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Coexistence and spinodal curves in directionally bonded liquids using the 
four-cluster approximation 

E. Bodegom and Paul H. E. Meijer 
Physics Department. Catholic University of America. Washington. D. C. 20064 
and Center for Absolute Physical Quantities. National Bureau of Standards. Washington. D. C. 20234 

(Received 19 April 1983; accepted 2 November 1983) 

We derive the phase diagrams and spinodals of binary liquid systems with anisotropic 
interactions, such as hydrogen-bonded molecules. The work is based on the four-particle cluster 
variation method, using a different potential for different contact points. It is shown that the 
introduction of a cluster larger than previously used by Barker and Fock, leads to a considerable 
improvement in the shape of the phase diagram and avoids some of the difficulties encountered in 
their calculation. Phase diagrams are displayed for various choices of the parameters: the number 
of contact points, the interaction potential, and the order of the approximation. 

I. INTRODUCTION 

It is of interest to study the effects of the anisotropic 
microscopic interactions (e.g., via hydrogen bonding) on the 
limit of under- or supercooling, i.e., the spinodal line, since 
the amount of undercooling sustained is large in materials 
with anisotropic interactions. The anisotropic interactions 
also play an important role in the study of closed loop phase 
diagrams. Closed loop phase diagrams occur in various pairs 
ofliquids, I the mixture of water and nicotine being the clas­
sic example. At higher temperatures the two components 
can mix in any proportion, while at lower temperatures there 
is a certain range of concentrations of, for example, water 
and nicotine where the two liquids demix. At still lower tem­
peratures, the components become again miscible in arbi­
trary proportions. 

It is generally found that such phase diagrams are flatter 
at the bottom than at the top. The highest and lowest tem­
peratures, where phase separation begins or ends, are 
called, respectively, the upper and lower critical solution 
temperatures (VCST and LCST). It is to be noted that in 
many systems the VCST and/or LCST cannot be observed 
because either a liquid-gas transition or a liquid-solid tran­
sition interferes, thus masking one of the critical solution 
temperatures. 

Hirschfelder et al. 2 suggested that such a closed loop 
phase diagram was due to an interaction such as hydrogen 
bonding which interferes with the free rotation of the mole­
cules. Barker and Fock3 were the first to show, using the 
quasichemical approximation, that such an interaction 
could indeed lead to closed loop phase diagrams. In the 
next section their work will be described and commented 
upon. 

Another approach to the explanation of the closed loop 
phase diagrams has been undertaken by Andersen and 
Wheeler4

•
5

; their work will be presented in Sec. III. More 
recent work is found in Refs. 6-9. The Sec. IV will deal with 
our higher order approximation. We will demonstrate how 
to calculate the spinodal line in the various approaches in 
Sec. V. The remainder ofthis paper covers the results of the 
calculations performed and a discussion of these results. 

J. Chem. Phys. 80 (4). 15 February 1984 

II. BARKER AND FOCK DESCRIPTION USING 
THECVM 

Barker and Fock3
•
10 used a lattice model, wherein each 

molecule occupies a lattice site of a z-coordinated lattice. 
Throughout the remainder of this work, a simple cubic 
lattice is considered. Each molecule is presumed to have z 
contact points, one (hereafter called the "special" contact 
point) is of one kind and the remaining ones (z - I) of the 
other kind (the "normal" contact points). The nearest 
neighbor interaction energy between two molecules de­
pends on which of the contact points of each molecule are 
involved in forming the "bond." 

The two types of molecules are denoted by A and B, each 
of which can be oriented in z different directions (absolute 
directions in space). This can be conveniently described by 
an arrow, where the tip of the arrow indicates the special 
contact point. Thus for A molecules: 

f, -t+, +, etc. 

and for B molecules: 

f, -++, +, etc. 

The statistical mechanics of such a system may lead to 
two kinds of possible states: 

(a) The concentrations of the A molecules in thez differ­
ent ("absolute") directions are all equal, and the same holds 
true for the B molecules, or (b) the concentrations of the A 
molecules in the different orientations are not equal (the 
same holds true for the B molecules), i.e., there is a net 
orientation of the molecules (liquid crystals). 

In this work, only the first case (the isotropic solution) 
will be considered. First, this model will be solved in the 
quasichemical approximation, as was done by Barker and 
Fock, but formulated in the cluster variation method 
(CVM)II and then by using the four point cluster approxi­
mation. 

The CVM approach is as follows. On a given lattice, a 
basic figure or cluster is chosen. The basic cluster can be a 
point which leads to the mean field or Bragg-Williams ap­
proximation, or it can be the nearest neighbor pair which 
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1618 E. Bodegom and P. H. E. Meijer: Coexistence and spinodal curves 

leads to the quasichemical or Bethe approximation or a larg­
er cluster, such as a four point cluster consisting of a square 
on a cubic lattice. Each figure has a set of cluster variables 
associated with it. Each cluster variable indicates the prob­
ability of finding a certain configuration of A and B mole­
cules on that particular figure. Denoting all the necessary 
cluster variables in a given approximation by [a], the free 
energy (F) in the CVM can be expressed in terms of[a]: 

F[a] = E[a] - TS[a], 

where E, T, and S are, respectively, the internal energy, the 
absolute temperature, and the configurational entropy. 
The internal energy is given by the sum of the energies of all 
the clusters occurring in the system; for example, the sum 
over all the possible pair clusters of the product of the total 
number of pairs in the system and a pair probability and the 
energy associated with that particular pair. Under the as­
sumption of pairwise additive and nearest neighbor forces, 
the expression for the energy is given exactly in the pair 
approximation. The entropy expression is obtained by tak­
ing the logarithm of the number of the possible ways one 
can distribute the [a] over the lattice sites. This number can 
not, in general, be found exactly. The CVM gives a pre­
scription on how to approximate this entropy optimally for 
a given cluster size. After the expression for the free energy 
is obtained in terms of [a], the equilibrium free energy can 
be calculated by minimizing Fwith respect to the [a]. 

To solve the Barker and Fock model in the quasichemi­
calor pair approximation, the point and pair cluster varia­
bles are defined as follows. Let there be n point variables xt 
(i = I, ... , n) for the A molecules. n is the total number of 
possible orientations, which, for the moment, we will con­
sider equal to z, the total number of neighbors. Here it is 
assumed that there is no orientational ordering (i.e., no liq­
uid crystalline phases). Thus: 

xt=xA/n, 

where x A is the concentration of the A molecules. A similar 
expression holds for the B molecules, with the normaliza­
tion: 

X A +xB = 1. 

The pair variables Yi (i = 1, ... ,10) are presented in Table I 
together with the weight factors and the energies associated 

TABLE I. The pair variables ( Yi ) with the associated weight factors ( gi ) and 
energies (Ei)' The last column gives the expressions for their equilibrium 
values. 

Bond gi Ei 

y, (n - 1)2 0 (XAXA )SI6eIM 

Y2 --+ 2(n -I) 0 (XAXA )SI6ePA 

Y3 +- I 0 (XAXA )SI6ePA 

Y. 1- 2(n - 112 U, (x
A

x
o

)SI6ePA- PV, 

Ys <+- 2(n -1) U2 (XAXO )S16e llA - pv, 

Y6 1- 2(n -1) U3 
(x

A
x

O
)SI6ePA- PU, 

Y7 <+- 2 U. (x
A

x
O

)SI6ellA-PU, 

Y8 1- 1- (n-W 0 (xoxo )S16ellA 

Y9 ++ 1- 2(n -1) 0 (xoxo )S16e llA 

YIO +- <+- 1 0 (xoxof/6ellA 

FIG. 1. The smallest basic cluster 
size needed to automatically incor­
porate the constraints (2). 

with them. It is assumed that the energy is zero between 
like molecules independent of orientation as in Barker and 
Fock. The pair variables obey the following relations: 

and 

10 

L giYi = I 
;= I 

X A = (n - 1)2y) + 2(n - 1)Y2 + Y3 

+ (n - WY4 + (n - I)ys + (n - I)Y6 + Y7, 

X B = (n - WYs + 2(n - I)Y9 + YIO 

+ (n - IfY4 + (n - I)ys + (n - I)Y6 + Y7' 

(I) 

In addition, two more relations are needed to account for 
the fact that for each type of molecule the ratio of the num­
ber of special contact points to all contact points is lin, that 
is for the A molecules: 

~ = (n - 1)Y2 + Y3 + (n - I)Y6 + Y7 = RA , 
n X A 

and for the B molecules: (2) 

~= (n-I)Y9+YIO+(n-I)Ys+Y7 =R
B

• 

n XB 

These additional relations are needed owing to the fact 
that the cluster size considered here is not large enough. 
The smallest cluster size large enough to automatically 
fullfil the conditions (2) is the basic cluster shown in Fig. 1. 
The problem with this cluster is that it leads to a number of 
the independent basic cluster variables that is almost prohi­
bitively large. So, at first sight, it seems quite reasonable to 
assume that the constraints have to be incorporated in the 
final solution, as was done by Barker and Fock. 

Here however we will follow a different route. The con­
straints will be ignored, but by going to a larger cluster size 
the influence of this neglect will be diminished. This is a 
compromise. The difficulty would have been totally taken 
care of if we had used the seven-point cluster of Fig. 1. 

In general <P ( = {3F, where F is the free energy and 
{3 = lIkT) is given byll 

10 

<P = 3{3 L Ei gi Yi - 5 [xA(ln X A - I) + xB(lnxB - 1)] 
i=) 

10 10 

+ 3 L gi Yi (In Yi - 1) + 3{3J. (1 - L gi Yi)' (3) 
;=1 ;=1 

where J. is the Lagrange mUltiplier for the normalization of 
the probabilities. Additional Lagrange multipliers are 

J. Chern. Phys., Vol. 80, No.4, 15 February 1984 
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needed if one wants to include the constraints given by Eqs. 
(2). This we will not do. Following the usual procedure of 
minimizing tP with respect to the variables Yi leads to equa­
tions of the form (see also Table I): 

Y = (xx)5/6ePA -fJE . (4) 

Note that the pair probabilities can be classified in three 
groups. One group consists of Y1' Yz, and Y3 (we refer to 
these as y;) and the second group consists of Yg, Y9' and 
YiO(Y~). The third group (Y4'Y5'Y6' andY7) can be replaced 
by Y2 by using 

n2Y2 = (n - 1)2Y4 + (n - 1)Y5 + (n - 1)Y6 + Y7' (5) 

Putting 

Y2 = e!3A.-K(XA X B )5/6 , 

where K represents the effective interaction energy 
between A and B molecules times p. It follows that K has to 
satisfy: 

n2e- K = (n _ We- fJU, 

+ (n - l)e- fJU, + (n - l)e- fJU, + e- fJu•. (6) 

The primed system is entirely analogous to a magnetic 
spin-1I2 system with the effective coupling K /2 replacing 
PE. lI The VeST and LeST are determined by the follow­
ing condition 12: 

Z 
Kcritica1 = In -- . 

z-2 
Phase separation occurs when K> Kc and the phase dia­
grams resulting from specific choices of the energies Ui can 
easily be calculated (see Appendix A). The results will be 
presented in the last section after several other approaches 
have been discussed. The results will be compared with the 
work of Andersen and Wheeler. 4.5 

III. ANDERSEN AND WHEELER MODELS 

The closed loop phase diagrams calculated with the 
Barker and Fock method have two serious drawbacks: one 
is that they are too "narrow" compared to coexistence 
curves observed on real physical systems; and the other is 
that the predicted interaction energies for the hydrogen 
bonding are far too low compared with known experimen­
tal hydrogen bond strengths. 14.15 

Wheeler13 proposed to use a decorated lattice model 
which can be mapped onto the Ising model. This model 
showed a considerable widening of the phase diagrams and 
a better hydrogen bond interaction energy. Although this 
results in an improvement over the method of Barker and 
Fock, it failed on the same account as the Barker and Fock 
model in comparison with real physical systems. As was 
pointed out by Andersen and Wheeler,4 there is another 
parameter which, so far, has been ignored, i.e., the direc­
tionality of the special contact point. Both Wheeler and 
Barker and Fock assumed implicitly that the directionality 
is determined by the underlying lattice. In other words, the 
solid angle subtended by the special contact point is equal 
to 41r/6 (for z = 6). This is by far too large compared to 
what is known from measurements,14.15 which show that 
the polar angle is in the order of 15°. 

To study the influence of the directionality of the special 
contact point, Andersen and Wheeler4.5 extended the deco­
rated lattice model ofWheeler.9 In this model there are two 
kinds of sites: one kind, the primary sites or cells, is located 
on the principal lattice (again a cubic lattice was used); and 
the other kind, the secondary sites, are introduced between 
each of the two nearest neighbor primary cells. As in the 
Barker and Fock model, either an A or B molecule occu­
pies every site. It is now assumed that the only interaction is 
between nearest neighbor primary and secondary cells. 
Each molecule is again represented by an arrow which 
now, in contrast to the Barker and Fock model, can point in 
n directions where n is an assignable number. The interac­
tion energies are chosen as follows. Between molecules of 
the same species, the energy is zero; and between unlike 
molecules, the interaction depends on whether the arrow, 
on the secondary cell, points towards or away from the 
primary cell. It is assumed that pointing towards the pri­
mary cell occupant constitutes a hydrogen bonding (U2 ), 

where U2 is negative (i.e., an attractive interaction), and 
pointing away gives the repulsive energy U1• 

It should be emphasized that the energy in the Andersen 
and Wheeler model does not depend at all on the orienta­
tion of the molecule on the primary site. This limitation 
had to be imposed, otherwise the model cannot be solved by 
mapping it onto the Ising model. The general outline for 
solving a decorated lattice is given in Mulholland and 
Rehr. 16 

The calculation of closed loop coexistence curves by this 
method shows that, in order to get a good fit with the ex­
perimental curves, n should be equal to 5000. This puts the 
directionality at a much too low value. Andersen et al. rea­
son that this is not surprising since the directionality of the 
molecules on the primary sites is ignored. They estimate 
that the correct solid angle subtended by the special con­
tact point is calculated from an effective n, which they take 
to be Iii. Reasonable agreement is now obtained for the 
solid angle. 

Although the decorated system has provided good 
agreement with the experimental curves, the artificial fea­
ture that molecules on primary sites have no directionality 
associated with them is a severe drawback. As is often ar­
gued l7

•
18 it is more likely that a network develops; that is to 

say, there exists a certain correlation between these orienta­
tions. 

The treatment of the Barker and Fock model in Sec. II 
can be extended in order to incorporate a higher directional 
bonding. In order to do this, one would have to differentiate 
between two kinds of A and B molecules, i.e., those mole­
cules that form a hydrogen bond with their neighbors and 
those that do not, as was done by Andersen and Wheeler. As 
mentioned before we will ignore the constraints (2) and as a 
consequence some of the need for the differentiation falls 
away. In addition, our primary interest is in the determina­
tion of the influence of directional bonding on the spinodal 
line and not the complete solution of the model. Thus we 
ignored the distinction referred to above. 

Now it becomes easy to extend the Barker and Fock 
model to include the stronger directional bonding. n is no 

J. Chern. Phys., Vol. 80, No.4, 15 February 1984 
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longer equal to z, as it was in the previous section, but can 
vary. From Eq. (6), the consequences are clear. Renaming 
the energies in Eq. (6) to conform with the notation of An­
dersen and Wheeler (i.e., the repulsive energy UI = UI and 
the attractive energy U2 = U2 = U3 = U4 ), it is seen that 
an increase in n leads to a relative decrease of the impor­
tance of the term with the attractive energy. Thus, compar­
ing two cases with the same energies but with different 
values for n, one finds that the larger the value for n, the 
lower the LCST. Or, in other words, to achieve the same 
ratio ofUCST and LCST, a larger attractive energy is need­
ed in the case with the larger n. Thus, a more realistic value 
is found for the hydrogen bond energy. However, as before, 
the coexistence curves are still too narrow, which might be 
argued to be due to the effect that the order of the approxi­
mation is too low in the Barker and Fock model. In the next 
section, the next higher order approximation in the CVM 
(the four cluster or Kramers-Wannierl9 approximation) 
will be treated. 

IV. THE FOUR CLUSTER APPROXIMATION 

Using the same arguments as in the previous sections, it 
is assumed that all the point probabilities in the n directions 
are equal. Consequently, the number of the possible four 
cluster variables (see Fig. 2), namely n\ is reduced to, at 
most, 64 different (or independent) variables. An added re­
duction can be achieved using symmetries. In the natural 
iteration2o method (NI), as in many other methods, the 
smaller the number of the independent basic cluster varia­
bles, the easier it is to solve the system (see Appendix B). 

Let the indices i,j, k, and I denote the absolute orienta­
tions in space of either the A (i, ... = 1, ... , n) or B 
(i, ... = n + 1, ... ,2n) and let Xi> Yij' and Zijkl denote, respec­
tively, the point, pair, and four cluster variables. In the 
isotropic solution, all the Xi for i<.n are equal to xA/n. The 
list of the different pair variables is given in Table I. The 
four point variables are not listed. They were actually gen­
erated in the program. cP ( = (:JF) is then given by 

2n 2n 

cP = 3{:J L €ij Yij + 7 L xi(lnxi - 1) 
ij=] i=] 

2n 2n 

-9 L Yij(lnYij -1)+3 L zijk/(lnzijkl- 1) 
jj=] ij.k.I=] 

+ 3{:JA. (1 - .. f Zijkl)' 
IJ.k,l= ] 

(8) 

Minimizing with respect to Zijkl and remembering that 

i--------J 

FIG. 2. The basic four cluster. 

--------k 

and 

Xi = LYij = LZijkl' 
j j.k.l 

Yij = LZijkl, 
kl 

leads to 

(9) 

x[ -(:J(A.+ €ij +€jk :€kl +€/j)] , (10) 

where, for convenience, the energies in Table I have been 
renamed. Equation (10) can be written as 

Zijkl = AijAjkAklA/ie - f3A 

with 

A .. = (X.X.)-7/24y3/4e -f3E;j4 
1J I ) IJ • 

(11) 

Inspection of the set ofEqs. (11) reveals that the (2n)4 Zijkl can 
be reduced to only 124 different four cluster variables with 
weight factors. 

Having established how the Barker and Fock model 
(with the extension of the Anderson and Wheeler model) is 
to be solved in two different approximations for the equilib­
rium cases, it is now possible to calculate the spinodal as 
outlined in the following section. 

V. THE CALCULATION OF THE SPINODAL 

The spinodal21 is determined by 

(12) 

where S = x A - X B • This is easily calculated in a mean field 
theory where ~ is the only variable. For the pair and the four 
cluster approximations, Eq. (12) becomes a complicated 
expression in the pair and the four cluster variables, respec­
tively. It will be shown that the condition (12) is the same as 
the condition that the determinant, formed by the matrix of 
the second derivatives of the free energy with respect to the 
independent variables, vanishes. 

We will demonstrate the calculation using the pair ap­
proximation, particularly since the results published in the 
literature are incorrect. Let us consider a magnetic or a sim­
ple phase separating system in the pair approximation. The 
grand potential cP = {:J [F + H (x 1 - x 2 )] is given by 

Z 2 
cP = -(:J€{2Y2 - YI - Y3) - (z - 1) L xi(lnxi - 1) 

2 i=] 

Z 3 
+ - L gi Yi(lnYi - 1) + (:JR(x] - x 2), (13) 

2 j=] 

where x I' X2' YI' Y2' and Y3 are, respectively, the probabili­
ties for spin up, spin down, two nearest neighbor spins up, 
spin up, and spin down, and the two n.n. spins down and gi 
equals 2 if i = 2 and gj equals 1 otherwise. Z is the coordina­
tion number and H is the magnetic field or the chemical 
potential. The interaction energy is chosen such that one 
does not have to determine the slope of the common tan­
gent. 22 
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The following relations hold between the probabilities: 

XI +X2 = 1, 

(14) 

X2 =Y2 + Y3· 

Taking 5 ( = XI - x 2) and Y2 as independent variables, the 
remaining probabilities can be expressed as 

XI = ~(l + 5), 

X 2 = ~(l - 5), 

YI =!(1 + 5) - Y2' 

Y3 = ~(1 - 5) - Y2· 

(15) 

The grand potential is a minimum with respect to a vari­
ation in the variables, consequently 

a(/> z - 1 XI Z YI /3'H S -=0= ---In-+-ln-+ = I' as 2 x2 4 Y3 
(16) 

a(/> z Y~ 
- = 0 = 2z/3E + -In --= S2. 
aY2 2 YIY3 
The first equation determines the magnetic field. A vari­
ational principle23 says that 

or 

dS = 0 = aS2 df: aS2 d 
2 as ~ + a.v2 Y2 

aS2 dY2 + aS2 = O. 
a.v2 ds as 

(17) 

A short calculation shows that (indicating the partial de­
rivatives by indices): 

d 2(/> 
_ = ((/>""(/> _ (/>2 ,,)I(/> = 0 (18) dS 2 ~~ y, y, y,~ y, y, ' 

where (/>y,y, does not equal zero [see Eq. (17)]. This is of 
course the matrix of the free energy with respect to the 
independent variables. 

For the magnetic case, the following expressions result 
from Eq. (18) with Eqs. (15) and (16): 

z-2 
Y2=--XIX2' 

z-1 
e4fJE = YI Y3 . 

y~ 
This can be rewritten as follows: 

~=21n(_z ) 
Tc z-2 

X[ln (Z-2)(I- s2)+4(z-I)1(Z-2)]-1 
(z - 2)(1 - 52) 

(19) 

(20) 
This result is to be compared with an expression recently 
derived by van der Haegen et al. 24

: 

T (z){ A + [A 2 + 4z(z _ 2)j1/2} - I - = In -- In -~"------'--'----':":'-
Tc z - 2 2(x - 2) 

(21) 

with 

A= -- +--(
1 + s)(Z - I)/z ( 1 _ s)(Z - II/z 

1-5 1+5 

since they incorrectly used the equilibrium free energy (i.e., 
H=O). 

By the same reasoning, for a system which has more 
than two independent variables, one can show that the con­
dition for the spinodal line is the vanishing of the determi­
nant of the derivatives (see also Meijer et al.25

). 

Since in the four cluster approximation there are 
124 - 1 (from the normalization condition) = 123 indepen­
dent variables, it is often more convenient from a computa­
tional point of view not to calculate the determinant but to 
determine by trial and error where the magnetic field reaches 
an extreme inside the coexistence curve, subject to the set of 
equations (16). 

In the next section the results of the calculations will be 
discussed. 

VI. RESULTS AND DISCUSSION 

In Fig. 3 the upper and lower critical temperatures are 
plotted for the pair and the four cluster approximations as a 
function of U2• Here it is assumed that U3 = U4 = U2, 

where U2 is the hydrogen bonding interaction. UI is arbi-

2.5 

1.0 

.5 

-2 -1 0 
U2 (n = 71) 

I I I 
-.3 -.15 0 

U 2(n= 6) 

T 

/ 
I 

I 
I 

I 
/ 

/ 
/ 

/ 
1.5 

n=6 

1 

I • 
1 

FIG. 3. Upper and lower critical solution temperatures plotted as function 
of the energy U2 for two different values of n. U, has been taken equal to one. 
The solid lines refer to the pair approximation and the dotted lines refer to 
the four cluster approximation. 
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.9 

n = 71 

\ 
\ 

n = 6 \ 

.8 

_ ..... ./ 

I 
I 

/ 
/ 

/ 

-----.7 .. 
.6 .7 . 8 

FIG. 4. Coexistence curves for pair ( = solid lines) and four cluster ( = dot­
ted lines) approximations for two different values of n. Since the coexistence 
curves are symmetric around X A = 0.5, only half of the phase diagrams are 
drawn. The energies U2 (U, = I) and the VCST are as follows: Pair, n = 6: 
U2 = - 0.339, T~P = 0.815. Pair, n = 71: U2 = - 2.60, T~P = 1.67. Four 
cluster, n = 6: U2 = - 0.414, T~P = 0.75. Four cluster, n = 71: 
U2 = - 2.58, T~P = 1.53. 

trarily chosen to be equal to one, so it determines the tem­
perature scale. The additional parameter labeling the 
curves indicates how strong the anisotropy is, i.e., the value 
of n. It is obvious that an increase in n gives an increase in 
the ratio of upper to lower critical solution temperatures as 
was noted earlier by Andersen and Wheeler. The influence 
of the approximation, pair vs square, on the curves in Fig. 3 
is seen to be rather small. 

However, a large influence of the approximation can be 
noted if the actual coexistence curves are plotted. To make 
a meaningful comparison possible, the coexistence curves 
were calculated such that the ratio of upper to lower criti­
cal solution temperatures is the same. The results are 
shown in Fig. 4. As was mentioned before, a higher order 
approximation gives a considerable widening of the coexis­
tence curves over the quasichemical approximation. 

Moreover, as anticipated, the conditions described in 
Eq. (2) were better fulfilled with the higher order approxi­
mation (see Fig. 6). It is worth noting that it is expected that 

+----t 
I I 
I I 
I I 
I I 
I • ----? 

FIG. 5. A possible four cluster according to 
the pair approximation which is not allowed 
in the real four cluster approximation. 
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C 

FIG. 6. The ratio of special to all contact points for the A molecules (R A ) as 
a function of reduced temperature for the coexistence curves shown in Fig. 
4. Solid lines are for the pair approximation and the dotted lines indicate the 
four cluster approximation . 

this ratio will be more nearly 1/6 in the case n = 6 in the 
four cluster approximation than in the pair approximation. 
This is due to the fact that in the four cluster approximation 
certain figures are eliminated because they are inconsistent 
with the model. In other words, using the pair approxima­
tion a certain number of inconsistent four clusters are al­
lowed. For a specific example see Fig. 5. This four cluster is 
possible in the pair approximation but impossible in the 
four cluster approximation. That is, the four cluster ap­
proximation is closer to the minimum cluster size (see Fig. 
1) needed to adequately describe the model. In the model 
with n larger than 6, this ratio remains 1/n. But, it has to be 
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FIG. 7. The spinodal lines of the coexistence curves given in Fig. 4 (solid and 
dotted lines are for, respectively, the pair and four cluster approximations). 
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remembered that, here, an additional approximation is 
made (see Sec. III). Thus, the values of the ratios for differ­
ent n are not comparable. The results show that these ar­
guments are confirmed (see Fig. 6). The ratios, in the case n 
larger than 6, are shown to be much less constant than for n 
equal to 6. This is not surprising, since more approxima­
tions are made in the first case. 

In Fig. 7 the spinodal lines are presented for the same 
coexistence curves as in Fig. 4. It is noticed that the spino­
daIs are wider if either the order of the approximations or 
the anisotropy (as measured by n) increases. In Sec. II it was 
pointed out that in the pair approximation, the coexistence 
curve could be mapped onto the Ising model with a tem­
perature dependent interaction energy. Since, in the pair 
approximation for a nonanisotropic system, one specific 
temperature corresponds to one specific concentration at 
the coexistence curve and also corresponds to one specific 
concentration at the spinodal, the appropriate way of com­
paring the different spinodal lines is as follows. For a given 
concentration at the coexistence curve, one calculates both 
the spinodals for the closed loop phase diagram and the 
magnetic system. This means, of course, that besides the 
fact that the temperatures (i.e., their numerical values) are 
different, also the reduced temperatures (i.e., T /Tuc' 
where Tuc is the temperature at the upper critical solution 
point) will, in general, be different. It is found that, for each 
approximation considered here, the spinodals are approxi­
mately the same (i.e., the difference is less than 0.02%). 
This is unexpected since, if one considers the pair approxi­
mation, the determinant of the matrix of the derivatives 
(which determines the spinodal curve) is entirely different 
in both cases (for anisotropic molecules one has a (3 X 3) 
matrix and for isotropic molecules or a magnetic system 
one has a (2 X 2) matrix). There is, however, a small depen­
dence on the approximation used. However, as is be­
lieved,26 the van der Waals loop is a consequence of the 
approximation. The van der Waals loop is supposed to dis­
appear in the correct solution. But this corresponds, in the 
CVM, to an infinitely large cluster which is computational­
ly impossible. The question is whether the spinodals calcu­
lated from an equilibrium theory, such as the CVM, have 
any meaning beyond appearing to be a rather fortuitous 
coincidence. It is well known, that nucleation is a time de­
pendent process27; thus, it maybe necessary to generalize 
the problem into the time domain. 

VII. SUMMARY 

It is pointed out that the Barker and Fock model should 
be solved in a much higher approximation to better ac­
count for the anisotropy of the molecules. It is also shown 
that, using a higher order approximation than previously 
used, a considerable widening of the closed loop phase dia­
gram is obtained which is more in accordance with real 
physical systems. Also, in the same higher order approxi­
mation, the ratio of the special to all contact points is 
shown to be closer to the correct value. 

Moreover, it is noted that in real systems the anisotropy 
of the molecules gives rise to the formation of liquid crys­
tals (and/or complicated networks) which, in any of the 

models discussed so far, cannot be accounted for. How­
ever, in the CVM, the formation of liquid crystals can be 
included. The results can be compared with recent experi­
ments28 in which, in addition to a closed loop phase dia­
gram, liquid crystalline phases were also found. 

After having corrected a recently published expression 
for the spinodal line, the spinodals are calculated in both 
the pair and four cluster approximations. It is found that, 
within an approximation, the influence of the anisotropy of 
the molecules is small to neglible. 

APPENDIX A: SOLUTION OF THE EQUATIONS IN 
THE PAIR APPROXIMATION 

The equilibrium concentration is calculated by using the 
following substitution 12: 

XA/XB = e68
• 

This leads to 

S = X A - X B = tanh 38 . 

(AI) 

(A2) 

The minimization of the free energy, with respect to the 
independent variables Eq. (3), leads to 

alP =0= -~ln X A +l.-ln Y; 
as 2 X B 2 Y; 

alP = 0 = 6K + 3 In y;2 . 
ay; y;y; 

Rewriting this in terms of the variable 8 leads to 

sinh 38 eK = __ _ 
sinh 28 

and 

, I sinh 28 
Y2 =-

2 sinh 58 cosh 38 

Equation (A4a) can be solved in several ways.23 

APPENDIX B: SOLVING THE FOUR CLUSTER 
EQUATIONS 

(A3) 

(A4a) 

(A4b) 

The weight factors were determined by systematic 
counting on the computer.29 The normal procedure for 
solving the equations resulting from the CVM is by means 
of the NI. 20 Acceleration of the convergence is made possi­
ble by means of the following procedure. When the system 
is almost converged, the variables change logarithmically 
with each iteration, this knowledge can be used to extrapo­
late to the solution.22 

The natural iteration technique of Kikuchi was later 
amended, by the same author, with the so-called minor 
iterations.30 This addendum was introduced to satisfy ad­
ditional constraints which occurred in more complicated 
problems. These constraints give rise to additional La­
grange multipliers. The natural or major iterations are 
completed as outlined above. The minor iterations are dif­
ferent. After each calculation of the cluster variables, in 
their canonical form, one solves for the additional La­
grange mUltipliers (i.e., the minor iteration) and then pro­
ceeds with a major iteration followed, again, by minor iter-

J. Chern. Phys., Vol. 80, No.4, 15 February 1984 

Downloaded 15 Mar 2013 to 131.252.76.164. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/about/rights_and_permissions



1624 E. Bodegom and P. H. E. Meijer: Coexistence and spinodal curves 

ations. These Lagrange multipliers will be seen to occur in 
the form: 

(Bl) 

where the a j are the Lagrange multipliers and z\O) is the 
canonical part (i.e., the product of different subclusters) of 
the cluster variable Zi' 

A new iteration scheme is proposed, where, both the mi­
nor and major iterations are treated on the same footing, 
i.e., minor and major iterations are done at the same time. 
For this to be achieved, the following transformation is 
proposed. First, it is to be noted that, according to the 
Barker and Fock model, for example, in the four cluster 
approximation there are only nine independent variables. 
This can be seen from the set of equations (11). The four 
point probabilities (Zj) and the point probabilities (x) are 
completely determined once all the pair probabilities are 
specified. Since there are ten pair probabilities with one 
normalization condition, there are only nine independent 
variables. The pair probabilities are now rewritten in terms 
of nine new variables (ri ) as listed below: 

Yl = exp(rl + r2 + r3 ), 

Y2 = exp(rl + r2 - r3 + r4), 

Y3 = exp(rl + r2 - r3 - r4 ), 

Y4 = exp( - r 1 + r7 ), 

Y5 = exp( - r 1 - r7 + rg), 

Y6 = exp( - r 1 - r7 - rg + r9), 

Y7 = exp( - r 1 - r7 - rg - r9), 

yg = exp( + r 1 - r2 + r5 ), 

Y9 = exp(rl - r2 - r5 + r6), 

YIO = exp(rl - r2 - r5 - r6)· 

(B2) 

The point probabilities, expressed as a sum over pair proba­
bilities, are seen not to depend strongly on any of the new 
variables ri • The four cluster variables (z) can be calculated 
using Eqs. (10) and, as in the NI, the new pair probabilities 
are formed using the new set of z. From these new pair pro­
babilities one can calculate the new r i by means ofEqs. (B2). 
Schematically, one can write: ri = I( Y), where Y indicates 
the approximate pair probabilities. So far the procedure is 
entirely analogous to the NI, but now certain improvements 
can be made. The variable that governs phase separation is r2 

(i.e., if r 2 is zero then x A = x B ). This is the variable which, 
especially close to the critical point, changes slowly to the 
correct value. Thus, an improvement which can be imple-

mented rather easily is changing r2 faster than the change 
which would occur if one would adhere to the NI. Similarly, 
all the other variables could be changed faster than in the NI. 
This is a standard problem (see Henrici31

). A comparison 
between the natural iteration with acceleration22 and the 
scheme proposed here for the four cluster approximation 
reveals that the latter is somewhat faster (a 20% improve­
ment). 
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