traditional neuropsychological tests, often not 

reaching even liberal thresholds for statistical significance (i.e., p<.05). Performance on 

ONB was also the only CAB test that did not differ between cognitively normal and 

cognitively impaired groups. Given the relative health and younger age of our sample, we 

suspect this test was too easy for our participants and resulted in a marked ceiling effect. 

Indeed, participants only made on average two errors on ONB with one-fourth of the sample 

making zero errors and 93% of participants making five or fewer errors. This contrasts with 

the other two card tasks: an average of five errors were made on TWOB with only 7% 

making zero errors, and an average of 26 errors were made on OCL and no participants 

made fewer than 10 errors. Others have found differences between diagnostic groups on 

ONB test using reaction time instead of accuracy, which could be less prone to ceiling 

effects and may be more applicable in cohorts without clinical dementia [11]. Its major 

function in the battery we selected was to serve as a warm up test for the more difficult 

TWOB task. Our results suggest that ONB accuracy is less useful in late middle-age.

One of the earliest studies of the CogState battery showed that 15 patients with MCI 

declined within a one-year period on a CogState memory task (Continuous Learning Test) 

compared to age, education, IQ, and gender matched controls; while decline was not 

detectable using routine memory tests in either group [55]. While we were not able to 
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address decline in CogState performance across groups with only one time point of CAB 

administration, we did incorporate the extensive longitudinal data that has been collected in 

WRAP using traditional neuropsychological tests to create a composite of cognitive 

impairment. Unlike simple z-score composites, the CCII adjusts for inter-individual 

differences in rates of change, removes confounding effects of age at study entry, and 

accounts for correlations among cognitive measures. This type of cognitive impairment 

index could be a useful tool against which to measure novel tests of cognitive/clinical status 

and progression, like the CogState battery. Both the CAB and traditional delayed memory 

tests were associated with CCII. Effect sizes were moderate for CPAL, GMR, Logical 

Memory delayed, and BVMT-R delayed with the largest effect size observed for CPAL. 

Since GMR, CPAL, Logical Memory delayed recall, and BVMT-R delayed recall all 

measure delayed memory, it would seem that this cognitive domain is either driving the 

CCII calculation or that delayed recall tests—either computerized or not—are the most 

sensitive to early cognitive decline, as measured by this unique composite cognitive 

impairment index.

With the exception of ONB, cognitively impaired individuals performed significantly worse 

on the CAB tests compared to cognitively normal controls. The difference was generally 

small, with the most marked difference observed for GMR, a tests of delayed memory, 

suggesting that GMR is most sensitive to early cognitive dysfunction among the CAB 

variables.

After correcting for covariates, only CSF p-tau/Aβ42 was associated with worse performance 

on OCL test, which uses a pattern separation paradigm to measure visual memory. Most 

previous studies that have found an association between biomarkers and CogState tests have 

evaluated intra-individual cognitive decline based on longitudinally acquired CogState 

testing rather than a single time point [3, 6–8, 56]. In contrast, a study with a single CogState 

battery evaluation did not find an association between CogState test performance and 

amyloid PET [12]. The latter study did, however, find relatively weak associations between 

CogState test performance and FDG-PET hypometabolism and smaller hippocampal 

volumes, suggesting that a single time point could still be informative of underlying 

pathology. While we were able to detect a relationship between a CSF measure of co-

occurring amyloid and tau pathology and one CogState test but none of the three traditional 

delayed memory tests, it remains unclear whether CogState tests at one time point would 

substantially improve inference about underling pathology beyond what is possible with 

traditional paper-based neuropsychological tests.

4.1 Limitations

The primary limitations of this study are that biomarkers were collected several years before 

CAB administration and that we do not yet have serial CAB testing, both of which constrain 

our ability to make stronger inferences about the CogState battery and underlying pathology. 

The correlational analyses between the CAB and traditional tests may have also been 

affected by the number of times of previous administration on the pencil-and-paper tests 

which are known to have practice effects [57, 58]. Due to testing duration considerations, we 

only selected two of the four CogState card tasks; while the selected tasks utilize the 
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cognitive domains of primary interest to this study (learning and memory), this may limit the 

comparability to other studies which used all four card tasks. It is also worth noting again 

the smaller samples sizes in the biomarkers analyses; it is possible that we lacked sufficient 

power to detect important associations between these cognitive tests and underlying 

pathology; indeed, although most correlations between p-tau/Aβ42 and the CAB tests were 

considered not significant, all were in the expected direction. Additionally, our study cohort 

was largely Caucasian and well educated, and so generalizability is restricted. This 

homogeneity may have also reduced our ability to detect demographic correlates of the 

CAB. It will be important to perform similar studies with CogState in more diverse 

populations. Longitudinal clinical outcomes will be important for evaluating prognostic 

utility of the CAB.

4.2 Conclusions

Overall this study provided support for the use of the CAB in evaluating cognitive function 

during late-middle-age. The present study is unique in that the WRAP participants are 

younger and cognitively healthier than the typical clinical MCI groups that have been 

investigated in prior studies; the population is also enriched for higher risk of developing 

MCI and dementia due to parental history of AD. Although prior studies provide evidence 

that the CogState battery can differentiate between healthy controls and clinical MCI in 

older age, this study suggests that it is also sensitive to decline in early MCI, before clinical 

symptoms and multiple objective cognitive impairments are apparent. It further provides 

evidence for an association between one CogState test in particular (OCL) and an important 

pathological marker for preclinical AD, CSF p-tau/Aβ42. However, it also suggests that 

CogState at a single time point may not substantially improve preclinical AD detection over 

traditional neuropsychological tests. Still, its administration offers several advantages over 

paper-based tests, which make it desirable for large, longitudinal studies with demographic 

variability. Future directions will focus on longitudinally collected CogState data in the 

WRAP cohort and examination of a greater array of biomarkers.
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Figure 1. 
Boxplots depicting comparison of Cognitively Normal and Cognitively Impaired groups on 

mean performance on CogState tests. Accuracy was transformed using the arcsine 

proportion to correct for normality.
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Figure 2. 
Relationships between CogState tests and a composite cognitive impairment index estimated 

at age 65. 95% confidence intervals for the regression line are displayed. Accuracy was 

transformed using the arcsine proportion to correct for normality.
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Figure 3. 
Partial regression plot of CSF p-tau/Aβ42 and One-card learning performance as measured 

by arcsine-corrected accuracy. 95% confidence interval for the regression line is displayed. 

R2=.139.
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Table 1

Participant characteristics

Sample characteristic Total Sample
(N=469

Cognitively Impaired
(n=70)

Cognitively Normal
(n=393)

p-value*

Age at CogState (years) 64.81 (6.6) 66.26 (6.1) 63.39 (6.6) .001

Sex (% female) 67.0% 57.1% 68.4% .064

APOE4+ 39.0% 37.1% 38.7% .808

Family History of AD 74.4% 67.1% 75.6% .137

Education (years) 16.50 (2.6) 16.40 (2.9) 16.53 (2.6) .703

WRAT reading standard score** 106.35 (9.2) 105.17 (11.2) 106.57 (8.8) .242

WRAT reading raw score** 51.17 (4.4) 50.41 (5.4) 51.31 (4.2) .189

Depression (CES-D) 6.21 (6.6) 6.30 (5.8) 5.93 (6.1) .634

Computer familiarity*** 4.74 (0.7) 4.56 (1.0) 4.77 (0.7) .097

Values are Mean (SD) unless otherwise indicated.

*
P-value is for chi square or t-test comparing Cognitively Impaired and Cognitively Normal groups.

**
WRAT reading standard scores in addition to raw scores are reported for easier interpretation, but raw scores were used in all statistical models 

to main consistency with other variables which were not standardized for age and sex. Computer familiarity was measured on a 1–5 scale where 
“1” corresponds to using a personal computer “once a year or less” and “5” corresponds to using a personal computer “every day or about every 
day.” APOE4=apolipoprotein E4 allele. WRAT=Wide Range Achievement Test. CES-D=Center for Epidemiological Studies Depression Scale.
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Table 6

Biomarker correlations with CogState and traditional neuropsychological tests

Cognitive Test

Biomarker

PiB burden PiB burden
(outlier removed)

CSF
p-tau/Aβ42

CSF NFL

CPAL errors −.002 −.023 .203 .305

GMCT moves/sec −.083 −.089 −.102 −.296

GML errors .030 .006 .118 .219

GMR errors .057 .035 .165 .217

OCL accuracy −.141 −.115 −.347 −.204

ONB accuracy .072 .111 −.018 −.148

TWOB accuracy −.120 −.121 −.007 −.069

RAVLT delayed .120 .105 −.235 −.378

Logical Memory delayed −.053 −.026 −.199 −.300

BVMT-R delayed −.121 −.100 −.192 −.257

Spearman correlation coefficients are reported. Significant (p<.05) results are bolded. Trends (p<.1) are italicized. Accuracy was transformed using 
the arcsine proportion to correct for normality.
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