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A Cost Minimization Approach to Synthesis of Linear 
Reversible Circuits

Ben Schaeffer, Marek Perkowski

Electrical and Computer Engineering Department, Portland State University, Portland, Oregon, 
USA

{bms, mperkows}@cecs.pdx.edu

Abstract.This paper presents a heuristic cost minimization approach to synthes
izing linear reversible circuits. Two bidirectional linear reversible circuit syn
thesis methods are introduced, the Alternating Elimination with Cost Minimiza
tion  method  (AECM)  and  the  Multiple  CNOT  Gate  method  (MCG).  Al
gorithms,  example syntheses, and extensions to these methods are presented. 
An MCG variant which incorporates line reordering is introduced. Tests com
paring the new cost minimization  methods with  the best  known method for 
large circuits are presented. Results show that of the three methods MCG had 
the lowest  average CNOT gate  counts for  linear reversible circuits up to 24 
lines, and that AECM had the lowest counts between 28 and 60 lines.

Keywords: quantum · linear · reversible · circuit · synthesis

1 Introduction

Linear reversible circuits, which are circuits which employ only controlled-NOT 
(CNOT) gates, play a fundamental role in both reversible and quantum computing. 
The most basic form of linear reversible circuit synthesis is built on a  GF(2)-based 
variant of Gaussian Elimination which uses an invertible n×n Boolean matrix M as its 
input and produces an n×n linear reversible circuit as its output [1,2]. Using GF(2) in
put vector x and output vector y this circuit performs the function y = Mx. Synthesis 
using Gaussian Elimination produces circuits with O(n2) CNOT gates in O(n3) time. 
In [1] Patel et. al. introduced “Algorithm 1” which adapted the Four Russians Method 
for GF(2) matrix inversion [3,4] to the case of linear reversible circuit synthesis. By 
using  a  strategy  of  processing  two or  more  matrix  columns  simultaneously,  “Al
gorithm 1” produces circuits with O(n2/log2n) CNOT gates in O(n3/log2n) time. Since 
the introduction of “Algorithm 1” little else has been published about improving the 
gate count in linear reversible circuit synthesis. While “Algorithm 1” is “asymptotic
ally optimal up to a multiplicative constant” [1] this algorithm is too simplistic to find  
an exact minimum solution to the function y = [x1,  x1   x2,  x1   x2  x3,  x1  x2  x3 

x4]T illustrated in Fig. 1 [2].
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Fig. 1. A 4×4 linear function synthesized with “Algorithm 1” (middle) and an exact minimum 
circuit realization (right).

As an alternative to “Algorithm 1”, two bidirectional linear reversible circuit syn
thesis  methods  –  the  Alternating  Elimination  with  Cost  Minimization  method 
(AECM) and the Multiple CNOT Gate method (MCG) – are introduced herein. These 
methods  were  developed to more  efficiently  synthesize  circuits  of  up  to  64  lines 
(a.k.a. wires) which do not use ancilla lines. The efficiency comparison of AECM, 
MCG and “Algorithm 1” is shown in the Section 5.

AECM is built on the Alternating Elimination method [2] while MCG is based 
solely on cost minimization and is outside the Gaussian Elimination family of meth
ods. Alternating Elimination extends the Gaussian Elimination approach of forward 
substitution and backward elimination to process diagonal matrix elements iteratively, 
in each iteration solving a diagonally intersecting row and column. Since there are n! 
possible orderings of diagonal matrix elements, Alternating Elimination can generate 
a large number of functionally equivalent circuit solutions which have a range of 
CNOT gate counts.

Both AECM and MCG lend themselves to parallelization and can be extended to 
perform deeper, albeit slower, syntheses. In comparison with “Algorithm 1”, which 
sequentially solves columns before rows, AECM and MCG solve rows and columns 
in a data dependent, nondeterministic order which provides the greatest cost reduc
tion. Both AECM and MCG determine cost by means of a heuristic function which 
depends on a GF(2) linear function’s matrix and its inverse. When synthesis begins 
these matrices correspond to the input function specification, and as CNOT gates are 
synthesized these matrices correspond to a remainder function more closely resem
bling the identity matrix. The main heuristic cost function is defined as 

is the number of differences between a linear function's matrix and the identity mat
rix. The second is the number of differences between the inverse of that linear func

facilitates synthesis of a permutation of an input linear reversible function specifica
tion which will be discussed in Section 3.



The organization of this paper is as follows. Section 2 introduces and discusses al
gorithms for AECM and MCG. Section 3 illustrates algorithm flow of a nonconver
gent MCG synthesis of a 5×5 linear function; next it compares AECM, MCG, and 
“Algorithm 1” synthesis of a 6×6 linear function; and lastly it illustrates line-reorder
ing MCG synthesis. Section 4 shows numerical results of comparative testing of the 
different synthesis methods. Section 5 briefly discusses additional strategies to im
prove AECM and MCG. Section 6 concludes the paper.

2 Algorithms and Discussion

2.1 Algorithms

The algorithms for Diagonalize(), AECM(), MCG(), Cost(), and ApplyCNOT() are 
shown below in pseudocode form. A discussion of the algorithms follows.

Diagonalize(Matrix m, Matrix mi, integer threshold,
CNOTgate list inputgates, CNOTgate list outputgates,
integer diagonal)
c1 := Cost(m) + Cost(mi)
lastdiagonal := m.columns - 1
FOR i FROM 0 TO lastdiagonal
IF NOT(i = diagonal)
tempgate.control := i
tempgate.target := diagonal
tempgate.type := output
improvement := ImpfromCNOT(m, mi, tempgate)
IF (improvement >= 2)
outputgates.Add(tempgate)
ApplyCNOT(tempgate, m, mi)
c1 := c1 - improvement
IF (c1 <= threshold) return

tempgate.control := diagonal
tempgate.target := i
tempgate.type := input
improvement := ImpfromCNOT(m, mi, tempgate)
IF (improvement >= 2)
inputgates.Add(tempgate)
ApplyCNOT(tempgate, m, mi)
c1 := c1 - improvement
IF (c1 <= threshold) return

IF (m[diagonal][diagonal] = 0)
improvementmax := -MAXLINES * MAXLINES * 2
FOR i FROM 0 TO lastdiagonal
IF (NOT(i = diagonal))
IF (m[i][diagonal] = 1)



tempgate.control := i
tempgate.target := diagonal
tempgate.type := output
improvement := ImpfromCNOT(m, mi, tempgate)
IF (improvement > improvementmax)
improvementmax := improvement
bestCNOT := tempgate

IF (m[diagonal][i] = 1)
tempgate.control := diagonal
tempgate.target := i
tempgate.type := input
improvement := ImpfromCNOT(m, mi, tempgate)
IF (improvement > improvementmax)
improvementmax := improvement
bestCNOT := tempgate

IF (bestCNOT.type = output)
IF (IsRedundant(bestCNOT, outputgates))
outputgates.RemoveLast(bestCNOT)

ELSE
outputgates.Add(bestCNOT)

ELSE
IF (Redundant(bestCNOT, inputgates))
inputgates.RemoveLast(bestCNOT)

ELSE
inputgates.Add(bestCNOT)

ApplyCNOT(bestCNOT, m, mi)
c1 := c1 - improvementmax
IF (c1 <= threshold) return

FOR i FROM 0 TO lastdiagonal
IF (m[i][diagonal] = 1 AND NOT(i = diagonal))
bestCNOT.control := diagonal
bestCNOT.target := i
bestCNOT.type := output
improvementmax := ImpfromCNOT(m, mi, bestCNOT)
tempgate.target := i
FOR j FROM i + 1 TO lastdiagonal
IF (m[j][diagonal] = 1 AND NOT(j = diagonal))
tempgate.control := j
improvement := ImpfromCNOT(m, mi, tempgate)
IF (improvement > improvementmax)
bestCNOT := tempgate
improvementmax := improvement

outputgates.Add(bestCNOT)
ApplyCNOT(bestCNOT, m, mi)
c1 := c1 - improvementmax



IF (c1 <= threshold) return
FOR i FROM 0 TO lastdiagonal
IF (m[diagonal][i] = 1 AND NOT(i = diagonal))
bestCNOT.control := i
bestCNOT.target := diagonal
bestCNOT.type := input
improvementmax := ImpfromCNOT(m, mi, bestCNOT)
tempgate.control := i
FOR j FROM i + 1 TO lastdiagonal
IF (m[diagonal][j] = 1 AND NOT(j = diagonal))
tempgate.target := j
improvement := ImpfromCNOT(m, mi, tempgate)
IF (improvement > improvementmax)
bestCNOT := tempgate
improvementmax := improvement

//commit to best gate
inputgates.Add(bestCNOT)
ApplyCNOT(bestCNOT, m, mi)
c1 := c1 - improvementmax
IF (c1 <= threshold) return

AECM(Matrix m, Matrix mi, integer threshold,
CNOTgate list inputgates, CNOTgate list outputgates)
c1 := Cost(m) + Cost(mi)
WHILE (c1 > threshold)
bestcandidatefound := false
FOR i := 0 TO m.columns - 1
IF (bestcandidatefound) THEN
IF (NOT DiagonalSolved(m, i)) 
m3 := m
mi3 := mi
inputgates3 := inputgates
outputgates3 := outputgates
Diagonalize(m3, mi3, threshold, 
inputgates3, outputgates3, i)

c3 := Cost(m3) + Cost(mi3)
gates3 := m3.size + mi3.size - m.size
- mi.size

gain3 := (c1 - c3)/gates3
IF (gain3 > gain2) THEN
m2 := m3
mi2 := mi3
c2 := c3
gates2 := gates3
inputgates2 := inputgates3



outputgates2 := outputgates3
ELSE
IF (NOT DiagonalSolved(rem, i)) THEN
bestcandidatefound := true
m2 := m
mi2 := mi
inputgates2 := inputgates
outputgates2 := outputgates
Diagonalize(m2, mi2, threshold,
inputgates2, outputgates2, i)

c2 := Cost(m2) + Cost(mi2)
gates2 := m2.size + mi2.size - m.size
- mi.size

gain2 := (c1 - c2)/gates2 
m := m2
mi := mi2
inputgates := inputgates2
outputgates := outputgates2
c1 := c2

IF (threshold = 0) THEN
append outputgates in reverse order TO inputgates

return c1

MCG(Matrix m, CNOTgate list inputgates,
CNOTgate list outputgates)
convergent := true
mi := GF2MatrixInverse(m)
c1 := Cost(m) + Cost(mi)
c2 := c1
WHILE (c1 > 0)
FOR each gate1 in list allinputandoutputCNOTgates
ApplyCNOT(gate1, m, mi)
IF Cost(m) = 0 THEN
inputgates.Add(gate1)
exit WHILE

FOR each gate2 in list allinputandoutputCNOTgates
IF gate1 = gate2 THEN
continue for

ApplyCNOT(gate2, m, mi)
c3 := Cost(m) + Cost(mi)
IF (c2 > c3) THEN
c2 := c3
bestgate1 := gate1
bestgate2 := gate2

ApplyCNOT(gate2, m, mi) //undo operations



ApplyCNOT(gate1, m, mi)
IF (c2 = c1) THEN
convergent := false
c1 := AECM(m, mi, c1 - 1, inputgates, outputgates)
c2 := c1

ELSE
c1 := c2
IF (bestgate1.type = output)
outputgates.Add(bestgate1)

ELSE
inputgates.Add(bestgate1)

IF (bestgate2.type = output)
outputgates.Add(bestgate2)

ELSE
inputgates.Add(bestgate2)

ApplyCNOT(bestgate1, m, mi)
ApplyCNOT(bestgate2, m, mi)

AppendOutputgatesInReverseOrderToInputgates()
return convergent

Cost(Matrix m)
c1 := 0
FOR row FROM 0 TO m.rows - 1
FOR column FROM 0 TO m.columns - 1
IF m[row][column] !:= I[row][column] THEN
c1 := c1 + 1

return c1

ApplyCNOT(CNOT g, Matrix m, Matrix mi)
IF (g.type = output)
FOR row i 0 TO m.rows - 1 //note rows := columns
m[g.target][i] := 
m[g.target][i] EXOR m[g.control][i]

mi[i][g.control] := 
mi[i][g.control] EXOR mi[i][g.target]

ELSE
FOR row i 0 TO m.rows - 1
m[i][g.control] := 
m[i][g.control] EXOR m[i][g.target]

mi[g.target][i] := 
mi[g.target][i] EXOR mi[g.control][i]



2.2 Discussion

Because AECM is based on Alternating Elimination, it will always converge to a 
solution for any linear function matrix given as input [2]. The AECM method iterat
ively compares O(n) matrix diagonalizations and then commits to the diagonalization 
which produces the greatest cost reduction per CNOT gate ratio. In comparison with 
MCG, which requires the cost of the remainder function to be lower with each itera
tion, AECM can commit to using CNOT gate sequences which causes the cost to in
crease and therefore cannot be trapped in a local minimum. 

The AECM diagonalization function has four stages, and in each stage the changes 
in cost of choosing candidate CNOT gates are compared. The first stage performs pre
processing through an O(n) search to find row and column forward substitutions 
which lower the cost by at least two. Using a cost reduction of at least two is based on 
testing which showed that in over half the syntheses examined it produced lower 
CNOT gate counts than using a cost reduction of at least one or skipping the prepro
cessing stage. Using a cost reduction of at least three was in some instances superior 
and in other instances inferior to using at least two. Each CNOT gate synthesized in 
this stage replaces two or more CNOT gates which would have been synthesized in 
the third and fourth stages.

If the diagonal matrix element associated with the current iteration is a 0, then a 
second stage is used which performs forward substitution. In this second stage either a 
row or column forward substitution is chosen through an O(n) search to find the 
CNOT gate which establishes a 1 on the diagonal and results in the lowest cost re
mainder function. When it is necessary to perform a forward substitution, a check is 
made to ensure that the forward substitution CNOT gate was not synthesized in the 
first stage. This situation is unusual but possible. In these cases the CNOT gate list 
can be rearranged to detect pairs of identical CNOT gates. Because CNOT gates are 
self-inverse [2], all detected identical CNOT gate pairs can be erased. 

In the third stage O(n) row-based backward eliminations are performed to process 
column elements which are equal to 1. Unlike Gauss-Jordan Elimination which per
forms eliminations using the diagonally intersecting row, here each row elimination 
employs an O(n) search to find the lowest cost backward elimination operation. Simil
arly in the fourth stage O(n) column-based backward eliminations are performed to 
process row elements which are equal to 1, each employing an O(n) search to find the 
lowest cost backward elimination operation.

Performing one row or column addition with a cost difference computation takes 
O(n) time. Therefore the entire AECM diagonalization function takes O(n) · (O(n) + 
O(n) + O(n2) + O(n)2) ≈ O(n3) time. Since the outer AECM loop requires O(n) itera
tions through O(n) comparisons, the total time is O(n) · O(n) · O(n3) ≈ O(n5).

In order to support partial syntheses the AECM algorithm uses the parameter 
threshold. Using AECM with threshold = 0 causes a complete synthesis to be per
formed. Using AECM with larger threshold values causes synthesis to terminate 
when the cost of the remainder function c1 goes below threshold. In the algorithm's 
outermost loop, CNOT gate selection is performed by comparing gain3 with gain2. 
These gain values are computed as (Cost(Fk – 1) –  Cost(Fk))/(Gates(Fk) –  Gates(Fk – 1)) 



for remainder function F at iteration k. The AECM algorithm can be extended to 
handle occurrences in which these ratios are equal, thus facilitating algorithm exten
sions such as recursion and probabilistic gate selection.

The MCG synthesis method performs synthesis with linear functions composed of 
two CNOT gates, but in general this approach can be extended to three or more 
CNOT gates at the expense of increased computation time. The two-CNOT-gate func
tions can be categorized as one of three types: 1) functions of two elementary row op
erations corresponding to two CNOT gates synthesized from output towards input; 2) 
functions of two elementary column operations corresponding to two CNOT gates 
synthesized from input towards output; 3) functions of one elementary row operation 
and one elementary column operation representing one CNOT gate synthesized from 
output towards input and another synthesized from input towards output. The MCG 
method iteratively compares the cost of applying all possible two-CNOT-gate func
tions and commits to the pair of CNOT gates which produces the greatest reduction in 
cost. In the event that the cost reaches a local minimum, synthesis temporarily 
switches to AECM until cost drops below the local minimum cost. In this situation a 
flag is set indicating that MCG failed to converge and MCG synthesis resumes. In 
each iteration MCG retrieves two-CNOT-gate functions from an O(n4) length list. 
Performing elementary row or column operations and cost difference computations on 
each two-CNOT-gate function requires O(n) time. Since the maximum cost is 2n2, the 
smallest cost 0, and the minimum cost reduction is 1 at each iteration, the two-CNOT-
gate function search takes at most O(n2) outermost loop iterations. Therefore the total 
time is O(n4) · O(n) · O(n2) ≈ O(n7).

Like AECM, MCG can be extended to perform more sophisticated gate selections 
in iterations where multiple minimum-cost alternatives exist. This will be demon
strated later using a probabilistic gate selection. Also, MCG's speed can be improved 
by using precalculated two-CNOT-gate functions. In the above MCG algorithm all 
possible CNOT gate sequences are generated, and many will be redundant. For in
stance, the two-CNOT-gate function CNOT(1, 2) followed by CNOT(3, 4) is equival
ent to CNOT(3, 4) followed by CNOT(1, 2). If MCG is extended to use three-CNOT-
gate functions, a greater variety of redundant sequences will be generated.

3 Example Syntheses

Fig. 2. Example of a GF(2) linear function, represented as a 5×5 matrix and its inverse, for 
which MCG fails to converge.



Fig. 3. Remainder linear function and its inverse after MCG employs AECM to produce four  
CNOT gates from the linear function and inverse from Fig. 2.

Fig. 4. Remainder linear function and its inverse after MCG produces two CNOT gates from 
the linear function and inverse from Fig. 3.

Fig. 5. Remainder linear function and its inverse after MCG produces two CNOT gates from 
the linear function and inverse from Fig. 4.

Fig. 6. MCG circuit realization from the linear functions and inverses in Fig. 2 through Fig. 5.

The following summarizes MCG synthesis of the linear function in Fig. 2 to pro
duce the linear reversible circuit in Fig. 6. Initially the convergence flag is set to true 
and cost is computed to be 20. In the first iteration the search for a two-CNOT-gate 
function which would lower the cost to 19 or less fails. The convergence flag is set to 



false and AECM is called to perform a partial synthesis with threshold = 19. AECM 
selects the first row and column to be diagonalized and it synthesizes four CNOT 
gates, a1 through a4, resulting in the remainder function shown in Fig. 3. The cost of 
the remainder function and its inverse is 16. In the second iteration gates b1 and b2 are 
found to reduce the cost to 11, resulting in the second remainder function shown in 
Fig. 4. In the third iteration gates c1 and c2 are found to reduce the cost to 5, resulting 
in the third remainder function shown in Fig. 5. In the fourth iteration gates d1 and d2 
are found to reduce the cost to 0, resulting in both the remainder function and its in
verse becoming equal to the identity matrix indicating synthesis is complete. The final 
CNOT gate count of the circuit in Fig. 6 is 10, which is one gate above the exact min
imum. The convergence flag plays no role in synthesis but was created to be used in 
statistics that correlate the increase in total CNOT gate count with nonconvergence. 

The linear function in Fig. 2 is unusual as tests show that MCG typically converges 
for a majority of linear functions representing circuits of 32 lines or less. A  linear 
function, introduced in [1], for which MCG converges is shown in Fig. 7. Fig. 8 illus
trates MCG, AECM, and “Algorithm 1” syntheses of this linear function. The total 
CNOT gate counts are 12 for MCG, 13 for AECM, and 15 for “Algorithm 1”.

Fig. 7. A 6×6 linear function from [1].

Fig. 8. MCG (left), AECM (middle), and “Algorithm 1” (right) syntheses of the linear function 
from Fig. 7.

Fig. 9 shows MCG synthesis of the linear function in Fig. 7 using Equation 2 
which is an alternative cost function based on the sparseness of a linear function and 
its inverse. This creates a synthesis method that incrementally approaches a low-cost 
permutation of the identity matrix as it searches for efficient two-CNOT-gate func
tions. An approach of synthesizing a permutation of a linear function is useful when 
the output line order is flexible or when the cost of a SWAP gate is negligible in com
parison to the cost a CNOT gate. The resulting line-reordered MCG circuit shown in 



Figure 9 employs only eight CNOT gates. The circuit realization of the linear function 
in Figure 10 can be described as the output vector yPermutation = [y2, y1, y4, y6, y3, y5]T.

Fig. 9. Line-reordering MCG synthesis of the linear function from Fig. 7.

Fig. 10. Resulting linear function from line-reordering MCG synthesis which is a permutation 
of the linear function from Fig. 7.

There are some complications in using line-reordering MCG not described in the 
above MCG algorithm. The last operation in the MCG algorithm transfers CNOT 
gates in the output-side CNOT gate list to the input-side CNOT gate list. In the line-
reordering MCG variant this transfer must take into account the final permutation re
mainder function. Therefore for each Moutput CNOT gate matrix an Minput CNOT gate 
matrix is computed as Minput = P · Moutput · P – 1. Permutation matrices must be stored 
with CNOT gate lists for verification and circuit integration purposes. Verification of 
linear reversible circuit synthesis is usually a straightforward task of applying a 
CNOT gate list to the identity matrix and testing the result and the input linear revers
ible function specification for equivalency. In line-reordering MCG verification, each 
CNOT gate list must apply the associated permutation to the input linear function be
fore testing.

4 Tests

The first set of tests was performed for circuits with 8 to 64 lines, and these results 
are shown in Table I. For each dimension of lines, 100 randomized linear reversible 
circuits were synthesized with multiple methods. The  n-wire circuit  randomization 
function used 2n2 operations on the identity matrix, and each of these operations rep
resented either a random distant CNOT gate or a random distant SWAP gate.  The 



MCG method became increasingly slow as the number of lines increased, so MCG 
testing was stopped at 40 lines. The average CNOT gate count results showed that 
MCG tended to outperform AECM in functions of up to 24 lines, though which meth
od was best was data dependent. AECM tended to outperform MCG from 28 through 
60 lines. At 64 lines “Algorithm 1” tended to outperform AECM, though which meth
od was best was data dependent.

Table  1. Comparisons  of  Linear  Reversible  Circuit  Synthesis  Methods  (Average  Adjacent 
CNOT Gate Counts).

Lines AECM Algorithm 1 MCG MCG 
Nonconvergent 

functions 

8 20.06 27.97 19.32 0
12 43.25 62.41 40.65 0
16 74.06 108.1 70.94 0
20 114.95 165.63 109.82 1
24 167.41 233.96 161.49 0
28 230.59 315.74 230.68 0
32 304.57 376.62 321.48 4
36 393.68 468.01 418.17 42
40 492.84 570.12 510.63 88
44 606.18 681.32
48 735.64 800.09
52 873.87 930.48
56 1028.95 1068.58
60 1200.66 1218.2
64 1384.04 1373.59

The second set of tests compared the three synthesis methods with exact minimum 
syntheses of all 9999360 linear functions of size 5×5 [5]. Table 2 shows the frequency 
distribution of total CNOT gate counts from exact minimum synthesis of all 5×5 lin
ear functions, a majority of which employ either eight or nine CNOT gates. The res
ults showed that MCG achieved the exact minimum gate count 7175807 (71.76%) 
times, AECM achieved the exact minimum gate count 5886350 (58.9%) times, and 
“Algorithm 1” achieved the exact minimum gate count 474738 (4.75%) times. MCG 
failed to converge in 89 (< 0.001%) linear functions, each time producing a gate count 
above the exact  minimum. This  provided strong evidence  that  nonconvergence  in 
MCG is correlated with increased CNOT gate counts.



Table  2. Frequency Distribution of Exact Minimum Syntheses of All 5×5 Linear Reversible  
Functions.

CNOT Gates Functions
0 1
1 20
2 260
3 2570
4 19680
5 117860
6 540470
7 1769710
8 3571175
9 3225310
10 736540
11 15740
12 24

Fig. 11. 16×16 Test Linear Function. 

The last set of tests compared 1000 syntheses of the 16×16 linear function shown 
in Fig.  11 using probabilistic variations of AECM and MCG named AECMP and 
MCGP respectively. In these synthesis variations whenever two candidate CNOT gate 
sequences are compared and found to be of equal cost or gain, one CNOT gate se
quence is chosen at random and the other discarded. The purpose of this test was to  
examine the typical  range  of  total  CNOT gate  counts  produced  from AECM and 
MCG and determine the possible benefits from a multiple-pass approach. The results 



shown in  Table  3  indicated  that  MCGP showed  a  difference  of  18  CNOT gates 
between the best and worst syntheses, and the typical spread around the median syn
thesis was just under four CNOT gates. The results for AECMP indicated a difference 
of  11  CNOT gates  between  the  best  and  worst  syntheses,  and  the typical  spread 
around the median synthesis was just above three CNOT gates. Comparing the results  
it appears that MCGP and, to a lesser degree, AECMP both are likely to benefit from 
a multiple-pass approach, avoiding a potential high total CNOT gate count resulting 
from a single-pass synthesis.

Table 3. CNOT gate count statistics for 1000 Syntheses of the 16×16 Test Linear Function 
from Fig. 11.

Maximum Minimum Average Median Standard 
Deviation

MCGP 77 59 68.49 68 3.694098488

AECMP 84 73 77.89 77 3.287241944

5 Additional Strategies

A preprocessing strategy can be employed in some linear functions to speed up 
synthesis. For instance, functions with linearly separable components can be mapped 
into multiple smaller matrices, individually synthesized, and then mapped back to the 
entire circuit. If any of these smaller matrices are permutation matrices they can be 
quickly optimally synthesized.

A postprocessing strategy can be employed with all linear reversible circuits. Any 
section of a synthesized linear reversible circuit that uses a maximum of five lines can 
be mapped to a 5×5 matrix and synthesized with an exact minimum table. AECM 
lends itself to this kind of optimization because at some point during processing it will 
have exactly five diagonal matrix elements to process, whereas MCG may partially 
process all rows and columns before completing a single diagonalization.

6 Conclusion

The bidirectional linear reversible circuit synthesis methods AECM and MCG 
were introduced. The main heuristic function used to represent cost in AECM and 
MCG was introduced, as was an alternative cost function. The alternative cost func
tion was used to synthesize a permutation of an input linear reversible function spe
cification, thus eliminating the need for subsequent line reordering. Both of these 
methods outperformed “Algorithm 1” in the majority of synthesis tests for circuits 
with less than 64 lines. All test results were verified to be accurate. Probabilistic ver
sions of AECM and MCG were introduced and shown to benefit from a multiple-pass 
approach. 

Although use of “Algorithm 1” seems ideal when the goal is to quickly synthesize 
thousands of large circuits, the test results indicate that other methods such as AECM 



and MCG are recommended for smaller circuits, especially when given a significant 
amount of processing time. Future work in this area will be to use elements from the 
“Method of the Four Russians” GF(2) matrix inversion approach and other search 
strategies with the cost minimization approaches introduced here.
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