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Abstract - The paper discusses the application of Binary 
Decision Diagrams (BDDs) in the reconstructability 
analysis of crisp possibilistic systems. In particular, we 
show how BDDs can be used to represent set-theoretic 
relations and implement the three basic operations of 
reconstructability analysis. 
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systems, binary decision diagrams, decomposition of 
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1 Introduction 
  Reconstructability analysis [1,2,3] is well developed for 
two types of data: set-theoretic relations (crisp possibilistic 
systems) and frequency or probability distributions 
(probabilistic systems).  This paper explores the use of 
binary decision diagrams (BDD) in the reconstructability 
analysis (RA) of crisp possibilistic systems.  By focusing on 
BDD, we treat only systems here whose variables are 
binary, but the results of this paper can be extended to 
multi-valued variables using multi-valued decision diagrams 
(MDD). MDDs are a generalization of BDDs for variables 
taking values from finite domain. In most practical 
applications, MDDs are encoded using binary variables and 
manipulated using BDDs. This is why discussion in this 
paper is relevant for the case of multi-valued variables as 
well. 
 
  The BDD representation of completely specified 
Boolean functions [4] is of interest for two reasons: (1) it 
can be used to represent Boolean relations compactly, and 
(2) it leads to a faster computation of operations on relations 
that are performed in RA.   
 
  The first of these is a certain gain: for N binary 
variables, the size of a relation − the number of tuples 
needed to define it − goes up as 2N, but the size of the BDD 
representation for the relations appearing in practical 
problems often has a lesser complexity. The compression 
achieved by using BDDs is the greater, the more structure is 
present in the data set. For random or pseudo-random 
collections of data, however, the BDD size is still 
exponential. If RA operations for problems with inherent 
structure can be performed directly on BDD 

representations, then this representation could become 
standard for crisp possibilistic RA because of its space-
saving advantage.  If, in addition, RA operations are faster 
when done on BDD representations than on standard tuple 
representations, then BDD representation would offer not 
only a space but also a time enhancement of RA 
computation.  Such speed increases are often encountered in 
BDD implementations because BDD store information in an 
implicit form contrasted with the explicit representation of 
relations in terms of tuples.  
 
  In the implicit representation, a single object (such as a 
tuple of a relation) corresponds to a path in the BDD graph. 
It is known that the number of paths in the graph can be 
exponential in the number of nodes. Hence, the best-case 
exponential compression of the data sets represented as 
BDDs. This is also the reason why single operations on the 
graph nodes in this implicit representation can accomplish 
multiple effects simultaneously when looked at from the 
point of view of manipulating the original tuple objects 
(encoded as paths in the graph).  This reflects the 
polynomial dependence of BDD representation size for 
some practical problems, as compared to the exponential 
dependence on the number of variables of the alternative 
explicit representations. For example, the BDD 
representation of the Exclusive-OR function of n variables 
is linear in the number of variables, while the tuple 
representation is exponential in the number of variables.  
 
  In RA of crisp possibilistic systems [5,6], a set-
theoretic relation is decomposed into a set of lower 
ordinality relations, which together with the maximum 
uncertainty principle yield a calculated relation that is either 
the same as the original relation (lossless decomposition) or 
different from it (lossy decomposition).  An RA model 
(decomposition) is assessed in three steps [7,8]: 
 
(1) projection of the data into the relations constituting the 

model,  
(2) composition of these relations using the maximum 

uncertainty principle, and  
(3) evaluation of the calculated relation by comparing it to 

the original data relation.   
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  Consider, for example, a set-theoretic relation ABC, 
and a model AB:BC.  To assess this model, one generates 
the AB and BC projections of ABC.  Next one composes 
these projections into a calculated ABCAB:BC relation, given 
by ABCAB:BC = (AB ⊗  C) ∩ (BC ⊗  A).  The Cartesian 
products which are intersected might be called the 
“expanded” AB and BC, relations, respectively; these are 
the maximum uncertainty ABC relations consistent with AB 
and BC, respectively.  Finally, one checks if ABCAB:BC = 
ABC and if not what the error in the model is.   
 
  These three operations can be done directly on BDD 
representations of relations, which may, for many datasets, 
lead to faster processing than what is achievable using tuple 
representations.  Also, the space saving feature of BDDs 
can offer a significant advantage in RA modeling. 
 
  These three operations define the steps needed in the 
confirmatory mode of RA, that is, these are the steps needed 
to test one specific RA model.  This is the focus of the 
present paper.  However, BDD might be used also in the 
exploratory mode, where one considers a wide range of 
possible models.  Also BDD or MDD might be useful not 
only in crisp-possibilistic RA, but in probabilistic RA as 
well.  These possible uses of RA are considered in the 
Discussion section later. 
 

2  Representation 
 Consider the ABC relation, defined in Table 1 for 
three binary variables.  The table shows also two of its three 
projections, AB and BC.  The third projection, AC, has no 
constraint, i.e., consists of all four possible pairs. 

Table 1. An ABC relation and its AB and BC projections 

A 0 0 0 1 1  0 0 1     
B 0 1 1 1 1  0 1 1  0 1 1 
C 0 0 1 0 1      0 0 1 

 
  If it were necessary to define the relation by specifying 
for each of the tuples (minterms) whether it is in the relation 
or not in the relation, one would have the graph (decision 
tree) shown on the left in Figure 1.  There are 2N final 0 or 1 
nodes in the tree, which specify for all tuples whether they 
are in the relation or not. 
 
  The BDD representation of this relation, which is much 
more compact than the decision tree, is shown on the right.  
A dashed line (called a “low edge”) corresponds to a 
variable value of 0 and a solid line (called a “high edge”) 
corresponds to a value of 1.  At the bottom of the graph, the 
squares containing 0 and 1 indicate whether a tuple is absent 
or present, respectively, in the relation.  The BDD graph of 
ABC shows that if A=0, then if B is 1, then the tuple is 
present in the relation, but if B is 0, then if C is 0, the tuple 

is present, but if C is 1, the tuple is absent.  For A=1, if 
B=1, the tuple is present, but if B=0, the tuple is absent. 
 
  In the explicit representation of the decision tree on the 
left, there is a terminal node for every state (tuple) in the 
relation and also for every state not in the relation, hence 
the 2N dependence of this kind of representation.  The 
relation given in Table 1 thus requires 7 nodes in the 
decision tree (not counting the 0- and 1-squares that specify 
the presence or absence of the tuple.)  Even if we only 
specified the tuples present in the relation, or, alternatively, 
those absent in it, we would still be left with of order 2N-1 
tuples.  By contrast, the BDD representation in this case 
requires only 4 nodes. In general, the BDD size can be 
anything from a constant to exponential in the number of 
variables, but the empirical observation is that, for many 
typical data sets arising in the practical applications, the 
BDD size is manageable.  
 
  The reason why the BDD representation is often more 
compact is because it stores the information about the 
relation in the paths, rather than in the terminal nodes, of a 
graph.  Because the number of paths goes up exponentially 
with the number of nodes, this makes it possible for the 
number of nodes in the representation of data for some 
problems to go up linearly with the number of variables. 
 
Figure 1. Decision tree (left) and BDD (right) for the 
ABC relation of Table 1.  Dashed and solid lines stand 
for variable values of 0 and 1, respectively. 
 

 
 
  The BDD is obtained from the tree on the left by 
applying two reduction rules [4]: 
 
Rule (1): If several nodes are labeled by the same variable 
and have identical successors, only one of them is allowed 
to remain in the graph, and  
 
Rule (2): If both edges of a node have the same successor, 
the node is removed from the graph. 
 
By rule (2), the 01c node, which has both edges pointing to 
the 1-box, is dropped and replaced with the 1-box; similarly 
the 10c and 11c nodes are replaced with the 0-box and 1-
box, respectively. Then, by rule (1), all 0-boxes are fused 
into one, and similarly for all 1-boxes.  This process of 

a 

0 0 0 0 1 1 1 1 1 1 

a 

b 

c 

b b b 

c c c c 
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reduction of the decision tree resulting in the BDD is shown 
in Figure 2. 
 
Figure 2. Reduction of decision tree resulting in BDD. 

 
  At this point, it is convenient to define how the 
complement of a set-theoretic relation is taken.  This is done 
using 
 
Rule (3): The complement of a BDD is obtained by 
swapping the 0 and 1 terminal nodes. 
 

3  Projection, Composition, Evaluation 
  The BDD formalism implements projection by using 
existential abstraction (or quantification) with respect to a 
set of variables. Essentially, a tuple belongs to the resulting 
relation (the projected or quantified relation) iff there exists 
an assignment of variables projected away, which when 
added to it, make it a tuple of the original relation. 
 
  The computation of the projection with respect to a set 
of variables on the BDD representation can be performed in 
two steps that are combined in the practical implementation. 
 
Step 1. First one computes the cofactor relations for each 
set of values of the projected variables. For example, if we 
are projecting away variable C to get the AB projection, we 
compute cofactor relations for (C=0) and (C=1).  Each of 
these cofactors can be computed by traversing the BDD and 
removing nodes that depend on C. In doing so,  all the 
incoming edges of the nodes depending on C are redirected 
to the nodes pointed by the corresponding edge of C. For 
example, if we are computing the cofactor relation for C=1, 
we redirect any edge going to a C-node to the node pointed 
by the high edge of the C-node.  Subsequently, the resulting 

BDD is reduced using Rules 1 and 2. These steps and 
reductions are implemented in the BDD package [9], a 
library of software procedures for the manipulation of 
Boolean functions in the BDD form. 
 
Step 2. Next, one computes the union of the relations, which 
is the same as the Boolean OR (the sum) of the Boolean 
functions represented by the corresponding BDDs. The 
Boolean operations can be computed on the BDDs using the 
operator If-Then-Else (ITE). For three functions, F, G, and 
H, the operation is: ITE(F, G, H) = F&G+ F′&H, where & 
is logical AND, + is logical OR, and ′ is the complement. 
This operation is efficiently implemented in the BDD 
package [9]. The OR operation is reduced to the ITE 
operation as follows: F+G = ITE(F,1,G). 
 
  The composition operation is the Boolean AND (the 
product) of the Boolean functions represented by the 
operand BDDs. Similarly to the Boolean OR, the AND 
operation is reduced to ITE: F&G = ITE(F,G,0). 
 
  The variables missing in the operands are added to the 
BDD by simply assuming that an original BDD depends on 
the additional variables. No actual change to the BDD 
nodes has to be performed. In the software implementation, 
the BDD package has to expand the set of its support 
variables, but the BDDs in the package remain unchanged. 
 
  Composition yields a calculated relation which must be 
evaluated relative the observed relation.  Either the 
calculated relation loses constraint with respect to the data, 
or it is lossless, i.e., equivalent to the original relation.  In 
the above example of composition, there is no loss of 
constraint, and the equivalence of the BDD representations 
of the original and composed relation can be ascertained by 
comparing the pointers to the two BDD representations. 
Because the BDD is a canonical representation, the two 
BDD pointers are equal if and only if the two relations are 
equivalent.   
 
  We are interested also in the constraint loss (error), 
which occurs when the reconstructed relation is not 
equivalent to the data.  The error is the set of tuples in the 
calculated relation, ABCAB:BC, that are not found in the data, 
i.e., the intersect of ABCAB:BC and ABC ′, the complement 
of ABC : 
 

Ε = ABC ′ ∩ ABCAB:BC 
 
  This intersect operation can be implemented using the 
BDD AND operation, as described above for composition. 
It may in this case be more efficient to perform projection 
and then to apply a specialized BDD traversal to check the 
existence of error without computing ABC ′& ABCAB:BC. 
To find out what tuple(s) constitute the error, however, it 
would still be necessary to compute ABC ′& ABCAB:BC. 
 

a 

0 0 0 

0 1 

1 1 1 1 1 

a 

b 

c 

b 

b b 

c c c 

c 

0 1 

a 

b 

c 

b 

1 0 1 

Rule 2 

Rule 1 
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4  Discussion 
  From the perspective of the current state of research in 
BDDs and Boolean satisfiability [10] (determining whether 
the given Boolean formula has a satisfying assignment), the 
problem of finding error in the model can be also solved 
using Boolean satisfiability without BDDs. Most likely, 
neither of these two approaches will dominate another in 
general, but will show certain advantages on different types 
of problems. 
 
  The three operations of projection, composition, and 
evaluation involved in assessing a model in confirmatory 
RA can be done with BDD representations.  In exploratory 
RA, one searches through the Lattice of Structure (LoS), or 
some sub-lattice, to find the best (simplest and least lossy) 
model that fits the data (the observed relation).  For some 
purposes, one might be interested not in a single best model, 
but in a set of good models; and for other purposes – 
although only for low ordinality relations -- one might be 
interested in the evaluation of all models in the LoS (or 
some sub-lattice of it). 

  BDDs might contribute to the exploratory mode in a 
modest way by assisting in the generation of structures to 
be assessed, i.e., in the generation of all or parts of the LoS.  
If BDDs can examine multiple models in parallel, it would 
offer much more substantial additional benefits to RA 
modeling.  The number of structures in the LoS is 
exponential or hyper-exponential in the number of 
variables.  If the implicit representation of BDD would 
allow it to “simultaneously” assess multiple models, its 
contribution to RA would be formidable. 

  So far, only the application of BDD (or MDD) to RA 
for crisp possibilistic RA has been explored, but one might 
consider also the possible use of MDD in probabilistic RA.  
In probabilistic RA, a frequency or probability is attached to 
every tuple.  If this frequency/probability is “binned” into 
discrete values, the distribution becomes a mapping which 
might be analyzed by crisp possibilistic RA.  This 
possibility and other approaches to probabilistic RA are 
under investigation. 
 
  The following tutorial papers provide additional details 
on the theory and implementation of BDDs: [11,12]. 
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