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Abstract—Hierarchical networks are known to achieve high
classification accuracy on difficult machine-learning tasks. For
many applications, a clear explanation of why the data was
classified a certain way is just as important as the classification
itself. However, the complexity of hierarchical networks makes
them ill-suited for existing explanation methods. We propose a
new method, contribution propagation, that gives per-instance
explanations of a trained network’s classifications. We give
theoretical foundations for the proposed method, and evaluate its
correctness empirically. Finally, we use the resulting explanations
to reveal unexpected behavior of networks that achieve high
accuracy on visual object-recognition tasks using well-known data
sets.

I. INTRODUCTION

In machine learning, a model is learned from structure in
the data. When using machine-learning techniques, one hopes
that the learned structure generalizes well to yet-unseen data.
However, many machine-learning techniques result in black-
box models, making it difficult to understand the nature of the
learned structure. With interpretable methods that explain the
interactions between data and model, we can ensure that our
learned models have learned relevant structure from the data,
rather than spurious statistics.

This paper focuses on a family of hierarchical networks
in which the operations computed at each layer alternate
between some type of pattern matching (e.g., convolution,
radial basis function) and subsampling (e.g., mean, maximum).
Such networks have been used extensively in the machine
learning community, and are known to achieve high clas-
sification accuracy on a variety of tasks such as phoneme
recognition [1], text document classification [2], and visual
object recognition [3]. Due to their complexity, such networks
are often treated as black boxes, giving accurate solutions to
difficult problems without explaining how their solutions were
found.

However, for hierarchical networks to be used for applica-
tions in which each classification carries high risk (e.g., med-
ical diagnosis or financial decisions), it may be necessary for
these networks to explain the evidence for each classification.
More generally, for any classification method, it is important

to verify that the network’s results are due not to anomalies or
accidental correlations in particular data sets, but to features
of the data that make sense for the general task at hand.

Given an instance x = (x1, x2, . . . , xn) classified as ŷ(x) ∈
{1,−1}, we seek a method to explain the relative importance
of each input xi to the instance’s classification. Poulin et al. [4]
offer such an explanation method for the case of additive clas-
sifiers. For an additive classifier ŷ(x) = sgn [

∑n
i=1 fi(xi) + b],

Poulin et al. define the contribution of feature xi to be fi(xi).
However, the classifications of hierarchical networks cannot be
explained with this method: even if the features calculated by
the network are classified by an additive classifier, the high-
level features themselves are generally nonadditive functions
of the network’s low-level inputs.

We address this limitation with a new method called
contribution propagation. In short, we calculate contributions
of high-level features as in Poulin et al. [4], and then work
backward from the features to the network’s input, determining
the relative contribution of each node to its parent nodes. This
process gives us a well-founded explanation for individual
classifications: given a single classified datum, our method
explains how important each part of the datum (i.e., each entry
in the input vector) was to that classification.

In what follows, we review the literature related to this
research, and in Section II, we introduce notation and review
the architecture of hierarchical networks. Section III gives
the details of the contribution-propagation method. Section
IV discusses the implementation details of our network, and
we give experimental results in Section V. We conclude with
directions for further research and open questions.

A. Related Work

Rule extraction refers to a family of methods that explain
the general rules used by a network by analyzing the network’s
internal weights [5]. Similarly, one can visualize the network
topology in order to understand the overall strategies that
might be used [6]. The extracted rules are not specific to
the model’s decision for any particular datum. Rather, they
describe the general behavior of the model over a large set

c© 2013 IEEE Symposium Series on Computational Intelligence To appear in Computational Intelligence and Data Mining (CIDM) 2013



of data. Thus, rule extraction does not provide the type of
information we seek: a fine-grained explanation of what caused
a single datum’s classification.

In an attempt to provide such explanations, recent research
has treated the entire classification system as a single black
box in order to provide classifier-independent explanations [7].
These methods avoid dealing with the internal calculations of
the system at the expense of sampling from an exponentially
large set of possible inputs. For classifiers with large input
spaces, as is often the case with hierarchical networks, these
methods introduce unwanted dependencies on sampling.

The gradient approach is one way to explain individual
classifications [8]. Given an instance x = (x1, x2, . . .) and
its classification ŷ(x) = sgn [f(x)], this approach defines the
importance of feature xi to be ∂f

∂xi
. Intuitively, xi is important

if f is sensitive to small changes in xi. However, the gradient
approach fails to tell us how much each feature contributed to
the output. Consider the simple example of a linear classifier
f(x) = w>x, where w = (2, 2). An input x = (x1, x2) =
(3,−1) gives output

f(x) = 2 · 3 + 2 · (−1) = 6− 2 = 4.

A different input x′ = (x′1, x
′
2) = (−1, 3) gives output

f(x′) = 2 · (−1) + 2 · 3 = −2 + 6 = 4.

The gradient approach would tell us that our function f is
equally sensitive to all inputs in both cases ( ∂f

∂xi
= 2). However,

this analysis fails to tell us that in the first case, the positive
output of f is due to the first feature x1; and in the second
case, the positive output of f is due to the second feature x′2.

The contribution approach of Poulin et al. [4], on the other
hand, perfectly captures this information. Using this approach,
we would determine that for the first example, the contributions
of x1 and x2 are 6 and -2, respectively. For the second example,
the contributions of x′1 and x′2 are -2 and 6, respectively. Thus
contributions (which we explore in more detail below) give
us fine-grained explanations of the degree to which each input
contributed the output, while the gradient approach loses much
useful information about the classification.

II. PRELIMINARIES

A. Notation

We use italicized letters to denote real numbers and bold
letters to denote real vectors, such as x = (x1, . . . , xn) ∈ Rn.
The L2 norm of a vector, denoted ‖ x ‖, is calculated as√∑n

i=1 x
2
i . A node is a real-valued function. Capital letters

X refer to the identity of a node, the function calculated by
that node, or the value returned by the node’s function. The
intended use will be clear from context.

For a given hierarchical network, X`
i refers to the ith node

in the `th layer. The vector X` = (X`
1, X

`
2, . . .) denotes all

nodes in layer `. We write X` to mean some node in the `th
layer of the network, or merely X to denote any particular node
in the network. The children of node X`, denoted ch

(
X`
)
,

are the set of nodes that are the inputs to node X`. In a slight
abuse of notation, we sometimes treat ch

(
X`
)

as a vector; the
intended use will be clear by context. Similarly, the parents
of node X`, denoted pa

(
X`
)
, are the set (or vector) of nodes

that receive X` as input. In what follows, we will restrict the
inputs of any node to come from only the preceding layer.
Thus X`−1 ⊇ ch

(
X`
)

and X`+1 ⊇ pa
(
X`
)
. A network has

L layers (` ∈ [1, . . . , L]). Thus the output of the network, often
called the feature vector, is XL. For convenience, the input to
the network is denoted simply x. Lastly, let x ∈ Rn, and for
any node X1

i in the network’s first layer, ch
(
X1

i

)
⊆ x.

B. Hierarchical Networks

Hierarchical networks comprise a large family of machine-
learning models such as HMAX [3], [9], convolutional neural
networks [2], and others. In order to make our analysis
concrete, in this work we focus on the well-known family of
hierarchical networks described by HMAX. However, it should
be noted that our contribution propagation method is appli-
cable to the more general class of feed-forward hierarchical
networks. We briefly review the architecture of HMAX-like
networks here. Details of our implementation are given in the
Methods section.

In a trained network, a node X`
k in an odd-numbered layer

computes the radial basis function (RBF)

X`
k = exp(−β ‖ ch

(
X`

k

)
− P`

k ‖2),

where P`
k and β are parameters of the model. We refer to P`

k
as the kernel of node X`

k. Following Serre et al. [3], we refer
to these layers as S (simple cell) layers, with S1 being the
first S layer, and so on. Nodes X`+1

h in even layers compute
a maximum of their inputs:

X`+1
h = max

X`
k∈ch(X

`+1
h )

X`
k.

Again following Serre et al. [3], we refer to these layers as C
(complex cell) layers.

Figure 1 shows a hierarchical network with two S layers
and two C layers, whose input x consists of the gray-scale
pixel values of an image. The output of the network (i.e., the
output of the C2 layer) is the feature vector XL, which is
given to a trainable classifier (in this case, a linear support
vector machine (SVM)).

III. METHODS

Given an instance x = (x1, x2, . . . , xn), its corresponding
feature vector XL (i.e., the final layer of the network), and the
feature vector’s binary classification ŷ(XL) = sgn[f(XL)] ∈
{1,−1}, we ask what portion of the value f(XL) came from
input xi? In this work we assume that the “score” f(XL) is
an estimate of the classifier’s confidence in its classification of
XL [10].

Rather than answer this question for the entire classifier and
network as one large black box, our approach is to analyze each
node (as well as the classifier) sequentially. Working from the
classifier back to the inputs, we determine the contributions of
the nodes in layer L to the classifier, then the contributions
of the nodes in layer L − 1 to the nodes in layer L, and
so on until we have calculated the contribution of the inputs
(e.g., the contribution of each pixel in the image of Figure 1).
This process, which we call contribution propagation, is ideal
for interpreting the classifications made by complex networks



Fig. 1. A hierarchical network taking an image as input. Only a small
subset of each layer is shown. Each small square is a node in the network.
Computation flows from top (Image) to bottom (SVM). Dashed arrows
illustrate the local connectivity of the network: a small subset of each layer
(gray group of nodes) is fed as input to a single node (black) in the following
layer. The vector consisting of each C2 output is the feature vector used for
training and testing the SVM.

which are too large and complicated to interpret directly, yet
each individual calculation (i.e., calculating the value output
by any single node in the network) is simple.

It is crucial to note that our contribution-propagation
algorithm is used only in explaining a model’s classification.
The classification itself is performed by a trained hierarchical
model of the user’s choosing. Separation between the clas-
sification and explanation algorithms allows our explanation
method to be used in a variety of settings with a variety of
models. Pseudocode for our algorithm is given in Figure 2.

In the remainder of this section, we describe the
contribution-propagation algorithm at a relatively high level.
We then discuss how to apply the algorithm to the particular
type of hierarchical network discussed in Section II-B. This
involves deriving equations specific to the linear SVM, RBF,
and maximum operator.

A. The Contribution-Propagation Algorithm

The purpose of the contribution-propagation algorithm is
to provide an interpretable explanation of which components
of the input were responsible (and to what degree) for a given
datum’s classification. When the classification is the result of
many simple calculations, as is the case with hierarchical net-
works, we form an overall description of an input’s importance
(i.e., this pixel was important to the classification) by analyzing
the internal calculations of the network (i.e., node X`

i was
important to node X`+1

j ).

The central idea of contribution propagation is that a node
was important to the classification if it was important to its
parents, and its parents were important to the classification.
Mathematically,

C
(
X`

i

) def
=

∑
X`+1

j ∈pa(X`
i )

C
(
X`

i |X`+1
j

)
C
(
X`+1

j

)
. (1)

In Equation 1, C
(
X`

i

)
is the contribution of node X`

i to the
classification; similarly, C

(
X`+1

j

)
is the contribution of node

X`+1
j to the classification. Finally, C

(
X`

i |X
`+1
j

)
is the partial

contribution of node X`
i to its parent node X`+1

j . Informally,
this value represents how important X`

i was to X`+1
j . We will

give explicit definitions for these terms in later sections; for the
moment, we complete our general discussion of the algorithm.

The contribution-propagation algorithm starts by calculat-
ing the contribution C

(
XL

i

)
of each top-level feature XL

i to
the classifier. The algorithm then iteratively descends through
the layers of the network, determining the contribution of each
node to its parent nodes. This process is described in Figure
2.

// Given instance x = (x1, x2, . . . , xn),
for ` = L→ 1 do

for all i do
Calculate C

(
X`

i

)
// calculate contribution of each network node

for all j do
Calculate C (xj)
// calculate contribution of each input

return (C (x1) , C (x2) , . . . , C (xn))

Fig. 2. The contribution-propagation algorithm. C
(
X`

i

)
is the total contri-

bution of node X`
i . Recall that x = (x1, . . . , xn) is the input to the network,

thus C (xj) is the total contribution of input xj .

In order to complete the description of contribution prop-
agation, we need only derive the equations for C

(
XL

k

)
(the

contribution of the network’s output nodes) and C
(
X`

i |X
`+1
j

)
(the partial contribution of internal nodes to their parents).

We have previously stated that C
(
X`

i |X
`+1
j

)
represents

how important X`
i was to X`+1

j . To make this idea more con-
crete and well-founded, we impose the following constraints:∑

X`
i∈ch(X

`+1
j )

C
(
X`

i |X`+1
j

)
= 1 (2)

and 0 ≤ C
(
X`

i |X`+1
j

)
≤ 1. (3)



In other words, we require that C
(
X`

i |X
`+1
j

)
be a distribu-

tion over ch
(
X`+1

j

)
. The meaning of this distribution is the

fraction of the value X`+1
j that is due to X`

i .

With this in mind, we can see that each individual sum-
mand from Equation 1, C

(
X`

i |X
`+1
j

)
C
(
X`+1

j

)
, is the portion

of the contribution of X`+1
j that is due to X`

i . Thus Equation
1 in its entirety tells us that a node’s contribution C

(
X`

i

)
is

equal to all of the contributions in the parent’s layer for which
X`

i is responsible.

We now derive C
(
X`

i |X
`+1
j

)
for RBF and maximum

functions (the two types of nodes in our network). We will
conclude with the definition of C

(
XL

k

)
, the contribution of

the network outputs. This will complete our derivation of the
contribution-propagation algorithm.

B. Contribution to Radial Basis Function

Consider a node X`+1
j in an S-layer. For convenience, let

X = ch
(
X`+1

j

)
and P = P`+1

j . Then the function computed
by X`+1

j is the RBF

X`+1
j = exp(−β ‖ X− P ‖2). (4)

Our goal is to define a function CRBF

(
X`

i |X
`+1
j

)
which is a

distribution over ch
(
X`+1

j

)
and which accurately describes the

degree to which X`
i was responsible for the value of X`+1

j .

Equation 4 is a measure of distance between the vectors
X and P. A closer distance yields a larger RBF value, and
a further distance yields a smaller value. Thus we want
CRBF

(
X`

i |X
`+1
j

)
to be higher if X`

i is closer to Pi, meaning
when (X`

i −Pi)
2 is smaller. Moreover, the distance calculated

by the RBF is tuned by the function s(x) = exp(−βx). Thus,
we define CRBF

(
X`

i |X
`+1
j

)
as:

CRBF

(
X`

i |X`+1
j

) def
=

exp(−β(X`
i − Pi)

2)

Z
, (5)

where Z is a normalization term.

Recalling the constraints in Equations 2 and 3, we note that
the constraint of Equation 3 implies that Z > exp(−β(X`

i −
Pi)

2). To make CRBF

(
X`

i |X
`+1
j

)
satisfy the constraint in Equa-

tion 2, it must be normalized so that
∑

i CRBF

(
X`

i |X
`+1
j

)
= 1.

Thus we simply set the denominator Z in Equation 5 to equal
the sum over all children of the RBF, and we arrive at the full
definition:

CRBF

(
X`

i |X`+1
j

) def
=

exp(−β(X`
i − Pi)

2)∑
X`

k∈ch(X
`+1
j ) exp(−β(X

`
k − Pk)2)

.

(6)

Equation 6 agrees with our intuition: those children Xi that
are close to their target Pi have a higher contribution.

C. Contribution to Maximum Function

A node X`+1
j in a C-layer calculates the maximum of its

children,
X`+1

j = max
X`

i∈ch(X
`+1
j )

X`
i . (7)

As before, our goal is to define the function CMAX

(
X`

i |X
`+1
j

)
which is a distribution over X`

i and which accurately describes
the degree to which X`

i was responsible for the value of X`+1
j .

To this end, we note that an input to a max function was
important to the function if that input was itself the maximum
value. Thus we view the max function as a type of switch, and
we define

CMAX

(
X`

i |X`+1
j

) def
=

{
1/r if X`

i ∈M
0 o.w.

(8)

where M = {X`
i ∈ ch

(
X`+1

j

)
: X`

i = X`+1
j }, and M

contains r elements. That is, we divide the contribution equally
among those inputs that shared the maximum value; those
children who were not the maximum did not contribute.

D. Contribution to an Additive Classifier

Given a feature vector XL classified with an additive
classifier as ŷ(XL) = sgn

[∑
i fi(X

L
i ) + b

]
, we define the

contribution of feature XL
i to be fi(XL

i ) as in Poulin et al. [4].
We denote the feature’s contribution by writing

C
(
XL

i

) def
= fi(X

L
i ). (9)

Here we assume the additive classifier is a linear
SVM [11]. Given the set V of support vectors, a linear
SVM calculates ŷ(XL) = sgn

[∑
V∈V αv〈V,XL〉+ b

]
=

sgn
[∑

iX
L
i

(∑
V∈V αvVi

)
+ b
]
, where 〈·, ·〉 denotes the dot

product. In this case, Equation 9 becomes

CSVM

(
XL

i

) def
= XL

i

(∑
V∈V

αvVi

)
. (10)

That is, Equation 10 gives the contribution of node XL
i to the

SVM’s classification of feature vector XL. A positive value
gives the amount to which node XL

i contributes to a positive
classification (or away from a negative classification); similarly
a negative value gives the degree of XL

i ’s contribution towards
a negative (or away from a positive) classification.

IV. HIERARCHICAL NETWORK IMPLEMENTATION

We implement a four-layer network (Figure 1), based on
the network of Serre et al. [3]. The input image is preprocessed
to form a 256× 256 gray-scale image with local contrast en-
hancement. An S1 kernel is an 11×11-pixel Gabor filter. Using
Equation 4, we apply a battery of Gabors at 8 orientations, 2
phases, and 4 scales, with β = 1.0 for all S1 nodes. For each
Gabor configuration, we subsample by centering an S1 node at
every other pixel, resulting in a set of 64 S1 output maps, each
of size 128×128. A C1 node pools over the two phases and a
5×5 spatial neighborhood of S1 outputs. We again subsample
in the same way, resulting in 32 C1 output maps, each of size
64×64. For an S2 node, the input is a 7×7 neighborhood of C1
nodes at all orientations, but at a single scale. The input vector
and the kernel of each S2 node are each scaled to unit length
(‖ X ‖=‖ P ‖= 1). We set β = 5.0 for every S2 node. For each
kernel, there is a corresponding S2 node centered at every other
C1 node, resulting in multiple 32 × 32 S2 output maps, one
for each kernel and scale. Finally, a C2 node applies a max
operation to all locations and all scales of a single kernel’s



S2 map. Thus the output of the C2 layer is a vector with
one component per S2 kernel. This feature vector is passed to
the linear SVM. We use the SVMlight package [11] with an
unbiased SVM (b = 0). This allows a simpler derivation of
our method without impacting the accuracy of the network.

V. RESULTS

We apply our contribution-propagation method in order to
explain the classifications of hierarchical networks that are
trained on different tasks. The first experiment is intentionally
simple and controlled, and demonstrates that our approach
accurately explains the network’s classifications. The second
experiment, which uses a well-known, real-world data set,
shows how contribution propagation gives new insight into the
network’s performance.

A. Simple Shapes

In our first experiment, we use a simple artificial visual
classification task to verify that our method’s explanations are
correct and understandable. Each training image contains a
simple shape, either an ‘L’ shape (Figure 3B, positive class)
or an inverted ‘L’ shape (Figure 3C, negative class). Noise is
added by rotating the shape uniformly randomly within ±5
degrees and translating the shape to a random location, and
1/f noise is added to the background. The noise ensures that
the learned classifier is nontrivial.

Figure 3A shows the two learned S2 kernels around the
vertex of the ‘L’ and inverted ‘L’ shapes. We input 20 training
images (10 positive and 10 negative) to the network, and use
the resulting feature vectors to train the SVM.

Our test images contain 9 possible shapes (Fig. 3 D),
including both an ‘L’ and inverted ‘L’, each placed at a random
position in a 3 × 3 grid and rotated randomly within ±5
degrees. Again, 1/f noise is added to the background. Note
that because both the positive and negative objects are present
in the test image, we do not expect one classification over
the other. The test images were designed to illustrate the
authenticity of the contribution-propagation algorithm rather
than to test the classification accuracy of the hierarchical
network (accuracy will be addressed in the next section). All
test images in this toy example were very near the decision
boundary, which is reasonable given that both the positive and
negative classes are present in each test image.

Using contribution propagation, we explain a test image’s
classification using false color as follows. First, we trace
down through the layers of the network (Fig. 3E-H) using the
algorithm presented in Figure 2. Thus Figure 2E shows the
contribution of each node in the S2 layer, Figure 2F shows
the contribution of each node in the C1 layer, and so on.
This results in the calculation of the contribution C (xi) of
each pixel xi (Fig. 3H). Pixels drawn in red contributed to a
positive classification (‘L’); pixels drawn in blue contributed
to a negative classification (inverted ‘L’); pixels that did not
contribute to the classification are drawn in green.

We see in this visualization (Figure 3H) that our
contribution-propagation algorithm correctly colored the pixels
surrounding the area matching the learned kernels (red around
the ‘L’ shape, and blue around the inverted ‘L’ shape). Our

algorithm thus explains the classification of “undecided”: there
was a nearly equal “pull” between the pixels surrounding the
‘L’ (toward positive classification) and those surrounding the
inverted ‘L’ (toward negative classification). This pixel-level
explanation of how the image is interpreted by the network
and classifier was provided automatically by our contribution-
propagation algorithm, and gives evidence for the correctness
of our algorithm.

B. Real-World Images

Next, we use the Caltech101 data set [12] to train the
network and a linear, unbiased SVM in a binary classification
task using categories of “chair” (positive class, corresponding
to red in the visualizations) and “dalmatian” (negative class,
corresponding to blue). The categories contain 60 images each.
Using 10 splits for cross validation, we randomly choose
30 training images and 30 test images from each category.
Following Serre et al. [3], the network “imprints” 1000 S2
kernels randomly from the S2 inputs of the training set, and
the SVM is trained on the resulting network’s output for each
training image. Test images are classified with an average
accuracy of 94%, with a 3% standard deviation (a biased SVM
achieved 93% accuracy with 1.2% standard deviation).

In Figure 4, we see that some images (A, C) are correctly
classified primarily due to the pixels of the object itself (B, D).
However, our method also reveals some surprising behavior of
the network and classifier (F, H): it appears that some images
were correctly classified due to features extracted primarily
from the image’s background. In Figure 4F, this may be less
surprising as the background is quite similar to the dalmatian.
However, in Figure 4H, it is unclear why the background
(dark red) was taken as evidence for the presence of a chair
(or, possibly, absence of a dalmatian). Such an unexpected
explanation offered by the contribution-propagation method
can be useful to the user who is trying to create a system that
will generalize well; the user can see that, at least in some
cases, the network is basing its classification on features that
are not relevant to the general task, due to either deficiencies
in the network or spurious correlations in the data set.

A natural question is how often a correct classification is
“surprising” (that is to say, a correctly classified image where
the background appears to contribute more than the object).
Formulating a metric to define such a surprising classification
is beyond the scope of the present work. However, a subjective
visual inspection of the classified images reveals 5 of the 60
classifications of test images to be of this nature.

As a final test of the classification explanations provided
by the contribution-propagation algorithm, we edit an image to
include both a dalmatian and a chair (Figure 4I). This image
was classified by the network as negative (dalmatian), and the
contribution propagation algorithm explains this classification.
Figure 4 (J) shows that, although there were features associated
with the chair class on the right side of the image (yellow,
light red), the features extracted from the pixels belonging to
the dalmatian were weighted more heavily (deep blue).

Some readers may feel that the small number of training
images used may cast doubt on the validity of the trained
classifier. However, note that researchers often benchmark their
computer-vision system by measuring its performance on the
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Fig. 3. (Figure best viewed in color.) Visualizing the binary classification of images containing simple shapes. The contribution of the nodes in each layer
verifies the correctness of our algorithm. Two S2 kernels are used (shaded squares, A). A linear SVM is trained on images containing either an ‘L’ shape (B,
positive class) or an inverted ‘L’ (C, negative class). We present a test image (D), and use contribution propagation to visualize the contribution of all layers
(E-H). Note that the image is drawn in the background of (E-H) in order to better explain the contribution of each region. Colors correspond to the pixel’s
contribution, as shown in the legend (I). These visualizations give evidence for the correctness of our contribution propagation algorithm.
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Explaining the classifications of test images
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Fig. 4. (Figure best viewed in color.) Visualizations from the classification of chairs (positive) vs. dalmatians (negative), from the Caltech101 database. Colors
correspond to the legend in Figure 3 (I): positive contribution (toward chair) is denoted with red, and negative contribution (toward dalmatian) with blue. Some
images (A, C) are correctly classified because of the contribution of pixels that belong to the object being classified (B, blue on dalmatian; D, red on chair).
Other images that contain confusing patterns in the background (E, G) are still correctly classified, but partially due to the contribution of background pixels
(F, blue on background; H, red on background). An image manipulated to contain both objects (I) is classified as dalmatian, and this classification is intuitively
explained by the contribution-propagation algorithm (J).



Caltech101 dataset using 30 images per class as training data
[13]. Thus our experiment was designed to mimic a bench-
marking process familiar to many computer-vision researchers.
In this light, the surprising results presented in Figure 4 hint
at an important question to the computer-vision community:
does high performance on this dataset indicate a system’s
capacity for object recognition, or merely for learning spurious
statistical (background) cues? The prevalence of this dataset
makes this question all the more pressing.

VI. CONCLUSIONS

We presented a novel method for explaining the classifica-
tions of hierarchical networks with additive classifiers, having
reviewed why traditional approaches such as a sensitivity
analysis fail to give satisfactory explanations. Our method
extends the contribution-based explanations of Poulin et al. [4],
and determines the contribution of each input based on the
internal calculations of the network.

We empirically validate our method’s explanations with a
simple object-recognition task using artificial data. We apply
our method to a binary classification task using a well-known
set of natural images, revealing surprising artifacts in the way
that some images are classified. In particular, we see that some
images are correctly classified because of the contribution of
pixels belonging to the image’s background (Figure 4 F, H).
This behavior is surprising when the task is completed with
high accuracy, but it is also very useful to the user of the
machine-learning algorithm. Such information provided by our
method can help the user to tune the algorithm for better
generalizability, as well as to create data sets without artifacts
in the background.

In order to visualize our method’s explanations, we classify
with an unbiased SVM. Although the lack of bias may, in
some cases, lead to lower classification accuracy, it did not
for any task we implemented. We stress that the lack of bias
was chosen merely for visualization, and that the contribution-
propagation method can be implemented with biased functions
as well.

In future work, the contribution-propagation method may
also be applied to different types of hierarchical networks,
for example those using convolutions or different subsampling
methods.
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