
Portland State University Portland State University

PDXScholar PDXScholar

Systems Science Faculty Publications and
Presentations Systems Science

2006

Binary Decision Diagrams and Crisp Possibilistic Binary Decision Diagrams and Crisp Possibilistic

Reconstructability Analysis Reconstructability Analysis

Martin Zwick
Portland State University, zwick@pdx.edu

Alan Mishchenko
University of California - Berkeley

Follow this and additional works at: https://pdxscholar.library.pdx.edu/sysc_fac

 Part of the Computer Sciences Commons, and the Engineering Commons

Let us know how access to this document benefits you.

Citation Details Citation Details
Zwick, Martin & Mishchenko (2006). "Binary Decision Diagrams and Crisp Possibilistic Reconstructability
Analysis." [Post-print] International Conference on Complex Systems. Boston, June 25-30.

This Conference Proceeding is brought to you for free and open access. It has been accepted for inclusion in
Systems Science Faculty Publications and Presentations by an authorized administrator of PDXScholar. Please
contact us if we can make this document more accessible: pdxscholar@pdx.edu.

https://pdxscholar.library.pdx.edu/
https://pdxscholar.library.pdx.edu/sysc_fac
https://pdxscholar.library.pdx.edu/sysc_fac
https://pdxscholar.library.pdx.edu/sysc
https://pdxscholar.library.pdx.edu/sysc_fac?utm_source=pdxscholar.library.pdx.edu%2Fsysc_fac%2F160&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/142?utm_source=pdxscholar.library.pdx.edu%2Fsysc_fac%2F160&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/217?utm_source=pdxscholar.library.pdx.edu%2Fsysc_fac%2F160&utm_medium=PDF&utm_campaign=PDFCoverPages
http://library.pdx.edu/services/pdxscholar-services/pdxscholar-feedback/?ref=https://pdxscholar.library.pdx.edu/sysc_fac/160
mailto:pdxscholar@pdx.edu

Zwick, Martin & Mishchenko, Alan (2006). International Conference on Complex Systems (NECSI), Boston, June 25-30.

Binary Decision Diagrams and Crisp Possibilistic
Reconstructability Analysis

Martin Zwick

Systems Science Ph.D. Program
Portland State University
Portland OR 97207-0751

zwick@pdx.edu

Alan Mishchenko
Department of EECS

University of California
Berkeley CA

alanmi@eecs.berkeley.edu

Abstract - The paper discusses the application of Binary
Decision Diagrams (BDDs) in the reconstructability
analysis of crisp possibilistic systems. In particular, we
show how BDDs can be used to represent set-theoretic
relations and implement the three basic operations of
reconstructability analysis.

Keywords: reconstructability analysis, crisp possibilistic
systems, binary decision diagrams, decomposition of
relations and functions

1 Introduction
 Reconstructability analysis [1,2,3] is well developed for
two types of data: set-theoretic relations (crisp possibilistic
systems) and frequency or probability distributions
(probabilistic systems). This paper explores the use of
binary decision diagrams (BDD) in the reconstructability
analysis (RA) of crisp possibilistic systems. By focusing on
BDD, we treat only systems here whose variables are
binary, but the results of this paper can be extended to
multi-valued variables using multi-valued decision diagrams
(MDD). MDDs are a generalization of BDDs for variables
taking values from finite domain. In most practical
applications, MDDs are encoded using binary variables and
manipulated using BDDs. This is why discussion in this
paper is relevant for the case of multi-valued variables as
well.

 The BDD representation of completely specified
Boolean functions [4] is of interest for two reasons: (1) it
can be used to represent Boolean relations compactly, and
(2) it leads to a faster computation of operations on relations
that are performed in RA.

 The first of these is a certain gain: for N binary
variables, the size of a relation − the number of tuples
needed to define it − goes up as 2N, but the size of the BDD
representation for the relations appearing in practical
problems often has a lesser complexity. The compression
achieved by using BDDs is the greater, the more structure is
present in the data set. For random or pseudo-random
collections of data, however, the BDD size is still
exponential. If RA operations for problems with inherent
structure can be performed directly on BDD

representations, then this representation could become
standard for crisp possibilistic RA because of its space-
saving advantage. If, in addition, RA operations are faster
when done on BDD representations than on standard tuple
representations, then BDD representation would offer not
only a space but also a time enhancement of RA
computation. Such speed increases are often encountered in
BDD implementations because BDD store information in an
implicit form contrasted with the explicit representation of
relations in terms of tuples.

 In the implicit representation, a single object (such as a
tuple of a relation) corresponds to a path in the BDD graph.
It is known that the number of paths in the graph can be
exponential in the number of nodes. Hence, the best-case
exponential compression of the data sets represented as
BDDs. This is also the reason why single operations on the
graph nodes in this implicit representation can accomplish
multiple effects simultaneously when looked at from the
point of view of manipulating the original tuple objects
(encoded as paths in the graph). This reflects the
polynomial dependence of BDD representation size for
some practical problems, as compared to the exponential
dependence on the number of variables of the alternative
explicit representations. For example, the BDD
representation of the Exclusive-OR function of n variables
is linear in the number of variables, while the tuple
representation is exponential in the number of variables.

 In RA of crisp possibilistic systems [5,6], a set-
theoretic relation is decomposed into a set of lower
ordinality relations, which together with the maximum
uncertainty principle yield a calculated relation that is either
the same as the original relation (lossless decomposition) or
different from it (lossy decomposition). An RA model
(decomposition) is assessed in three steps [7,8]:

(1) projection of the data into the relations constituting the

model,
(2) composition of these relations using the maximum

uncertainty principle, and
(3) evaluation of the calculated relation by comparing it to

the original data relation.

Binary Decision Diagrams & Crisp Possibilistic Reconstructability Analysis 2

Zwick, Martin & Mishchenko, Alan (2006). International Conference on Complex Systems (NECSI), Boston, June 25-30.

 Consider, for example, a set-theoretic relation ABC,
and a model AB:BC. To assess this model, one generates
the AB and BC projections of ABC. Next one composes
these projections into a calculated ABCAB:BC relation, given
by ABCAB:BC = (AB ⊗ C) ∩ (BC ⊗ A). The Cartesian
products which are intersected might be called the
“expanded” AB and BC, relations, respectively; these are
the maximum uncertainty ABC relations consistent with AB
and BC, respectively. Finally, one checks if ABCAB:BC =
ABC and if not what the error in the model is.

 These three operations can be done directly on BDD
representations of relations, which may, for many datasets,
lead to faster processing than what is achievable using tuple
representations. Also, the space saving feature of BDDs
can offer a significant advantage in RA modeling.

 These three operations define the steps needed in the
confirmatory mode of RA, that is, these are the steps needed
to test one specific RA model. This is the focus of the
present paper. However, BDD might be used also in the
exploratory mode, where one considers a wide range of
possible models. Also BDD or MDD might be useful not
only in crisp-possibilistic RA, but in probabilistic RA as
well. These possible uses of RA are considered in the
Discussion section later.

2 Representation
 Consider the ABC relation, defined in Table 1 for
three binary variables. The table shows also two of its three
projections, AB and BC. The third projection, AC, has no
constraint, i.e., consists of all four possible pairs.

Table 1. An ABC relation and its AB and BC projections

A 0 0 0 1 1 0 0 1
B 0 1 1 1 1 0 1 1 0 1 1
C 0 0 1 0 1 0 0 1

 If it were necessary to define the relation by specifying
for each of the tuples (minterms) whether it is in the relation
or not in the relation, one would have the graph (decision
tree) shown on the left in Figure 1. There are 2N final 0 or 1
nodes in the tree, which specify for all tuples whether they
are in the relation or not.

 The BDD representation of this relation, which is much
more compact than the decision tree, is shown on the right.
A dashed line (called a “low edge”) corresponds to a
variable value of 0 and a solid line (called a “high edge”)
corresponds to a value of 1. At the bottom of the graph, the
squares containing 0 and 1 indicate whether a tuple is absent
or present, respectively, in the relation. The BDD graph of
ABC shows that if A=0, then if B is 1, then the tuple is
present in the relation, but if B is 0, then if C is 0, the tuple

is present, but if C is 1, the tuple is absent. For A=1, if
B=1, the tuple is present, but if B=0, the tuple is absent.

 In the explicit representation of the decision tree on the
left, there is a terminal node for every state (tuple) in the
relation and also for every state not in the relation, hence
the 2N dependence of this kind of representation. The
relation given in Table 1 thus requires 7 nodes in the
decision tree (not counting the 0- and 1-squares that specify
the presence or absence of the tuple.) Even if we only
specified the tuples present in the relation, or, alternatively,
those absent in it, we would still be left with of order 2N-1
tuples. By contrast, the BDD representation in this case
requires only 4 nodes. In general, the BDD size can be
anything from a constant to exponential in the number of
variables, but the empirical observation is that, for many
typical data sets arising in the practical applications, the
BDD size is manageable.

 The reason why the BDD representation is often more
compact is because it stores the information about the
relation in the paths, rather than in the terminal nodes, of a
graph. Because the number of paths goes up exponentially
with the number of nodes, this makes it possible for the
number of nodes in the representation of data for some
problems to go up linearly with the number of variables.

Figure 1. Decision tree (left) and BDD (right) for the
ABC relation of Table 1. Dashed and solid lines stand
for variable values of 0 and 1, respectively.

 The BDD is obtained from the tree on the left by
applying two reduction rules [4]:

Rule (1): If several nodes are labeled by the same variable
and have identical successors, only one of them is allowed
to remain in the graph, and

Rule (2): If both edges of a node have the same successor,
the node is removed from the graph.

By rule (2), the 01c node, which has both edges pointing to
the 1-box, is dropped and replaced with the 1-box; similarly
the 10c and 11c nodes are replaced with the 0-box and 1-
box, respectively. Then, by rule (1), all 0-boxes are fused
into one, and similarly for all 1-boxes. This process of

a

0 0 0 0 1 1 1 1 1 1

a

b

c

b b b

c c c c

Binary Decision Diagrams & Crisp Possibilistic Reconstructability Analysis 3

Zwick, Martin & Mishchenko, Alan (2006). International Conference on Complex Systems (NECSI), Boston, June 25-30.

reduction of the decision tree resulting in the BDD is shown
in Figure 2.

Figure 2. Reduction of decision tree resulting in BDD.

 At this point, it is convenient to define how the
complement of a set-theoretic relation is taken. This is done
using

Rule (3): The complement of a BDD is obtained by
swapping the 0 and 1 terminal nodes.

3 Projection, Composition, Evaluation
 The BDD formalism implements projection by using
existential abstraction (or quantification) with respect to a
set of variables. Essentially, a tuple belongs to the resulting
relation (the projected or quantified relation) iff there exists
an assignment of variables projected away, which when
added to it, make it a tuple of the original relation.

 The computation of the projection with respect to a set
of variables on the BDD representation can be performed in
two steps that are combined in the practical implementation.

Step 1. First one computes the cofactor relations for each
set of values of the projected variables. For example, if we
are projecting away variable C to get the AB projection, we
compute cofactor relations for (C=0) and (C=1). Each of
these cofactors can be computed by traversing the BDD and
removing nodes that depend on C. In doing so, all the
incoming edges of the nodes depending on C are redirected
to the nodes pointed by the corresponding edge of C. For
example, if we are computing the cofactor relation for C=1,
we redirect any edge going to a C-node to the node pointed
by the high edge of the C-node. Subsequently, the resulting

BDD is reduced using Rules 1 and 2. These steps and
reductions are implemented in the BDD package [9], a
library of software procedures for the manipulation of
Boolean functions in the BDD form.

Step 2. Next, one computes the union of the relations, which
is the same as the Boolean OR (the sum) of the Boolean
functions represented by the corresponding BDDs. The
Boolean operations can be computed on the BDDs using the
operator If-Then-Else (ITE). For three functions, F, G, and
H, the operation is: ITE(F, G, H) = F&G+ F′&H, where &
is logical AND, + is logical OR, and ′ is the complement.
This operation is efficiently implemented in the BDD
package [9]. The OR operation is reduced to the ITE
operation as follows: F+G = ITE(F,1,G).

 The composition operation is the Boolean AND (the
product) of the Boolean functions represented by the
operand BDDs. Similarly to the Boolean OR, the AND
operation is reduced to ITE: F&G = ITE(F,G,0).

 The variables missing in the operands are added to the
BDD by simply assuming that an original BDD depends on
the additional variables. No actual change to the BDD
nodes has to be performed. In the software implementation,
the BDD package has to expand the set of its support
variables, but the BDDs in the package remain unchanged.

 Composition yields a calculated relation which must be
evaluated relative the observed relation. Either the
calculated relation loses constraint with respect to the data,
or it is lossless, i.e., equivalent to the original relation. In
the above example of composition, there is no loss of
constraint, and the equivalence of the BDD representations
of the original and composed relation can be ascertained by
comparing the pointers to the two BDD representations.
Because the BDD is a canonical representation, the two
BDD pointers are equal if and only if the two relations are
equivalent.

 We are interested also in the constraint loss (error),
which occurs when the reconstructed relation is not
equivalent to the data. The error is the set of tuples in the
calculated relation, ABCAB:BC, that are not found in the data,
i.e., the intersect of ABCAB:BC and ABC ′, the complement
of ABC :

Ε = ABC ′ ∩ ABCAB:BC

 This intersect operation can be implemented using the
BDD AND operation, as described above for composition.
It may in this case be more efficient to perform projection
and then to apply a specialized BDD traversal to check the
existence of error without computing ABC ′& ABCAB:BC.
To find out what tuple(s) constitute the error, however, it
would still be necessary to compute ABC ′& ABCAB:BC.

a

0 0 0

0 1

1 1 1 1 1

a

b

c

b

b b

c c c

c

0 1

a

b

c

b

1 0 1

Rule 2

Rule 1

Binary Decision Diagrams & Crisp Possibilistic Reconstructability Analysis 4

Zwick, Martin & Mishchenko, Alan (2006). International Conference on Complex Systems (NECSI), Boston, June 25-30.

4 Discussion
 From the perspective of the current state of research in
BDDs and Boolean satisfiability [10] (determining whether
the given Boolean formula has a satisfying assignment), the
problem of finding error in the model can be also solved
using Boolean satisfiability without BDDs. Most likely,
neither of these two approaches will dominate another in
general, but will show certain advantages on different types
of problems.

 The three operations of projection, composition, and
evaluation involved in assessing a model in confirmatory
RA can be done with BDD representations. In exploratory
RA, one searches through the Lattice of Structure (LoS), or
some sub-lattice, to find the best (simplest and least lossy)
model that fits the data (the observed relation). For some
purposes, one might be interested not in a single best model,
but in a set of good models; and for other purposes –
although only for low ordinality relations -- one might be
interested in the evaluation of all models in the LoS (or
some sub-lattice of it).

 BDDs might contribute to the exploratory mode in a
modest way by assisting in the generation of structures to
be assessed, i.e., in the generation of all or parts of the LoS.
If BDDs can examine multiple models in parallel, it would
offer much more substantial additional benefits to RA
modeling. The number of structures in the LoS is
exponential or hyper-exponential in the number of
variables. If the implicit representation of BDD would
allow it to “simultaneously” assess multiple models, its
contribution to RA would be formidable.

 So far, only the application of BDD (or MDD) to RA
for crisp possibilistic RA has been explored, but one might
consider also the possible use of MDD in probabilistic RA.
In probabilistic RA, a frequency or probability is attached to
every tuple. If this frequency/probability is “binned” into
discrete values, the distribution becomes a mapping which
might be analyzed by crisp possibilistic RA. This
possibility and other approaches to probabilistic RA are
under investigation.

 The following tutorial papers provide additional details
on the theory and implementation of BDDs: [11,12].

References

[1] G. Klir, The Architecture of Systems Problem Solving.
Plenum Press, New York, 1985.

[2] K. Krippendorff, Information Theory: Structural
Models for Qualitative Data (Quantitative Applications in
the Social Sciences #62), Sage, Beverly Hills, 1986.

[3] International Journal of General Systems (IJGS)
Special Issue on GSPS, Vol 24, pp. 1-2, 1996.

[4] R. E. Bryant, “Graph-based algorithms for Boolean
function manipulation,” IEEE Transactions on Computers,
Vol C-35, No. 8, pp. 677-691, 1986.

[5] R. C. Conant, “Set-Theoretic Structure Modeling,” Int.
J. General Systems, Vol 7, pp. 93-107, 1981.

[6] M. Zwick and H. Shu, “Set-Theoretic
Reconstructability of Elementary Cellular Automata,”
Advances in Systems Science and Applications, Special
Issue, Vol 1, pp. 31-36, 1996.

[7] M. Zwick, “Wholes and Parts in General Systems
Methodology,” In: The Character Concept in Evolutionary
Biology, edited by Gunter Wagner. Academic Press, New
York, pp. 237-256, 2001.
http://www.sysc.pdx.edu/res_struct.html

[8] M. Zwick, “An Overview of Reconstructability
Analysis,” Kybernetes, Vol 33, No. 5/6, pp. 877-905, 2004.
http://www.sysc.pdx.edu/res_struct.html

[9] F. Somenzi, BDD Package CUDD, 2004.
http://vlsi.colorado.edu/~fabio/CUDD/cuddIntro.html

[10] J. P. Marques-Silva and K. A. Sakallah, “GRASP: A
Search Algorithm for Propositional Satisfiability,” IEEE
Transactions on Computers, Vol 48, No. 5, pp. 506-521,
1999.

[11] H. R. Andersen, “An Introduction to Binary Decision
Diagrams,” 1997. http://www.itu.dk/people/hra/notes-
index.html

[12] F. Somenzi, “Binary Decision Diagrams,” 1999.
http://citeseer.nj.nec.com/somenzi99binary.html

	Binary Decision Diagrams and Crisp Possibilistic Reconstructability Analysis
	Let us know how access to this document benefits you.
	Citation Details

	Binary Decision Diagrams and Crisp Possibilistic

