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Research paper
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1,6-hexamethylene diisocyanate haptenated human serum albumin
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Diisocyanates (dNCOs) are lowmolecular weight chemical sensitizers that react with autologous proteins to pro-
duce neoantigens. dNCO-haptenated proteins have been used as immunogens for generation of dNCO-specific
antibodies and as antigens to screen for dNCO-specific antibodies in exposed individuals. Detection of dNCO-
specific antibodies in exposed individuals for diagnosis of dNCO asthma has been hampered by poor sensitivities
of the assaymethods in that specific IgE can only be detected in approximately 25% of the dNCO asthmatics. Apart
from characterization of the conjugates used for these immunoassays, the choice of the carrier protein and the
dNCO used are important parameters that can influence the detection of dNCO-specific antibodies. Human
serum albumin (HSA) is the most common carrier protein used for detection of dNCO specific-IgE and -IgG but
the immunogenicity and/or antigenicity of other proteins that may be modified by dNCO in vivo is not well doc-
umented. In the current study, 2,4-toluene diisocyanate (TDI) and 1,6-hexamethylene diisocyanate (HDI) were
reacted with HSA and human hemoglobin (Hb) and the resultant adducts were characterized by (i) HPLC quan-
tification of the diamine produced from acid hydrolysis of the adducts, (ii) 2,4,6-trinitrobenzene sulfonic acid
(TNBS) assay to assess extent of cross-linking, (iii) electrophoretic migration in polyacrylamide gels to analyze
intra- and inter-molecular cross-linking, and (iv) evaluation of antigenicity using a monoclonal antibody devel-
oped previously to TDI conjugated to Keyhole limpet hemocyanin (KLH). Concentration-dependent increases in
the amount of dNCObound toHDI and TDI, cross-linking,migration in gels, and antibody-bindingwere observed.
TDI reactivity with both HSA and Hb was significantly higher than HDI. Hb–TDI antigenicity was approximately
30% that of HSA–TDI. In conclusion, this data suggests that both, the extent of haptenation aswell as the degree of
cross-linking differs between the two diisocyanate species studied, which may influence their relative immuno-
genicity and/or antigenicity.

Published by Elsevier B.V.
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2,4-Toluene diisocyanate
1,6-Hexamethylene diisocyanate
Occupational asthma
Haptenation

1. Introduction

Diisocyanates (dNCOs) are highly reactive chemicals used as cross-
linking agents in the manufacture of polyurethane products such as
paints, elastomers, and adhesives (Vangronsveld et al., 2013; Petsonk
et al., 2000;Arnold et al., 2012). They are potent sensitizers and are a com-
monly reported cause of occupational chemical hypersensitivity reactions
including asthma (Buyantseva et al., 2011; Ribeiro et al., 2014). 2, 4-
Toluene diisocyanate (2, 4-TDI) and 1, 6-hexamethylene diisocyanate
(HDI) are among the most widely used isocyanates. Both have high
vapor pressures (Sullivan and Krieger, 2001) and exposure often occurs
through inhalation of vapors and aerosols during spraying operations at
workplaces.

Immune-mediated hypersensitivity reactions to dNCOs include
allergic rhinitis (Matheson et al., 2005), asthma (Mapp, 2001), hy-
persensitivity pneumonitis (Baur, 1995; Charles et al., 1976) and
allergic contact dermatitis (Aalto-Korte et al., 2012). Although
most reported cases of isocyanate sensitization occur at work-
places (Rudzinski et al., 1998; Redlich and Karol, 2002; Hur et al.,
2008), it has been suggested that non-occupational exposure to
the general public may also occur through the use of “do-it-yourself”
free diisocyanate containing commercial products such as polyurethane
foams and sprays (Krone, 2004; Wilder et al., 2011). Once allergic sensi-
tization to isocyanates occurs, asthmatic reactions may be triggered by
exceedingly minute concentrations of isocyanates (Ribeiro et al., 2014;
Ruwona et al., 2010; Wisnewski et al., 2012).

Diisocyanates are low-molecular-weight compounds that must first
react with autologous proteins to produce a functional antigen
(Wisnewski et al., 2004). The fate of the dNCO in the body and the
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protein adducts responsible for immunological sensitization remain un-
known (Mapp, 2001). Apart from reacting with proteins at the site of
exposure, protein conjugation by dNCOs may also occur via glutathione
(GSH) thiocarbamate intermediates. GSH is abundant in the airways
and Wisnewski and colleagues demonstrated that albumin can be con-
jugated to TDI and HDI by GSH–TDI and GSH–HDI, respectively
(Wisnewski et al., 2013). HSA is the most common carrier protein
used for dNCO antibody immunoassays (Budnik et al., 2013) due to its
prevalence in plasma (Wisnewski et al., 2000) to form dNCO adducts.
Other molecules, such as keratin 18 (Wisnewski et al., 2000), tubulin
(Lange et al., 1999), and the peptide glutathione (Lantz et al., 2001),
have been found to be modified by dNCO exposure. Sabbioni and
coworkers reported MDI bound to the N-terminal valine of Hb in MDI
exposed rats and proposed Hb–MDI as a biological marker of MDI expo-
sure (Sabbioni et al., 2000).

There is currently no simple diagnosis for dNCO-induced occupa-
tional asthma (OA) (Wisnewski, 2007). One approach that can poten-
tially be used is testing for dNCO-specific IgE from a worker's serum.
For confirmation of the diagnosis of dNCO as the etiological agent of
the occupational asthma, these assays have been reported to be specific
(96–98%), but not sensitive (18–27%) (Ott et al., 2007). These low sen-
sitivities have been attributed to both assay limitations and potential
IgE-independent dNCO asthma mechanisms (Budnik et al., 2013). Im-
munoassay standardization is critical for improvement of immunoassay
sensitivity and comparison of results across studies (Wisnewski et al.,
2004). A number of factors thatmay confound results from these immu-
noassays include the choice of dNCOused, the carrier protein employed,
dNCO–protein reaction conditions, and post-reaction processing and
characterization of the haptenated protein.

Wisnewski et al., in separate studies, reported differences in reactiv-
ity between TDI and HDI toward glutathione (GSH). Albumin was
conjugated to TDI and HDI by GSH–TDI (Wisnewski et al., 2011) and
GSH–HDI (Wisnewski et al., 2013), respectively. From these two re-
ports, the kinetics of GSH–HDI mediated albumin carbamoylation was
substantially slower compared with those of GSH–TDI. The hydrolysis
of aliphatic isocyanates is also much slower than aromatic isocyanates.
However, the nature and extent of HDI and TDI conjugation, in vivo, to
serumproteins has not yet been reported. Diisocyanate haptenated pro-
teins have been used both to produce specific antibodies (Lemons et al.,
2014; Ruwona et al., 2011) and to screen for dNCO specific antibodies in
workers' sera for diagnosis of OA (Tee et al., 1998).However, these
conjugates are often poorly characterized and non-standardized.

Our previous work focused on characterization of methylene
diphenyl diisocyanate (MDI)–HSA and MDI–Hb conjugates (Mhike
et al., 2013). Although HSA is the most common carrier protein used
for dNCO antibody immunoassays (Budnik et al., 2013; Wisnewski
et al., 2000), other proteins, however, have also been found to be poten-
tially modified by dNCO exposure (Wisnewski et al., 2000; Lange et al.,
1999; Lantz et al., 2001; Sabbioni et al., 2000; Sabbioni and Beyerbach,
2000; Sabbioni et al., 2001) but the immunogenicity of adducted
proteins other than albumins has not been reported.

One hypothesis is that the lack of a standard characterization proto-
col for conjugates used to screen for dNCO specific antibodies in
workers' sera is contributing to the reported low sensitivities and vari-
ability of these assay methods. Our previous work on MDI shed light
on the need to use multiple methods to characterize these conjugates.
In the present study we extend the characterization of the dNCO-
protein conjugates from MDI to understand reactivity differences
among dNCOs such as TDI and HDI that can impact assay sensitivities
and standardization protocols. Quantification of the amount of TDI
and HDI bound per mole protein was conducted by analyses of the cor-
responding hydrolysis products following assay hydrolysis of the conju-
gate, derivitization of the diamines and HPLC florescence detection
(Mhike et al., 2013). Cross linking was evaluated using the 2, 4, 6-
trinitrobenzene sulfonic acid (TNBS) assay, which is a primary amine-
specific spectrophotometric probe. TNBS reacts with primary amines

in proteins to produce a complex that absorbs at 420 nm. Loss of TNBS
reactivity in dNCO-conjugated proteins occurs only when the dNCO
cross-links two amine sites. This method, though not very sensitive, is
very specific because only primary amines, the predominant sites
found to be conjugated and cross-linked by dNCOs, react with TNBS.
Gel electrophoresis was also used to qualitatively evaluate the extent
of conjugation and cross linking in dNCO conjugated proteins. Under de-
naturing conditions intermolecular cross-linked proteins and highly
substituted proteins have a larger molecular size in comparison to un-
conjugated protein and these tend to migrate slower. On the other
hand, intramolecular cross-linkingmay prevent complete protein dena-
turation resulting in the migration similar to that of a smaller molecule
thatmigrates faster. Proteomicmass spectrometrywas employed to de-
lineate TDI binding sites onHb. Acrylonitrile adductedHb and trimellitic
anhydride (TMA)-adducted Hb were demonstrated to be antigenic
(Wong et al., 2004; Pien et al., 1988), so it is crucial to understand the
reactivity of Hb to different dNCOs aswell as to dNCO specific monoclo-
nal antibodies relative to a well-documented dNCO reactive protein
HSA.

2. Materials and methods

2.1. Chemicals

Unless otherwise specified, all reagents were acquired from Sigma–
Aldrich (St. Louis, MO, USA) and used without further purification. Di-
chloromethane (reagent grade) was purchased from J.T. Baker/Avantor
Performance Materials (Center Valley, PA, USA). Sodium tetra borate,
sodium hydroxide, hydrochloric acid, 98% sulfuric acid, and N-acetyl
glycine were purchased from Fisher Scientific (Fair Lawn, NJ, USA).

2.2. Preparation of TDI–HSA/Hb adducts

TDI–protein adducts were prepared as described previously for
MDI–HSA/Hb conjugates (Mhike et al., 2013). Briefly, 0.5mg/ml protein
solutions were prepared in 0.01 M PBS (pH 7.4). TDI (42.3 μl) was dis-
solved in 1 ml dry acetone and diluted ten times tomake stock solution
for 40:1 TDI:protein. Serial dilutions of TDI in acetone were performed
to make stock solutions for 10:1, 5:1 and 1:1 TDI:protein. Fifty microli-
ters of TDI stock solution was added to 5 ml of 0.5 mg/ml protein with
mixing, resulting in TDI:protein molar conjugation ratios of 1:1, 5:1,
10:1, and 40:1. Samples were then incubated at room temperature
(RT) for 1 h with mixing. Following incubation, samples were dialyzed
for 18 h at 4 °C against 4 L of distilled deionized water using 12,000–
14,000 MWCO dialysis tubing (Spectrum Laboratories, Inc., Rancho
Dominguez, CA) and stored at 4 °C until analysis.

2.3. Preparation of HDI–HSA/Hb adducts

For preparation of HDI–protein adducts, 0.5mg/ml protein solutions
were prepared in 0.01 M PBS (pH 7.4). HDI (47.3 μL) was dissolved in
1 ml dry acetone and diluted ten times to make stock solution for the
40:1 HDI:protein conjugation ratio. Serial dilutions of HDI in acetone
were prepared to make solutions for 10:1, 5:1 and 1:1 HDI:protein
conjugation ratios. Conjugations, dialysis and sample storage were per-
formed as described for TDI samples.

2.4. Analysis of number of moles of dNCO bound per mole protein

TDI/HDI-conjugated proteins (2 ml aliquots) were hydrolyzed by
incubating with 1 ml of 3 M H2SO4 at 100 °C for 16 h. Toluene
diamine (TDA) and hexamethylene diamine (HDA) standards
(Sigma-Aldrich, St. Louis, MO, USA) were spiked into protein stan-
dards (1–16,000 ng/ml) and were run in parallel with conjugates.
Following hydrolysis, samples and standards were cooled to RT and
5ml of saturated sodium hydroxide was added. Samples were vortexed,
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andput in an ice bath to cool for 10min. The resulting TDAandHDA from
samples and standardswere extracted into 6ml of dichloromethane and
the solvent was subsequently evaporated at 40 °C under N2 to 1 ml. The
dichloromethane extracts were then back-extracted into 500 μl of 0.5%
H2SO4. Saturated borate buffer (250 μl, pH 8.5) and 450 μl of acetonitrile
were added to 250 μl of H2SO4 extract and vortexed for 1 min.
Fluorescamine (50 μl of 14.4 mg/ml in acetonitrile) was added. This
was vortexed for 1 min, and 100 μl was injected onto a Supelco LC-SI
C18 column (25 cm4.6mm, 5 μm, Supelco, Bellefonte, PA, USA). Samples
and standards were analyzed on a Shimadzu Prominence high-
performance liquid chromatography system (HPLC) (Shimadzu,
Columbia, MD, USA) consisting of an online vacuum degasser (model
DGU-20A5), a quaternary pump (model LC-20AT), an auto sampler
(model SIL-10AD-VP), and a fluorescence detector (model RF-10AXL).
The HPLC systemwas controlled by EZ Start software version 7.3 (Lab Al-
liance, State College, PA, USA). Samples and standards were eluted from
the column at 1 ml/min over 20 min using a linear gradient of 10% to
50% acetonitrile/water over 13 min and held at 50% for 5 min. The
resulting TDA/HDA–fluorescamine complex was excited at 410 nm, and
emission was measured at 510 nm.

2.5. Assessment of cross-linking: TNBS assay

The trinitrobenzene sulfonic acid (TNBS) assay was used to evaluate
the extent of cross-linking in TDI–HSA and HDI–HSA conjugates
(Snyder and Sobocinski, 1975). TNBS (5%, w/v) was diluted 1:5.48 with
0.1 M borate buffer, pH 9.3. To 500 μl of sample, 12.5 μl of diluted TNBS
was added, mixed and incubated for 30 min at RT. Absorbance at
420 nm was measured on a Beckman Coulter spectrophotometer
(model DU 800, Beckman Coulter, Somerset, NJ, USA).

2.6. Assessment of cross-linking: Sodium dodecyl sulfate polyacrylamide gel
electrophoresis (SDS-PAGE)

For denaturing gels, HSA, Hb, and TDI/HDI–HSA/Hb conjugates were
mixed with Laemmli sample buffer containing 2-mercaptoethanol.
Samples were run on 8% and 12% polyacrylamide gels. Following
electrophoretic separation of proteins, the gels were stained with
Imperial™ protein stain (Pierce, Rockford, IL, USA) and destained in
water. Unmodified/unconjugated HSA, Hb and Bio-Rad pre-stained
molecular weight markers (Life Science, Hercules, CA) were used for
relative molecular weight determination.

2.7. Trypsin digestion of hemoglobin samples

For identification of TDI conjugation sites on Hb by ultra-performance
liquid chromatography quadruple time-of-flight mass spectrometry
(UPLC–qTOF MS), 200-μl aliquots of TDI–Hb samples were incubated
with tributyl phosphine for 30 min at RT to reduce the disulfide bonds,
followed by alkylation with iodoacetamide for 1 h at RT. Alkylation was
quenched by further addition of tributyl phosphine for 15 min at RT.
Porcine trypsin in 25 mM NH4HCO3 was then added at a 40:1 (protein/
trypsin) ratio. Samples were incubated overnight at 37 °C. The next day,
12 μL of 10% trifluoroacetic acid (TFA)was added to stop trypsin digestion.

2.8. Ultra-performance liquid chromatography (UPLC)

Tryptic peptides of Hb and TDI–Hb were separated on a Waters
nanoACQUITY UPLC system (Waters, Milford, MA, USA). Aliquots
(1 μl) of the digest mixture were injected and trapped/desalted on a
5-μm Symmetry C18 trapping column (180 μm × 20 mm) with 99.5/
0.5 A/B (A: 0.1% formic acid; B: 0.1% formic acid in acetonitrile) at a
flow rate of 15 μl/min for 1 min. Separation was performed on a 1.7-μm
BEH130 C18 analytical column (100 μm × 100 mm) using gradient
elution at a flow rate of 400 nl/min and a gradient of 99:1 to 60:40 A/B
over 90 min.

2.9. Tandem Mass Spectrometry (MS/MS) analysis of Hb peptides

The eluent from the UPLC system was directed to the nano-
electrospray source of a Waters SYNAPT MS qTOF mass spectrome-
ter. Positive ion nano-electrospray was performed using 10-μm
Pico-Tip (Waters) emitters held at a potential of +3.5 kV. The
cone voltage was held constant at +40 V for all experiments.
Dry nitrogen desolvation gaswas supplied to the instrument via a nitro-
gen generator (NitroFlowLab, Parker Hannifin, Haverhill, MA, USA).
[Glu] 1-Fibrinopeptide B (100 fmol/μl in 75:25A/B)was supplied to an or-
thogonal reference probe, and the [M + 2 H] 2+ ion (m/z 785.84265 u)
wasmeasured as an external calibrant at 30-s intervals. Ultra-high purity
(UHP) argon was used as collision gas. Spectra were acquired in an
“MSe” fashion (Hettick et al., 2012; Hettick and Siegel, 2011). Alternat-
ing 1-smass spectrawere acquired. The collision energywas set to 6 eV
(1-s low energy scan) and a 15- to 30-eV ramp (1-s high energy scan).

2.10. Data analysis for TDI binding sites on Hb

Data were analyzed with BioPharmaLynx version 1.2 (Waters), a
software program for analysis of peptide mass maps and identification
of sites of modification on known protein sequences. Identification of
an isocyanate binding site involved observing a potential peptide–
dNCO conjugation product with less than 30 ppm m/Dmmass error in
the analyte peptide mass map, comparing analyte and control peptide
mass map from unmodified Hb showing that observed m/z and chro-
matographic retention time are unique to analyte, and observing MS/
MS data containing bn- and yn-type ions consistent with the assigned
sequence and modifier.

2.11. Immunoassay for conjugates: ELISA for TDI–HSA/Hb

Binding of IgG1 monoclonal antibody (mAb) 60G2 raised against
TDI–KLH (Ruwona et al., 2011) to TDI-conjugated HSA and Hb was an-
alyzed using an indirect enzyme-linked immunosorbent assay (ELISA).
The development and characterization of the 60G2mAb has been previ-
ously described by Ruwona et al. (2011). Ninety-six-well plates
(Corning, NY, USA) were coated with TDI-protein conjugates overnight
at 4 °C. Afterwashing three timeswith PBST (PBSwith 0.05% Tween20),
plates were blocked with 3% skimmilk/PBST (SMPBST) for 1 h at 37 °C.
Plates were then incubated on a shaker for 1 h with 2 μg/ml 60G2
mAb at RT, washed three times with PBST and incubated for 1 h at
37 °C with alkaline phosphatase conjugated AffiniPure goat, anti-
mouse IgG(H + L) (Promega, Madison, WI) diluted 1:5000 (v/v) in
SMPBST. Following incubation, plates were washed 3 times with
PBST and binding of the 60G2 mAb to the conjugates was visualized
using 0.5 mg/ml p-nitrophenyl phosphate (Sigma-Aldrich, CAS
Number 4264-83-9) in alkaline phosphatase substrate. The optical
density was measured at 405 nm after 30 min using a Molecular De-
vices SpectraMaxM4Multi-modeMicroplate Reader (Sunnyvale, CA,
USA).

2.12. Statistical analysis

Data are presented asmean and standard deviation (SD). Analysis of
variance (ANOVA) was employed for comparing the effect of dNCO and
protein on the extent of conjugation and crosslinking on proteins.
Differences were considered significant at a p b 0.05. N = 3/group,
where N is number of replicates.

3. Results

3.1. Mapping TDI binding sites on Hb

TDI-Hb conjugates were digested with trypsin, and resultant pep-
tides were analyzed by UPLC–MS/MS to determine TDI binding sites.
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Examination of the tandemmass spectra of the tryptic peptides allowed
assignment of conjugation sites on Hb as previously described (Mhike
et al., 2013). Hb has 2 alpha and 2 beta subunits andmass spectrometry
allowed identification of the parent subunit from which each binding
site originated. Table 1 shows the concentration-dependent specific
binding sites identified for TDI on Hb.

A TDI concentration dependent increase in the number of binding
sites was observed and a total of eight binding sites were identified at
the highest concentration of TDI used, including the N-terminal valine
on both the alpha and beta chains. TDI bound to three lysines on the
alpha chain and three additional lysines on the beta chain. At the lowest
TDI concentration used, only the two N-terminal valines of the alpha
and beta chains were bound. Increasing TDI concentrations increased
the number of sites bound to a maximum of eight at 40:1 TDI:Hb.

3.2. Quantification of TDI and HDI binding in Hb and HSA

TDI and HDI-conjugated HSA and Hbwere hydrolyzed under strong
acidic conditions and the resultant TDA and HDAwere derivatized with
fluorescamine and quantified using HPLC. Quantification of the number
ofmoles of TDI andHDI bound toHbandHSA is reported in Table 2. On a
permole basis, TDIwasmore reactive to bothHb andHSA thanHDI over
the entire concentration ranges used in this study. This agrees with find-
ings fromWisnewski et al.who found that the rate ofHSA carbamoylation
from TDI–GSH derived TDI was higher than carbamoylation from HDI–
GSH derived HDI (Wisnewski et al., 2013; Wisnewski et al., 2011).
Table 2 also demonstrates that HSA was more reactive to TDI than Hb. A
similar trend was noted for HDI.

3.3. Cross-linking in TDI– and HDI–HSA: TNBS assay

Table 3 shows a concentration-dependent loss of available primary
amines with increasing TDI and HDI concentrations and, thus, an in-
crease in the amount of dNCO cross-linking of protein residues (Mhike
et al., 2013). At TDI and HDI concentrations ranging from 1:1 to 10:1,
the degree of cross linking is not statistically different between the 2
diisocyanates. However at 40:1 dNCO:HSA, TDI has a significantly
higher degree of cross linking than HDI (P-value b0.01). The TNBS
assay could not be used to evaluate cross-linking in Hb conjugates
because of spectral interference at 420 nm, the wavelength at which
the absorbance of the complex between TNBS and primary amine is
measured.

3.4. Qualitative assessment of conjugation and crosslinking in TDI/HDI–HSA
and TDI/HDI–Hb: Gel electrophoresis

Polyacrylamide gel electrophoresis was used to evaluate the extent
of binding and cross-linking. Intermolecular cross-linked and highly
substituted proteinswillmigrate at a slower rate than the unconjugated
protein, whereas extensive intramolecular cross-linking may prevent

complete protein denaturation, causing an apparent migration of a
molecule smaller that the unconjugated protein. Fig. 1 shows an 8%
SDS-PAGE gel of 0.5 mg/ml HSA reacted to TDI. Significant spreading
of the HSA band was observed at the 40:1 TDI:HSA conjugation ratio.
Fig. 2 is a 12% denaturing gel of 0.5 mg/ml Hb reacted to TDI. Denatur-
ation of Hb resulted in the incomplete dissociation of the alpha and
beta subunits that migrated at molecular weights of approximately
14 kDa 28 kDa. Shift in migration due to conjugation to TDI was not ob-
served. In contrast, HDI–HSA and HDI–Hb conjugates produced band
spreading and shifts in migration/band spreading for both HSA and Hb
conjugates. (Figs. 3 and 4).

3.5. ELISA assessment of TDI–HSA and TDI–Hb

HDI–Hb conjugates reactivity to antibodieswas not evaluated due to
the lack of an HDI specific antibody. Although there is cross reactivity
betweenHDI andmonoclonal antibodies raised against TDI, the reactiv-
ity was too low and close to detection limit to make any quantitative
analysis in agreement with HPLC results. Binding of IgG mAb 60G2 to
TDI-conjugated HSA and Hb was analyzed using an indirect enzyme-
linked immunosorbent assay (ELISA). Fig. 5 shows the immunoassay
results of conjugated proteins following titration into the ELISA plate
at protein concentrations from 97.66 ng/ml to 25 μg/ml. Immuno reac-
tivity of 60G2 to the conjugated Hb was higher at 40:1 TDI-protein
than 10:1 in both HSA and Hb conjugates. 60G2 was more reactive to
TDI–HSA than TDI–Hb at both 40:1 and 10:1 TDI–protein.

4. Discussion

Our previous study employed several techniques to evaluate MDI–
HSA and MDI–Hb conjugates (Mhike et al., 2013). In the current study,
we extended use of this methodology to compare TDI–HSA, TDI–Hb,
HDI–HSA, and HDI–Hb conjugates. The objective was to compare the
extent of conjugation of TDI andHDI to proteins (HSA and Hb), evaluate
differences in the extent of cross-linking using the TNBS assay between
TDI andHDI onHSA, and assess reactivity of TDI conjugated HSA andHb
with amonoclonal antibody (IgG 60G2mAb) that recognizes TDI conju-
gated proteins. The methodology used herein is relevant for the charac-
terization and standardization of dNCO haptenated protein for specificTable 1

Amino acid specific binding sites observed for TDI on hemoglobin.

1:1 5:1 10:1 40:1

Alpha subunit
Val 1 x x x x
Lys 11 x x x
Lys 16 x x
Lys 40 x

Beta subunit
Val 1 x x x x
Lys 17 x x
Lys 144 x x
Lys 61 x

Table 2
Moles of TDI and HDI bound per mole of Hb or HSA quantified using HPLC.

dNCO:protein Average moles of dNCO
bound

Average moles of dNCO
bound

TDI:HSA HDI:HSA TDI:Hb HDI:Hb

1:1 0.51 ± 0.56 0.04 ± 0.41⁎⁎ 0.15 ± 0.15⁎⁎⁎ 0.02 ± 0.21⁎⁎

5:1 2.65 ± 0.23 0.44 ± 0.45⁎⁎ 0.57 ± 0.02⁎⁎⁎ 0.13 ± 0.23⁎⁎

10:1 5.06 ± 0.43 0.82 ± 0.36⁎ 1.48 ± 0.09⁎⁎⁎ 0.32 ± 0.60⁎⁎

40:1 12.86 ± 0.56 2.79 ± 0.40⁎ 4.31 ± 0.06⁎⁎⁎ 1.03 ± 0.59⁎⁎

Extent of HDI binding to HSA is statistically different than TDI binding.
Comparison of dNCO binding to HSA vs. to Hb.
⁎ P b 0.05.
⁎⁎ P b 0.01.
⁎⁎⁎ P b 0.01).

Table 3
Cross-linking in TDI–HSA and HDI–HSA using loss of absorbance: TNBS assay.

dNCO: protein molar ratio Loss of TNBS amine reactivity (%)

HDI:HSA 2,4-TDI:HSA

Negative control 0.00 ± 0.00 0.00 ± 0.00
1:1 25.46 ± 2.34 18.04 ± 3.98
5:1 30.24 ± 2.89 31.47 ± 3.57
10:1 32.88 ± 3.14 39.92 ± 4.14
40:1 48.35 ± 3.76 62.42 ± 4. 18⁎⁎

⁎⁎ Extent of TDI cross-linking statistically different than HDI (P b 0.01).
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antibody detection. Although knowledge of specific sights bound at
lower conjugation ratios may have value in the development of bio-
monitoring of dNCO conjugates in biological fluids, the measurement
and characterization of in vivo formed species is beyond the scope of
the present work. Differences in reactivity between TDI and HDI conju-
gated to HSA and Hb were observed using the HPLC quantification of
moles dNCO bound per mole protein. HSA was more reactive to both
TDI andHDI thanHb. Thismay be indicative of the structural differences
between the two proteins. Hb, with four polypeptide subunits (two
alpha and two beta) and an iron-containing porphyrin ring, may mask
potential binding sites, thus affecting its reactivity with dNCOs. This
contrasts sharply with HSA, a single polypeptide with 17 pairs of disul-
fide bridges and 1 free cysteine. TDI wasmore reactive to both HSA and
Hb than HDI at pH 7.4. These results agree with earlier findings where
HSAwas found to be themostmodified protein in the blood of dNCOex-
posed subjects (Budnik et al., 2013).

MS/MS was used to delineate specific TDI binding sites on Hb. A
concentration-dependent increase in the number of binding sites was
observed across the entire TDI concentration range employed. Only
the N terminal valines on both the alpha and beta subunits were ob-
served at 1:1 TDI:Hb and these were conserved at all concentrations
studied, suggesting that these sites are the kinetically favored reactive
sites. Non-terminal amino acids of the beta subunit were bound by
TDI only from 10:1 TDI:Hb concentrations and higher, while non-
terminal amino acid binding sites on the alpha subunit were observed

at 5:1 TDI:Hb. The non-terminal TDI binding sites observed on Hb
were all lysine residues, specifically lysines 11, 16, and 40 of the alpha
subunit and lysines 17, 144, and 61 of the beta subunit. Some of the
TDI binding sites observed in this study were comparable to the MDI
binding sites reported in our previous study (Mhike et al., 2013). In ad-
dition to theN-terminal valines of the alpha and beta subunits, lysine 66
was also observed at 1:1 MDI:Hb. Only lysine 40 of the alpha subunit
and lysine 61 of the beta subunit were bound by both MDI and TDI. Ly-
sines 11 and 16 of the alpha subunit and lysines 17 and 144 of the beta
subunit were only observed in TDI. In contrast, lysine 7 of the alpha sub-
unit and lysines 8, 65 and 66 of the beta subunit were only observed
with MDI. The differences in the binding sites between MDI and TDI
can give an insight into the possibility for conformational and structural
differences in the resultant conjugates, which may potentially affect
their antigenicity and immunogenicity.

The TNBS assay,whichhas traditionally beenused to assess chemical
adductionwith amino groups (Lemus et al., 2001), was employed in this
study to evaluate cross-linking in TDI-HSA and HDI-HSA conjugates. A
concentration dependent loss of available primary amines with increas-
ing TDI and HDI concentrations was observed, indicating an increase in
the amount of dNCO cross-linking of protein residues. At lower TDI and
HDI concentrations (1:1–10:1 TDI/HDI:HSA), the degree of cross-
linkingwas similar for both dNCOs. At 40:1 dNCO:HSA, TDI had a higher
degree of cross-linking than HDI. A 62% loss of primary amine reactivity
was observed at 40:1 TDI:HSA compared with a 48% loss of amine reac-
tivity at 40:1 HDI:HSA (P b 0.01). A similar comparison could not be

Fig. 1. An 8% SDS-PAGE denaturing gel of 0.5 mg/ml HSA reacted to TDI. Lane 1 is the
molecular weight marker, lane 2 is HSA, and lanes 3, 4, 5, and 6 are 40:1, 10:1, 5:1, and
1:1 TDI:HSA, respectively.

Fig. 2.A 12% denaturing gel of 0.5mg/ml Hb reacted to TDI. Lane 1 is themolecularweight
marker, lane 2 is Hb, and lanes 3, 4, 5, and 6 are 40:1, 10:1, 5:1, and 1:1 TDI:Hb,
respectively.

Fig. 3. An 8% denaturing gel of 0.5 mg/ml HSA reacted to HDI. Lane 1 is the molecular
weight marker, lane 2 is HSA, and lanes 3, 4, 5, and 6 are 40:1, 10:1, 5:1, and 1:1
HDI:HSA, respectively.

Fig. 4.A 12%denaturing gel of 0.5mg/ml Hb reacted to HDI. Lane 1 is themolecularweight
marker, lane 2 is Hb, and lanes 3, 4, 5, and 6 are 40:1, 10:1, 5:1, and 1:1 HDI:Hb,
respectively.
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made for hemoglobin conjugates due to spectral interference at 420nm,
the wavelength at which the absorbance of the TNBS-amine complex
was measured.

The ability of the TDI conjugates to be bound by TDI-specific anti-
body was evaluated using an indirect ELISA format. The ELISA format
employed in the current study used an anti TDI–protein IgG that was
produced in our lab against TDI-KLH (Ruwona et al., 2010) as the prima-
ry antibody and an alkaline phosphatase-labeled anti-IgG as the detec-
tion antibody. Both TDI-HSA and TDI-Hb reacted to the anti-TDI-
protein monoclonal antibody, indicating that TDI conjugated Hb can
be antigenic. TDI-Hb antigenicity with the 60G2 mAb was however
30% lower than that observed for TDI-HSA. This is in agreement with
HPLC results where TDI binding to HSA was significantly higher than
to Hb suggesting that the absolute number of moles of dNCO bound
rather than the specific protein bound is a greater determinant for
recognition by the 60G2 mAb. The immunogenicity or antigenicity of
in vivo dNCO-adducted hemoglobin has not yet been reported in the
literature, although our data suggest that dNCOhaptenatedHSA is supe-
rior to conjugated Hb for the detection of dNCO specific antibody.

Cross-linking and extent of conjugation was visualized using dena-
turing gel electrophoresis. Alteration of migration and band spreading
was evident for bothHDI and TDI conjugated HSAs at the highest conju-
gation ratio, however, a clear migration shift/band spreading was only
evident in HDI:HSA at the lower binding ratios (Figs. 1 and 3). Hemoglo-
bin subunits did not completely dissociate under denaturing conditions
as evidenced by the protein band at approximately 28 kDa. Shift in
migration of TDI bound Hb subunits was not observed, and only clearly
observed at the highest HDI conjugation ratio of 40:1 (Figs. 2 and 4).
These finding are in contrast to what was previously observed for
MDI, where clear conjugation-dependent shifts in migration were ob-
served down to a 1:1 conjugation ratio (Mhike et al., 2013). One possi-
ble explanation for the differences seen between SDS-Page between
that observed for HDI,MDI and TDI bound proteinsmay be that location
of the 2 TDI NCO groups located on the benzene ring are spatially closer
to each other than in MDI or HDI which may produce differences in
comparative migration of the conjugates in the SDS-Page gels.

Increasing molar ratio for conjugation increased extent of conjuga-
tion, degree of cross-linking, gel migration and reactivity with dNCO spe-
cific monoclonal antibody binding. It is therefore difficult to dissect the
specific influences of intra- and intermolecular cross-linking from total
dNCO bound on the overall antigenicity of the resultant conjugates.

The bifunctional electrophilic nature of the diisocyanates makes it
very difficult to dissect out the components critical to dNCO specific
antibody recognition.

Increases in total amount of dNCO bound, intra- and intermolecular
crosslinking, and.

dNCO self-polymerization on proteins, and as well as recognition by
the 60G2mAb all increasewere demonstratedwith increasing conjuga-
tion ratios of dNCO:protein. ThemAb 60G2 is extremely well character-
ized with respect to binding specificity (30). It recognizes both 2,4-TDI
and 2,6-TDI bound HSA, bound mouse serum albumin, and bound
keratin. It has slight reactivity towardMDI–HSA, HDI–HSA andHSA con-
jugated to 2,5- and 3,4-dimethyl phenylisocyanate. It has no reactivity
toward phenyl isocyanate, 2-toluene isocyanate, 4-toluene isocyanate
or toluene diisothiocyanates. Although, dNCO specific IgE and IgG
from dNCO exposed individuals was not tested against the various
dNCO conjugated proteins, others have reported that recognition by
patient sera antibodies is dependent on immunoassay procedure, con-
jugationmethod and predominant exposure dNCO form to that individ-
ual (Campo et al., 2007; Ye et al., 2006). Comparison of specific antibody
prevalence in dNCO workers is difficult in the absence of detailed
dNCO–HSA characterization. Until the relative contribution of the
multiple dNCO conjugation products to dNCO immunogenicity and an-
tigenicity can be determined, we believe that dNCO antigen prepara-
tions used for standardized screening of workers' sera or research
applications should undergo as complete quantitative chemical charac-
terization as possible similar to that outlined in the presentmanuscript.
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