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EXECUTIVE SUMMARY 

Regular assessment and improvement of public transit service performance are essential for 
transit agencies given limited funding and growing public needs. Performance evaluation can 
help transit agencies identify underperforming services, plan for potential investments, justify 
previous investments, and communicate accomplishments and challenges. However, the 
evaluation of transit service performance is complex and challenging due to the diverse and 
competing goals set forth by any agency, such as improving operational efficiency, providing 
equitable and just transit services, etc. For example, to improve operational efficiency, transit 
agencies aim to achieve the highest ridership possible with the least operational costs, whereas 
the equity objective mandates them to extend services to neighborhoods with high concentrations 
of minorities and low-income residents but also to evaluate the equity impacts of proposed route 
changes.  

While much previous work has examined public transit services for achieving optimal 
operational efficiency and access equity separately, the interplay of the two has rarely been 
investigated in research or practice. There is a need for techniques that can evaluate operational 
efficiency and equitable access holistically, providing a comprehensive assessment for transit 
service performance. This project developed a comprehensive framework and an open-source 
toolbox for evaluating and enhancing the overall performance of public transit systems by using 
a combination of mathematical programming methods, GIS-based analysis and multi-objective 
spatial optimization techniques. This framework enabled operational efficiency and access equity 
of transit systems to be assessed in an integrated manner. The python open-source toolbox 
operationalized the framework and made it accessible to transit planners, decision-makers and 
the public. The framework and the toolbox are applied to assessing the performance of fixed-
route bus services operated by the Utah Transit Authorities (UTA) in the Wasatch Front, Utah, 
and transit services operated by TriMet in the Portland metropolitan area. The application results 
demonstrated that the developed framework and toolbox enable operational efficiency and access 
equity of transit services to be assessed in an integrated manner, as well as the effective 
identification of top performers that can best achieve these multi-dimensional objectives, and 
bottom performers that are candidates for service modification and consolidation. 
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1.0 INTRODUCTION 

Regular assessment and improvement of public transit service performance are essential for 
transit agencies given limited funding and growing public needs. Performance evaluation can 
help transit agencies identify underperforming services, plan for potential investments, justify 
previous investments, and communicate accomplishments and challenges (Bertini and El-
Geneidy, 2003; Hassan et al., 2013). However, the evaluation of transit service performance is 
complex and challenging due to the diverse and competing goals set forth by any agency, such as 
improving operational efficiency, providing equitable and just transit services, etc. (Chu et al., 
1992; Lao and Liu, 2009; Delbosc and Currie, 2011; Delmelle and Casas, 2011). For example, to 
improve operational efficiency, transit agencies aim to achieve the highest ridership possible 
with the least operational costs, whereas the equity objective mandates them to extend services to 
neighborhoods with high concentrations of minorities and low-income residents but also to 
evaluate the equity impacts of proposed route changes (FTA, 2012).  

While much previous work has examined public transit services for achieving optimal 
operational efficiency and access equity separately, the interplay of the two has rarely been 
investigated in research or practice. This is a significant gap in the literature and in building an 
integrated conceptual framework for transit service performance evaluation. First, operational 
efficiency and access equity are both critical to the well-being of any transit system. Second, 
operational efficiency and access equity are often at odds with each other as underperforming in 
costs/ridership may occur when transit is achieving the important social goal of providing 
mobility to dependent populations and vice versa, indicating the need for some intricate trade-off 
to balance the efficiency of transit operations with equitable coverage of service provision. 
Third, efforts to explore trade-offs require specifically tailored modeling approaches. As a result, 
there is a need for techniques that can evaluate operational efficiency and equitable access 
holistically, providing a comprehensive assessment for transit service performance. 

This project developed a comprehensive framework and an open-source toolbox for evaluating 
and enhancing the overall performance of public transit systems by using a combination of 
mathematical programming methods, GIS-based analysis and multi-objective spatial 
optimization techniques. This framework enabled operational efficiency and access equity of 
transit systems to be assessed in an integrated manner. The python open-source toolbox 
operationalized the framework and made it accessible to transit planners, decision-makers and 
the public. The framework and the toolbox are applied to assessing the performance of fixed- 
route bus services operated by the Utah Transit Authorities (UTA) in the Wasatch Front, Utah, 
and transit services operated by TriMet in the Portland metropolitan area. The application results 
demonstrated that the developed framework and toolbox enable operational efficiency and access 
equity of transit services to be assessed in an integrated manner, as well as the effective 
identification of top performers that can best achieve these multi-dimensional objectives, and 
bottom performers that are candidates for service modification and consolidation.  
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In the next section, we provide a review of existing performance evaluation methods for public 
transit services. This is followed by details of our proposed framework for the holistic evaluation 
of operational efficiency and access equity. Finally, the integrated framework is applied to the 
Utah Transit Authority (UTA) transit network in the state of Utah and the TriMet transit network 
in the state of Oregon, highlighting the effectiveness of our proposed method in two case studies. 
This report closes with a discussion and conclusions. 

2.0 BACKGROUND 

Assessing performance of public transit systems has long been an important yet challenging 
issue for transportation researchers and authorities. It has spurred efforts by researchers and 
practitioners to develop quantitative measures to assess the degree to which the intended goals of 
transit agencies are being achieved. Such measures have largely focused on evaluating the 
performance of public transit systems from operational perspectives. Tomazinis (1977) and 
Fielding et al. (1978) proposed an extensive list of performance indicators (PIs) to measure 
transit performance, whereas Fielding et al. (1985) reduced this list to seven key variables, such 
as revenue vehicles hours (hours traveled when the vehicle is in revenue service) per dollar of 
operating expense, passengers per revenue vehicle hours, operating revenue per operating 
expense, etc. The major issue with these studies, however, is that none of the individual 
performance indicators can provide a holistic measure for transit performance (Benjamin & 
Obeng, 1990). Given this, data envelopment analysis (DEA), a nonparametric method to evaluate 
relative efficiencies of decision-making units compared to the most efficient peers, is 
increasingly used to evaluate the performance of a transit agency relative to its peer agencies, 
providing a single overall measure for operational efficiency of public transit systems (Chu et al., 
1992; Karlaftis, 2004; Arman et al., 2013, etc.). Other studies also used the DEA method to 
evaluate the performance of each individual transit route within a transit agency (Lao and Liu, 
2009; Hawas et al., 2012). In addition to the DEA, multi-criteria evaluation methods, such as 
Analytical Hierarchy Process (AHP) and Technique of Order Preference by Similarity to Ideal 
Solution (TOPSIS), have been adopted to generate overall operational performance measures for 
public transit network (Hassan et al., 2013). Yet access equity has seldom been considered in 
these aforementioned approaches.  

Providing equitable and just access to public transportation is an important planning goal of 
transit agencies given their social service nature (Martens et al., 2012; Taylor and Morris, 2015). 
There have been many attempts in the literature to assess equity in service provision in isolation. 
Existing studies linked public transit and social exclusion by identifying individuals who are 
most likely in need of public transit services. Garrett and Taylor (1999) analyzed the 
demographics of transit riders and concluded that minorities and low-income residents are more 
transit dependent, while Taylor and Morris (2015) questioned the continued focus on providing 
services for higher-income “choice” riders given the demographic realities of transit users.  
Johnson et al. (2010) contested the logic of car ownership as a measure of social disadvantage 
due to its complex role to low-income households. Foth et al. (2013) considered labor force 
participation, immigration status, and household rent expenditure in measuring social 
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disadvantage and transit need. To understand how to measure and address equity in transit 
service provision, there is a thread of the literature that developed various accessibility measures 
to assess spatial equity of the transit system. For example, given the definitions of transit-
dependent population, Murray and Davis (2001) compared the distribution of transit-dependent 
populations with that of public transportation provision to identify transportation disadvantaged 
areas in Queensland, Australia. Delbosc and Currie (2011) used Lorenz Curves to spatially 
compare public transportation provision with population and employment distributions to 
illustrate transit inequity across Melbourne. A similar case study was performed by Delmelle and 
Casas (2012) in a developing country, Cali, Colombia. Other examples can be found in Wu and 
Hine (2003), Currie (2004), Mamun and Lownes (2011), and Foth et al. (2013), and a recent and 
detailed review on transit accessibility can be found in Fayyaz et al. (2017). However, none of 
these papers consider the costs or economic inefficiencies required to achieve social equity, 
representing a major gap in research and planning practice.   

As presented above, even though performance evaluation of public transit services has been 
extensively studied, the operational efficiency and access equity of public transit services have 
not been examined in an integrated manner. The lack of such a cohesive approach makes it 
difficult, if not impossible, to derive a comprehensive assessment for transit service performance, 
potentially leading to suboptimal decision-making in service planning and operation. This project 
aims to fill this research gap by developing a new method to account for operational efficiency 
and access equity in an integrated framework for transit service performance evaluation.  

3.0 METHODOLOGY 

Considering that both operational efficiency and access equity are critical to the well-being of 
public transit services, it is necessary to take into account both of them to provide a 
comprehensive transit service performance assessment. To achieve this, the DEA, GIS, and 
spatial optimization models are integrated together for producing a more holistic measure. 
Specifically, the number of passengers is combined with the capital, labor and fuel investments 
associated with each transit service/route in a DEA model for determining the operational 
efficiency (Chu et al., 1992; Lao and Liu, 2009). The access equity of transit services is assessed 
based on whether each transit service provides unique and necessary service coverage for 
disadvantaged populations. This is accomplished by using a spatial optimization model, the 
maximal covering location problem (MCLP) (Church and ReVelle, 1974), combined with a 
scale-independent areal interpolation method (Cromley et al., 2011). Once the operational 
efficiency scores are derived from the DEA model, the MCLP will be extended into a multi-
objective optimization model that maximizes potential service coverage of disadvantaged 
populations as well as operational efficiency in the public transit system. This multi-objective 
optimization model will allow the exploration of trade-offs between these two potentially 
competing goals and enable the performance of transit services to be assessed in a holistic 
manner. 
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3.1 OPERATIONAL EFFICIENCY 

DEA is a nonparametric method to evaluate relative efficiencies of peer units or decision-making 
units (DMU) in their utilization of resources compared to measured output (Charnes et al., 1978; 
Banker et al., 1984). Specifically, the relative efficiency of a DMU is measured by the ratio of 
the output to the weighted input. Note that placing different emphasis on the input variables 
could lead to totally different efficiency results. To avoid such potential bias, output-oriented 
DEA assigns weights to the inputs of a DMU that give the unit the best possible efficiency in 
comparison with other units. In this way, it establishes an optimal level of output for the DMUs, 
given various possible combinations of inputs. This derived, optimal level is used as a 
benchmark to assess all of the DMUs (Grubesic and Wei, 2012).  

For the particular problem of transit systems, transit routes serve as the DMU. The average 
number of passengers per day functions as the output of interest as maximizing the average 
ridership reflects the goal of a transit agency, and the ridership is also a good surrogate for 
revenues (Lao and Liu, 2009). Because labor, capital and energy are the most commonly used 
inputs in the DEA literature for evaluating operational efficiencies of transit agencies and 
services (Chu et al., 1992; Lao and Liu, 2009; Hawas et al., 2012; Arman et al., 2013), the input 
variables include a measure of labor (total operation time per day), a measure of capital (number 
of operating buses per day), and a measure of fuel consumed (total operating mileage per day). 
Given the set of transit routes (N), let k represent the index of the route whose relative efficiency 
is to be evaluated. As mentioned previously, the relative efficiency of the kth route is measured 
by the ratio of the output to the weighted sum of inputs. The values of the weights and relative 
efficiency for the kth route ( ), are determined by an optimization model, denoted as ,as 
follows: 

DEA Model  
 

 
 
where, for transit route j, 

 
 

 
 

 
and v1, v2, and v3 are decision variables indicating the weights associated with the inputs. The 
objective (3-1), is to maximize the relative efficiency of the  transit route, . Constraints (3-
2) ensure that each of the transit routes, using the same weights, has a relative efficiency measure 
that is less than or equal to one. Constraint (3-3) requires that the weights are positive. In this 
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way, the optimal performance of the kth transit route can be compared with its peers. This 
optimization model can be converted to a linear programming (LP) model as shown in Charnel et 
al. (1978) and can be efficiently solved using an LP solver. The optimal objective value, , in 
model Rk, gives the relative efficiency score for the kth transit route. In order to derive the 
relative efficiency score for each of the N transit routes, model Rk, must be structured and solved 

 times, once for every route .  

The operational efficiency score for each transit route, , ranges from 0 to 1. Transit routes with 
scores of 1.0 are performing the best compared to their peers based on inputs and outputs. Such 
transit routes are operationally efficient in the sense of maximizing ridership, given their labor, 
capital, and fuel expenses. While this group will most likely consist of transit routes with 
relatively high ridership, it may also include transit routes with low ridership because the number 
of operating buses is few, the total operation time is short, or the total operating mileage is low. 
In other words, both high- and low-ridership transit routes can be operationally efficient because 
the DEA merely evaluates how well a transit route utilizes its resources, whether abundant or 
sparse, to produce the associated ridership. Transit routes with an operational efficiency score 
close to 0 are less operationally efficient. In these instances, transit routes may exhibit high 
ridership, but the results are suggesting an inefficient use of inputs (e.g., many operating buses, 
long operation time, or high mileage). This implies the existence of excess resources. A similar 
situation can occur for transit routes with low ridership, too. 

3.2 ACCESS EQUITY 

The access equity of transit routes is evaluated based on whether a transit route provides unique 
and necessary service coverage for disadvantaged populations. To accomplish this, we rely upon 
a spatial optimization model, the maximal covering location problem (MCLP) (Church and 
ReVelle, 1974), as well as a scale-independent areal interpolation method (Cromley et al., 2011). 
The MCLP and its various extensions have been widely used to evaluate or optimize the access 
and accessibility of public transit by seeking the spatial configurations of a transit system that 
maximize the potential demand coverage (Murray et al., 1998; Murray, 2003; Wu and Murray, 
2005; Delmelle et al., 2012). Consider the following notation: 

  
  

 
 

 

 

 
 
The demand units, , are usually areal units like census blocks, block groups, or buffer 
zones around transit routes or stops. If a demand unit i can access a stop of transit route j within a 
certain distance or time window, it is assumed that transit route j can appropriately serve the 
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demand unit, . There are seven groups of disadvantaged populations that we are especially 
interested in with respect to measuring their access to transit services given that existing studies 
consider them as transit-dependent populations (Murray and Davis, 2001; Lao and Liu, 2009): 1) 
population ages 65 years and older, 2) children ages between 6 and 12, 3) households without a 
car, 4) unemployed population, 5) disabled population, 6) population below poverty level, and 7) 
non-white population. gi can be defined as the total population of these seven disadvantaged 
groups in demand unit i. 

Previous studies have shown that the spatial representation and scale could significantly impact 
transit service assessment and it is recommended to use the most disaggregate areal units to 
depict the demand (Horner and Murray, 2004; Biba et al., 2010). Considering the availability of 
demographic and socioeconomic information, census block groups would be the most 
disaggregate areal units that we can use to estimate the disadvantaged population. As people are 
typically assumed to be served by bus transit if they are within 0.25 miles of a stop, or served by 
rail transit if they are within 0.5 miles of a stop (Sanchez, 1999; Horner and Murray, 2004; Lao 
and Liu, 2009; El-Geneidy et al., 2014), the service area of each transit route could be 
determined by buffering its corresponding stops with a given walking distance limit and 
performing a spatial union of all buffered areas.  

The most intuitive approach would be to use block groups as demand units and measure whether 
the centroids of block groups are within the service areas of transit routes to determine . 
However, the use of block groups as demand units in the MCLP could result in significant 
modeling errors due to spatial representation as detailed in Cromley et al. (2011), Wei and 
Murray (2014), Wei (2016) and Tong and Wei (2016). A scale-independent areal interpolation 
method proposed by Cromley et al. (2011) is therefore utilized to identify the finest level of 
geographic resolution needed for demand units in order to avoid such representation errors. This 
method relies on the overlay of original demand unit layer, which is the block group layer 
(Figure 3.1(b)), with the service coverage layer of transit routes (Figure 3.1(a)) to identify the 
least common demand coverage units (LCDCUs) as the error-free demand representation (Figure 
3.1(c)). Then areal interpolation is used to estimate the disadvantaged population in each 
LCDCU.  
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(a)                                         (b)                                          (c)    

Figure 3.1: Construction of least common demand coverage units (LCDCUs)                                                            
(a) Transit service area (b) Block group (c) LCDCUs created by overlay 

With the LCDCU defined as demand units, the MCLP can be formulated as follows: 

Maximal covering location problem (MCLP)  
 

 
 
The objective (3-4), is to maximize the total disadvantaged population members served by transit 
routes (zd). Constraints (3-5) track whether demand in unit i is suitably served by one or more 
transit routes that remain in the system. Constraint (3-6) limits the number of transit routes that 
are to remain in the system. This is used to enable the performance evaluation of transit routes 
rather than set a true limit on the size of transit system. Constraints (3-7) specify integer 
requirements on decision variables. 

The MCLP offers a strategic approach for evaluating whether all of the current transit routes 
actually provide unique and necessary service geographic coverage of disadvantaged 
populations. Assuming a limitation on the size of the transit system, we can assess transit routes 
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based on their service coverage of disadvantaged populations. For example, when only 10  
existing transit routes are assumed to remain in the system (𝑝𝑝=10), we can observe the maximal 
coverage that can be achieved using only 10 transit routes and identify these 10 best-performing 
transit routes in terms of access equity. 

3.3 OVERALL PERFORMANCE  

In order to evaluate operational efficiency and equitable access holistically, the MCLP is 
extended into a bi-objective optimization model that maximizes potential service coverage of 
disadvantaged populations as well as operational efficiency in the public transit system by 
incorporating another objective as follows: 

 

 
 
This additional objective function, (3-8), seeks to maximize the total operational efficiency of the 
transit routes that remain in the system (z𝑜𝑜). This new bi-objective optimization model can be 
used to assess transit routes  by their ability to achieve both operational efficiency and potential 
service coverage of disadvantaged populations. As this model has two objectives, the weighting 
method where the two objectives are combined using a weight parameter can be used to identify 
trade-off solutions (see Cohen, 1978), providing insights on the trade-off between these two 
competing goals. This is accomplished by: 

 
 
Objectives (3-4) and (3-8) can be replaced with objective (3-9), and the model can be solved as 
an MCLP. It has been proven that the weighting method can guarantee the identified solutions 
are Pareto-optimal if the weights are positive for all objectives and the transformed single-
objective model is optimally solved (Garey and Johnson, 1979). A diversity of trade-off 
solutions along Pareto-optimal front can usually be identified by varying 𝑤𝑤𝑜𝑜 from 0 to 1, but this 
requires that the magnitude of these two objective values be similar. As a result, the 
disadvantaged population in unit i, gi, is standardized as follows to ensure similar magnitude as 
efficiency score : 

 
In this manner,  also ranges from 0 to 1 as  and a diverse set of trade-off solutions can be 
identified by varying weight 𝑤𝑤𝑜𝑜 uniformly from 0 to 1. 
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4.0 CASE STUDIES 

4.1 SALT LAKE CITY METROPOLITAN AREA 

The proposed method is used to examine the fixed-route bus services operated by UTA. UTA is 
the primary transit provider throughout the Wasatch Front of Utah, which includes the 
metropolitan areas of Salt Lake City, Park City, Provo, Ogden, and Tooele. The Wasatch Front is 
approximately 120 miles long and has an average width of five miles due to the natural barriers 
of Wasatch Mountains and lakes. With an annual budget of $275 million, the UTA’s service area 
contains almost 2.2 million people, accounting for 79% of the state’s total population.   

4.1.1 Data 

All the fixed-route bus data, including average daily ridership, operation time per day, operating 
mileage per day, and number of operating buses per day, were obtained from the UTA and based 
on August 2016 operations. The data show that there are 94 fixed bus routes running on 
weekdays, which are the focus of this study and are shown in Figure 4.1. The disadvantaged 
population data were summarized from the 2009-2014 American Community Survey estimates 
at the block group level.  

 

Figure 4.1 Study area and bus routes operated by UTA 
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The algorithms to perform the DEA, generate the LCDCUs, structure and solve the MCLP and 
its multi-objective extension, have been implemented in an open-source Python library which 
has been made publicly available at GitHub (https://github.com/rwei5/Transit-Performance). The 
DEA results have been validated using the Frontier analyst, a commercial DEA software package 
(Banxia, 2017). The LCDCUs have been validated using ArcGIS, a commercial GIS software 
package (Esri, 2017). The solutions of the MCLP and its multi-objective extension have been 
validated using Gurobi, a commercial optimization package (Gurobi, 2017).  

4.1.2 Operational efficiency result 

As described earlier, the DEA model used for the operational efficiency analysis of bus routes 
contains three variables to benchmark average daily ridership – total daily operation time (labor), 
number of daily operating buses (capital), and total daily operating mileage (fuel). Table 4.1 
displays the top and bottom 10 performers in terms of operational efficiency, their associated 
input variables and output DEA scores. Figure 4.2 provides a broader snapshot of DEA scores 
for all bus routes operated by the UTA.  

Table 4.1: Top and bottom 10 performers in operational efficiency for UTA 
Bus routes Total daily 

operating 
mileage 

Total daily 
operation time 
(hour) 

Number of 
daily operating 
buses 

Average daily 
ridership 

DEA score 

Top 10 performers 
650 98.01 5.90 1 270.49 1.00 
200 1331.52 105.33 10 3586.55 1.00 
603 1099.28 56.83 4 1607.63 1.00 
608 8.32 0.40 2 42.12 1.00 
525 177.73 15.35 1 384.97 1.00 
920 27.57 0.95 3 100.19 1.00 
841 268.39 15.05 7 1305.75 1.00 
919 29.41 0.93 3 96.69 0.98 
2 594.13 52.42 9 2021.96 0.95 
838 10.87 1.30 6 51.91 0.94 
Bottom 10 performers 
477 45.58 2.10 2 27.41 0.14 
513 170.16 8.43 6 103.82 0.14 
461 123.47 5.85 6 68.46 0.13 
454 131.97 2.82 2 31.08 0.12 
313 215.15 7.07 6 65.89 0.10 
453 784.01 19.27 9 168.57 0.10 
665 183.56 10.10 4 71.27 0.09 
664 155.49 9.23 4 43.27 0.06 
990 86.93 4.40 4 18.85 0.05 
616 238.50 8.82 4 23.63 0.03 
 
There are several interesting facets to these results. First, seven out of the top 10 performers have 
DEA scores of 1.0, indicating that those bus routes are performing the best compared to other 
routes in the sense of maximizing ridership given their labor, capital and fuel expenses. Second, 
several routes with relatively low ridership were determined to be efficient, such as Route 608 
and Route 838. This is not surprising given their extremely low operating mileage and operation 
time. For example, Route 608 has only two trips daily, with one in the morning and one in the 

https://github.com/rwei5/Transit-Performance
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afternoon, to connect multiple schools with nearby residential neighborhoods; Route 838 only 
operates every 30 minutes during peak hours to connect major employment centers (Provo 
Towne Center Mall and East Bay Technology Park) with commuter rail stations, addressing the 
first mile/last mile problem. As noted in the previous section, these two exemplify the bus routes 
that have limited resources but perform better than their peers. While these outliers are notable 
for their operational efficiency, it is equally important to note routes like 841 are doing 
exceedingly well, with high ridership and operating mileage time far below the UTA average. Of 
course, there are also routes like 200 with high operation time and mileage, generating extremely 
high ridership. 

 

Figure 4.2: Operational efficiency scores for bus routes operated by UTA 

Among the bottom 10 performers shown in Table 4.1, several routes are associated with very 
low ridership, such as Routes 616 and 990. Route 616 is a shuttle bus connecting North Ogden 
communities with a commuter rail station and running every 60 minutes during peak hours. With 
8.82 daily operation hours and 238.50 daily operating mileage, only a daily average of 23.63 
passengers are taking this shuttle. Route 990 connects several ski resorts with Midvale and 
Cottonwood Height. Yet this route is rarely used during summer. There are also some routes 
serving more than 100 passengers daily, but still considered to be inefficient routes due to the 
ineffective use of resources. For instance, Route 453 is an inter-county route with a route 
distance of 65.32 miles, running every 30 minutes during peak hours. However, it shares the 
same route and similar schedule as Route 451 except for a detour at the SLC airport, which takes 
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25 minutes more to arrive at its destination terminal. Given the long route distance, a better 
scheduling coordination between Routes 451 and 453 is probably needed to improve the 
ridership and reduce the operating costs. 

 
4.1.3 Access equity result 

Given the identified LCDCUs and MCLP, it is possible to assess geographic service provision 
for disadvantaged populations by existing bus routes. Figure 4.3 shows the trade-off curve 
associated with the percentage demand served by each possible value of 𝑝𝑝 (number of bus routes 
that remain in the system). Again, varying 𝑝𝑝 is used to enable the performance evaluation of 
transit routes rather than set a true limit on the size of transit system. Clearly, as 𝑝𝑝 increases from 
1 to 94, more LCDCUs and more disadvantaged populations have access to bus transit. For 
example, assuming only a single bus route will remain in the system, the MCLP suggests that 
Route 455 be selected. Route 455 uniquely serves 52,958 members of the disadvantaged 
population, which is 6.7% of the 790,661 members of the disadvantaged population presently 
having access to bus transit. As more routes are allowed to remain in the system, the trade-off 
curve provides evidence that access redundancies in the bus transit system exist. At 𝑝𝑝=87 in 
Figure 4.3, 100% of the disadvantaged population has access to bus transit. This is indicative of 
service redundancies in the current bus system, where seven routes are found to provide 
redundant service coverage for the disadvantaged population. It is also interesting to note that it 
is possible to achieve a very high level of service coverage to the majority of the disadvantaged 
population presently served with substantially fewer bus routes. For example, we can see that 
99.9% of the disadvantaged population currently served by the bus transit would still have access 
to bus service via 75 existing bus routes. Viewed from a different perspective, only 0.01% of the 
current disadvantaged population is uniquely served by the 19 additional bus routes. Rather than 
implying that these 19 routes should be eliminated, the MCLP results suggest that these 19 routes 
are not providing unique transit access for the disadvantaged population given the existence of 
other bus routes. 

 

Figure 4.3: Trade-off curve of disadvantaged population served and remaining bus routes 
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Figure 4.4 presents the top and bottom 10 performers in providing unique transit access for the 
disadvantaged population. The top 10 performers are identified by assuming that only 10 of 
existing bus routes will remain in the system (𝑝𝑝=10). With these 10 bus routes, 44% of the 
disadvantaged population presently served will still have access to bus transit. As these top 
performers try to serve as much of the disadvantaged population as possible, they have relatively 
long trip distance (ranging from 9.9 to 57.8 miles) and short stop spacing. Given the narrow 
north-south orientation of the Valley, all of the top 10 performers are north-south direction bus 
routes. It is also interesting to note that all the top performers are operating with a frequency of 
15 or 30 minutes and have long span of service hours. The bottom 10 performers are identified 
by assuming that 10 existing bus routes will not remain in the system (𝑝𝑝=84). It turns out these 
10 routes only provide unique service coverage for 19 (0.002%) members of the disadvantaged 
population. Among the 10 bottom performers, four of them are express or fast buses with long 
trip distance but quite limited number of stops, and six of them are routine buses with short trip 
distance (ranging from 1.9 to 11.2 miles), both indicating small service coverage. However, it is 
important to note that the small service coverage provided by those 10 bottom performers is still 
necessary to achieve a 100% service coverage in the entire region and could be imperative for 
some remote communities. 

 

(a)                                                                                            (b) 

Figure 4.4: Top and bottom 10 performers in access equity for UTA                                                                                       
(a) Top 10 performers and their service area (b) Bottom 10 performers and their service area 
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4.1.4 Overall performance result 

The bi-objective optimization model is employed to integrate both operational efficiency and 
access equity into the assessment of overall performance of bus routes. Similar to the MCLP, we 
can identify the top and bottom performers by varying 𝑝𝑝 from 1 to 94. However, there is a trade-
off between operational efficiency and access equity at each 𝑝𝑝 when applying this bi-objective 
optimization model. This trade-off is that an increase in the operational efficiency is only 
possible by a reduction in the disadvantaged population served. Figure 4.5(a) illustrates the 
trade-offs derived by varying 𝑤𝑤𝑜𝑜 from 0 to 1 with a step of 0.05 when 10 existing bus routes will 
remain in the system (𝑝𝑝=10). As some identified trade-offs overlap with each other, eight unique 
trade-offs are shown in Figure 4.5(a). Clearly, when the emphasis is placed solely on maximizing 
the service coverage of the disadvantaged population (𝑤𝑤𝑜𝑜 =0), the top 10 performers identified 
are the same as those identified using the MCLP. While these 10 routes serve 44% of the 
disadvantaged population, the total operational efficiency score is 5.01, which is equivalent to an 
average operational efficiency of 0.50 per route (5.01/10). Alternatively, when the emphasis is 
shifted solely to maximizing the total operational efficiency (𝑤𝑤𝑜𝑜=1), the top 10 performers 
identified are the same as those shown in Table 4.1 with an average operational efficiency of 
0.99, but these 10 routes can only serve 10.5% of the disadvantaged population.  

 

(a)                                                                                            (b) 

Figure 4.5: Tradeoff curve for operational efficiency and access equity for UTA                                                                                          
(a) 10 remaining routes (p = 10) (b) 10 cut routes (p = 84) 

As suggested in Figure 4.5(a), there are also several other trade-off solutions between these two 
extreme scenarios. A more balanced trade-off is where both operational efficiency and access 
equity are given emphasis. For example, when 𝑤𝑤𝑜𝑜=0.6, the average operational efficiency of the 
identified 10 routes is 0.69 (27.5% increase compared to 𝑤𝑤𝑜𝑜=0) and 40.1% (3.9% decrease 
compared to 𝑤𝑤𝑜𝑜=1) of the disadvantaged population can be served. These 10 routes in Figure 
4.6(a) could be considered as the top 10 performers when both operational efficiency and access 
equity are taken into account. Compared to Figure 4.4(a), three low-efficiency routes (Routes 
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240, 455, and 831) are replaced with highly efficient routes (Routes 200, 830, and 920), while 
maintaining a high level of service coverage. Compared with Table 4.1, only Route 200 stays in 
the top 10 performers, and the other nine routes are all replaced with routes that provide 
significant access to the disadvantaged population. This is exactly how this bi-objective model 
balances those two competing goals. 

 

Figure 4.6: Top and bottom 10 performers in overall performance for UTA                                                                                        
(a) Top 10 performers (𝑝𝑝=10, 𝑤𝑤𝑜𝑜=0.6) (b) Bottom 10 performers (𝑝𝑝=84, 𝑤𝑤𝑜𝑜=0.9) 

Figure 4.5(b) shows the trade-offs when 10 existing bus routes are assumed to be no longer in the 
system (𝑝𝑝=84) to explore the bottom 10 performers. Similarly, the two extreme trade-offs 
correspond to the bottom 10 performers when only operational efficiency is considered (Table 
1), and when only access equity is considered (Figure 4.4(b)), respectively. A more balanced 
trade-off can be easily identified in Figure 4.5(b). For example, when 𝑤𝑤𝑜𝑜=0.9, the average 
operational efficiency of the remaining 84 routes is 0.43 (9.1% increase compared to 𝑤𝑤𝑜𝑜=0) and 
99.0% (0.99% decrease compared to 𝑤𝑤𝑜𝑜=1) of the disadvantaged population can be served. The 
rest of the 10 bus routes can be considered as the bottom 10 performers when both operational 
efficiency and access equity are taken into account. Compared to Figure 4.4(b), only Route 320 
stays in the bottom 10 performers, and the other nine routes are all replaced with very low- 
efficiency routes. Compared with Table 4.1, two routes (Routes 513 and 313) that provide 
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unique access are replaced with routes (Routes 320 and 456) that provide minimal additional 
service coverage.  

4.2 PORTLAND METROPOLITAN AREA 

The DEA method is used to examine the operational efficiency of transit services operated by 
TriMet. The access equity of transit services is evaluated by the number of disadvantaged 
population members served. TriMet is the primary transit provider throughout the Portland 
metropolitan area and has a service area of 533 square miles. With an annual budget of $510.5 
million, TriMet’s service area contains almost 1.5 million people.   

4.2.1 Data 

All of the transit route data, including average daily ridership, operation time per day, operating 
mileage per day, and number of operating vehicles per day, were obtained from TriMet and 
based on 2012 operations. The disadvantaged population data were summarized from the 2011-
2016 American Community Survey estimates at the block group level.  

4.2.2 Operational efficiency result 

Table 4.2 displays the top 30 performers in terms of operational efficiency. Figure 4.7 provides a 
broader snapshot of DEA scores for all transit routes operated by TriMet. Unsurprisingly, the 
MAX rail lines all perform well. While several of the more popular bus lines also perform well, 
such as the 4, 12, and 14, a possibly surprising line is the 53-Arctic/Allen, which is a peak-hour 
weekday bus between Beaverton Transit Center and Allen Boulevard. 

Table 4.2: Top 30 performers in operational efficiency for TriMet 
Transit routes Rank DEA score 
MAX Blue 1 1.00 
MAX Red 2 1.00 
MAX Green 3 0.89 
MAX Yellow 4 0.86 
71 5 0.36 
53 6 0.33 
14 7 0.30 
72 8 0.28 
4 9 0.26 
12 10 0.25 
52 11 0.25 
15 12 0.24 
76 13 0.24 
8 14 0.24 
6 15 0.24 
75 16 0.23 
54 17 0.23 
57 18 0.23 
20 19 0.23 
9 20 0.22 
78 21 0.21 
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56 22 0.21 
17 23 0.20 
62 24 0.20 
63 25 0.19 
77 26 0.19 
19 27 0.18 
61 28 0.18 
33 29 0.18 
70 30 0.17 
 

 

Figure 4.7: Operational efficiency scores for transit routes operated by TriMet 

 
4.2.3 Access equity result 

The access equity of transit services is evaluated by the number of disadvantaged population 
members served. Table 4.3 displays the top 30 performers in terms of the number of population 
of color, and Table 4.4 displays the top 30 performers in terms of the number of population in 
poverty served. The Line 20 performs best in a pure equity sense, serving over 19,000 people 
(Table 4.3). Likewise, several “backbone” lines such as the 72 and 4 also perform well. More 
interesting are several less efficient lines which serve large populations of people of color, such 
as the 19, 77, and 44. The MAX Yellow Line, 190, performs very poorly. This may be explained 
by a number of factors, including displacement by gentrification of many communities of color 
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along its alignment, the fact that access is determined by the radius around stops, and perhaps the 
relatively short distance of the line. The number of served population is also standardized 
following equation (3-10) and shown in column “Standardized served population”.  

Table 4.3: Top 30 performers in the served number of population of color for TriMet 
Transit routes Rank Served population Standardized served 

population 
20 1 35,057 1 
9 2 26,240 0.75 
72 3 22,626 0.65 
MAX Blue 4 22,606 0.64 
19 5 20,387 0.58 
77 6 18,590 0.53 
44 7 17,671 0.5 
4 8 17,633 0.5 
71 9 15,042 0.43 
75 10 14,907 0.43 
10 11 14,293 0.41 
57 12 13,588 0.39 
6 13 11,925 0.34 
54 14 11,376 0.32 
25 15 11,102 0.32 
56 16 10,970 0.31 
MAX Red 17 10,830 0.31 
8 18 10,621 0.3 
62 19 10,402 0.3 
14 20 10,276 0.29 
76 21 9,213 0.26 
35 22 9,119 0.26 
MAX Green 23 9,113 0.26 
52 24 8,893 0.25 
78 25 8,433 0.24 
15 26 8,362 0.24 
12 27 8,193 0.23 
17 28 7,812 0.22 
53 29 5,485 0.16 
MAX Yellow 30 3,279 0.09 
 

As shown in Table 4.4, MAX generally performs worse in providing access with respect to 
people in poverty compared to other demographics. This may be due to the effects of rail on 
adjacent land values and subsequent gentrification around MAX stations. Lines such as the 36, 
154, and 37 continue to perform poorly for this demographic, as these lines tend to serve more 
affluent areas such as Lake Oswego and Willamette Heights, which include more choice riders. 

Table 4.4: Top 30 performers in the served number of population in poverty for TriMet 
Transit routes Rank Served population Standardized served 

population 
20 1 19,394 1 
72 2 16,241 0.84 
9 3 12,868 0.66 
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MAX Blue 4 12,156 0.63 
19 5 11,928 0.62 
77 6 10,927 0.56 
75 7 10,887 0.56 
44 8 10,750 0.55 
4 9 10,105 0.52 
10 10 8,722 0.45 
25 11 8,215 0.42 
57 12 8,193 0.42 
71 13 8,169 0.42 
6 14 7,912 0.41 
8 15 7,599 0.39 
47 16 7,538 0.39 
62 17 7,343 0.38 
52 18 6,493 0.33 
54 19 6,345 0.33 
MAX Red 20 5,952 0.31 
56 21 5,894 0.3 
35 22 5,272 0.27 
MAX Green 23 5,060 0.26 
17 24 4,996 0.26 
14 25 4,954 0.26 
15 26 4,234 0.22 
12 27 4,226 0.22 
76 28 4,112 0.21 
53 29 2,689 0.14 
MAX Yellow 30 1,581 0.08 
 

4.2.4 Overall performance result 

The operational efficiency and access equity are integrated by a weighting sum of the operational 
efficiency score and standardized disadvantaged population served to provide an assessment of 
overall performance of transit routes operated by TriMet. Figure 4.8 presents the overall 
performance of the transit routes when operational efficiency and number of served population 
of color are weighted equally. The MAX lines all perform very well, while lines such as the 71 
have better performance, and Line 9 has worse performance when operational efficiency is taken 
into account.  

Figure 4.9 presents the overall performance of the transit routes when operational efficiency and 
number of served population in poverty are weighted equally. While MAX generally performs 
worse in providing access with respect to people in poverty, it performs much better when 
efficiency is factored in. Lines such as the 36, 154, and 37 continue to perform poorly both in 
terms of population served and efficiency. 
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Figure 4.8: Overall performance for transit routes operated by TriMet (population of color) 

 
Figure 4.9: Overall performance for transit routes operated by TriMet (population in poverty) 
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5.0 DISCUSSION AND CONCLUSIONS 

The application results demonstrate that our proposed method enables operational efficiency and 
access equity of transit services to be assessed in an integrated manner, as well as the effective 
identification of top performers that can best achieve these multi-dimensional objectives, and 
bottom performers that are candidates for service modification and consolidation.  

There are several issues that are worth further discussion. First, the transit route performance 
evaluation based solely on operational efficiency or based solely on access equity is highly likely 
to be incomplete and result in sub-optimal decision-making in service planning of transit routes. 
For example, Route 650, connecting the Weber State University with the commuter rail station, 
is considered to be one of the bottom 10 performers in terms of providing unique access to the 
disadvantaged population due to its short trip distance and limited number of stops. However, it 
is a top performer with a DEA score of 1.0 in terms of operational efficiency because of its low 
resource inputs and high ridership. When both operational efficiency and access equity are 
integrated into the performance evaluation using the bi-objective optimization model, Route 650 
is considered as an average performer instead of either a top or bottom performer, better 
reflecting the overall performance of this transit service in the entire system.  

Second, while the result section reports a single trade-off for top and bottom 10 performers in 
addition to the two extreme scenarios, there are many other trade-offs available. As an example, 
if the transit agency would like to place more emphasis on operational efficiency compared to 
access equity when identifying the top 10 performers, another trade-off with an average 
operational efficiency of 0.83 and a service coverage of 33.7% might be more desirable. 
Alternatively, if access equity is given higher priority than operational efficiency, the trade-off 
with an average operational efficiency of 0.57 and a service coverage of 42.8% could make more 
sense to the UTA. The proposed bi-objective optimization model offers the capability of 
generating a range of trade-offs between operational efficiency and access equity. The final 
selection of the trade-off could vary given each transit agency’s varying priorities. 

Finally, the access equity measure used in this study is limited to the physical access to transit 
stops of disadvantaged populations. While our results suggest that there is a significant positive 
relationship between the ridership and the number of disadvantaged population members served 
by bus route (Pearson’s , -value < 0.001), a more realistic measure should directly 
take into account the destinations of disadvantaged population members via transit. However, 
such data are not currently available at most transit agencies. Previous studies have used 
potential employment opportunities or some essential service locations as proxies for potential 
destinations of disadvantaged population members (e.g., Minocha et al. (2008) and Ferguson et 
al. (2012)), but such proxies might be significantly biased (Karner and Golub, 2015). As new 
technologies (smart sensors, etc.) are increasingly adopted to collect the origin-destination (OD) 
flow via transit, the accurate destination information might become available, with which the 
access equity measure could be extended to serving unique and necessary OD flows, but this 
remains for future research.  

In addition, while this study takes into account the interdependency of service coverage by using 
the MCLP and LCDCU, it assumes the ridership of each bus route is independent of each other 
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and did not consider the transfers among multiple bus routes. Previous studies indicate that the 
majority of transit trips (over 90%) involve one or two transfers (Owen and Levinson, 2015). 
Therefore, the results may not be significantly affected by altering this assumption. However, 
future research can look into such ridership correlation leveraging transfer data (e.g., electronic 
fare collection) to examine its impact in model estimation.  

This project develops a new method for evaluating the overall performance of public transit 
services via a combination of DEA, GIS, and multi-objective spatial optimization techniques. 
The method has also been operationalized by an open-source python toolbox so that it can be 
applied by other transit planners, decision-makers, and the public. The toolbox is applied to 
assessing the performance of fixed-route bus services operated by the UTA in Wasatch Front, 
Utah, and the performance of transit services operated by the TriMet in the Portland metropolitan 
area. The case studies demonstrate that our proposed method can account for operational 
efficiency and access equity in an integrated framework, providing a more comprehensive 
assessment for transit service performance. 



 

24 
 

 

6.0 REFERENCES 

Arman, M., Labi, S., & Sinha, K. C. (2013). Perspectives of the operational performance of 
public transportation agencies with data envelopment analysis technique. Transportation 
Research Record: Journal of the Transportation Research Board, 2351(1), 30-37.  

Banker, R. D., Charnes, A., & Cooper, W. W. (1984). Some models for estimating technical and 
scale inefficiencies in data envelopment analysis. Management Science, 30(9), 1078-1092.  

Banxia. (2017). Frontier Analyst Software from https://banxia.com/ 
Benjamin, J., & Obeng, K. (1990). The effect of policy and background variables on total factor 

productivity for public transit. Transportation Research Part B: Methodological, 24(1), 
1-14.  

Bertini, R., & El-Geneidy, A. (2003). Generating transit performance measures with archived 
data. Transportation Research Record: Journal of the Transportation Research 
Board(1841), 109-119.  

Biba, S., Curtin, K. M., & Manca, G. (2010). A new method for determining the population with 
walking access to transit. International Journal of Geographical Information Science, 
24(3), 347-364.  

Charnes, A., Cooper, W. W., & Rhodes, E. (1978). Measuring the efficiency of decision making 
units. European Journal of Operational Research, 2(6), 429-444.  

Chu, X., Fielding, G. J., & Lamar, B. W. (1992). Measuring transit performance using data 
envelopment analysis. Transportation Research Part A: Policy and Practice, 26(3), 223-
230.  

Church, R., & ReVelle, C. (1974). The maximal covering location problem. Papers of the 
Regional Science Association, 32(1), 101-118. 

Cohon, J. L. (1978). Multiobjective programming and planning. New York: Academic Press. 
Cromley, R. G., Lin, J., & Merwin, D. A. (2012). Evaluating representation and scale error in the 

maximal covering location problem using GIS and intelligent areal interpolation. 
International Journal of Geographical Information Science, 26(3), 495-517.  

Currie, G. (2004). Gap analysis of public transport needs: measuring spatial distribution of public 
transport needs and identifying gaps in the quality of public transport provision. 
Transportation Research Record: Journal of the Transportation Research Board, 1895, 
137-146. 

Delbosc, A., & Currie, G. (2011). Using Lorenz curves to assess public transport equity. Journal 
of Transport Geography, 19(6), 1252-1259.  

Delmelle, E. C., & Casas, I. (2012). Evaluating the spatial equity of bus rapid transit-based 
accessibility patterns in a developing country: The case of Cali, Colombia. Transport 
Policy, 20, 36-46.  

Delmelle, E. M., Li, S., & Murray, A. T. (2012). Identifying bus stop redundancy: A gis-based 
spatial optimization approach. Computers, Environment and Urban Systems, 36(5), 445-
455.  



 

25 
 

El-Geneidy, A., Grimsrud, M., Wasfi, R., Tétreault, P., & Surprenant-Legault, J. (2014). New 
evidence on walking distances to transit stops: identifying redundancies and gaps using 
variable service areas. Transportation, 41(1), 193-210. 

Fayyaz, S. K., Liu, X. C., & Porter, R. J. (2017). Dynamic transit accessibility and transit gap 
causality analysis. Journal of Transport Geography, 59, 27-39.  

Fielding, G. J., Babitsky, T. T., & Brenner, M. E. (1985). Performance evaluation for bus transit. 
Transportation Research Part A: General, 19(1), 73-82.  

Fielding, G. J., Glauthier, R. E., & Lave, C. A. (1978). Performance indicators for transit 
management. Transportation, 7(4), 365-379.  

Foth, N., K. Manaugh & A. M. El-Geneidy (2013) Towards equitable transit: examining transit 
accessibility and social need in Toronto, Canada, 1996–2006. Journal of Transport 
Geography, 29, 1-10. 

FTA (Federal Transit Administration) (2012). Circular 4702.1B: Title VI Requirements and 
Guidelines for Federal Transit Administration Recipients. US Department of 
Transportation, Washington, DC. 

Ferguson, E. M., Duthie, J., Unnikrishnan, A., & Waller, S. T. (2012). Incorporating equity into 
the transit frequency-setting problem. Transportation Research Part A: Policy and 
Practice, 46(1), 190-199.  

Garrett, M., & Taylor, B. (1999). Reconsidering social equity in public transit. Berkeley 
Planning Journal, 13(1).  

Gary, M. R., & Johnson, D. S. (1979). Computers and Intractability: A Guide to the Theory of 
NP-completeness. New York: WH Freeman and Company. 

Grubesic, T. H., & Wei, F. (2012). Evaluating the efficiency of the Essential Air Service 
program in the United States. Transportation Research Part A: Policy and Practice, 
46(10), 1562-1573.  

Hassan, M. N., Hawas, Y. E., & Ahmed, K. (2013). A multi-dimensional framework for 
evaluating the transit service performance. Transportation Research Part A: Policy and 
Practice, 50, 47-61.  

Hawas, Y. E., Khan, M., & Basu, N. (2012). Evaluating and enhancing the operational 
performance of public bus systems using GIS-based data envelopment analysis. Journal 
of Public Transportation, 15(2), 2.  

Horner, M. W., & Murray, A. T. (2004). Spatial representation and scale impacts in transit 
service assessment. Environment and Planning B: Planning and Design, 31(5), 785-797.  

Johnson, V., G. Currie & J. Stanley (2010) Measures of disadvantage: is car ownership a good 
indicator? Social Indicators Research, 97, 439-450. 

Kaplan, S., Popoks, D., Prato, C. G., & Ceder, A. (2014). Using connectivity for measuring 
equity in transit provision. Journal of Transport Geography, 37, 82-92. 

Karlaftis, M. G. (2004). A DEA approach for evaluating the efficiency and effectiveness of 
urban transit systems. European Journal of Operational Research, 152(2), 354-364.  

Karner, A. & Golub, A. (2015). Comparison of Two Common Approaches to Public Transit 
Service Equity Evaluation. Transportation Research Record: Journal of the 
Transportation Research Board, 2531, 20. 

Lao, Y., & Liu, L. (2009). Performance evaluation of bus lines with data envelopment analysis 
and geographic information systems. Computers, Environment and Urban Systems, 33(4), 
247-255.  



 

26 
 

Mamun, A., & Lownes, N. (2011). A Composite Index of Public Transit Accessibility. Journal 
of Public Transportation, 14(2). 

Martens, K., Golub, A., & Robinson, G. (2012). A justice-theoretic approach to the distribution 
of transportation benefits: Implications for transportation planning practice in the United 
States. Transportation Research Part A: Policy and Practice, 46(4), 684-695.  

Minocha, I., Sriraj, P., Metaxatos, P., & Thakuriah, P. (2008). Analysis of transit quality of 
service and employment accessibility for the Greater Chicago, Illinois, Region. 
Transportation Research Record: Journal of the Transportation Research Board, (2042), 
20-29. 

Murray, A. T. (2003). A coverage model for improving public transit system accessibility and 
expanding access. Annals of Operations Research, 123(1-4), 143-156.  

Murray, A. T., & Davis, R. (2001). Equity in regional service provision. Journal of Regional 
Science, 41(4), 557-600.  

Murray, A. T., Davis, R., Stimson, R. J., & Ferreira, L. (1998). Public transportation access. 
Transportation Research Part D: Transport and Environment, 3(5), 319-328.  

Owen, A., & Levinson, D. M. (2015). Modeling the commute mode share of transit using 
continuous accessibility to jobs. Transportation Research Part A: Policy and Practice, 74, 
110-122.  

Sanchez, T. W. (1999). The connection between public transit and employment: the cases of 
Portland and Atlanta. Journal of the American Planning Association, 65(3), 284-296.  

Tomazinis, A. R. (1977). Study of efficiency indicators of urban public transportation systems. 
Final report: Pennsylvania Univ., Philadelphia (USA). Transportation Studies Center. 

Tong, D., & Wei, R. (2016). Regional Coverage Maximization: Alternative Geographical Space 
Abstraction and Modeling. Geographical Analysis, DOI: 10.1111/gean.12121.   

Wei, R. (2016). Coverage Location Models Alternatives, Approximation, and Uncertainty. 
International Regional Science Review, 39(1), 48-76.  

Wei, R., & Murray, A. T. (2014). Evaluating polygon overlay to support spatial optimization 
coverage modeling. Geographical Analysis, 46(3), 209-229.  

Taylor, B. D. and E. A. Morris (2015). Public transportation objectives and rider demographics: 
are transit’s priorities poor public policy? Transportation 42(2), 347-367 

Wu, B. M., & Hine, J. P. (2003). A PTAL approach to measuring changes in bus service 
accessibility. Transport Policy, 10(4), 307-320. 

Wu, C., & Murray, A. T. (2005). Optimizing public transit quality and system access: the 
multiple-route, maximal covering/shortest-path problem. Environment and Planning B: 
Planning and Design, 32(2), 163-178. 



 

1 
 

 
 
 

APPENDIX A 
 

MANUEL OF THE OPEN-SOURCE TOOLBOX FOR TRANSIT 
SERVICE PERFORMANCE EVALUATION 

 

Contact: 
Dr. Ran Wei 
School of Public Policy 
University of California, Riverside 
Tel: (951)827-1258 
Email: ran.wei@ucr.edu 
 
Prepared by 
Yongjian Mu 
Pure Storage Inc. 
muyongjian@gmail.com 
 

mailto:ran.wei@ucr.edu
mailto:muyongjian@gmail.com


 

2 
 

 

1. INTRODUCTION 
Transit Service Performance Analysis program is used to evaluate and optimize the performance 
of bus lines. The evaluation is based on equality and DEA. The optimization is based on linear 
programming by using glpk package. 
The source files can be found at: 
https://github.com/rwei5/Transit-Performance 
Any input sample file can be found in  
https://github.com/rwei5/Transit-Performance/tree/master/input 
 

2. PREREQUISITE 
1) A windows PC, with a screen which horizontal resolution should be no less than 1440. 
2) launchBusAnalysis.exe  
3) glpk package which contains glpsol.exe. 

 

3. HOW TO USE THE SOFTWARE 

3.1. LAUNCH MAIN WINDOW 
The program can be simply launch by double clicking launchBusAnalysis.exe. After that, you 
can see a window as follows. 

 
Figure 1. Main window 

3.2. CALCULATE EQUALITY 
There are two methods to calculate the equality, Overlap and Centroid. Both of the two methods 
need to fill item 1 to 10. In the overlap method, the service coverage area of bus routes is 
calculated by buffering its corresponding stops within a 400-meter walking distance, then the 
service area is overlaid with the block group file to calculate the disadvantaged population at 
each overlaid piece. The bus route is considered to serve the overlaid piece if it is within the 

https://github.com/rwei5/Transit-Performance
https://github.com/rwei5/Transit-Performance/tree/master/input
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service area. In the centroid method, the service coverage area of bus routes is calculated by 
measuring the distance from the block group centroid to the nearest transit stops of the routes. If 
the distance is less than or equal to 400 meters, then this block group is considered to be served 
by this bus route. 

3.2.1. CHOOSE BUS STOP INPUT SHAPE FILE 
First, click the “1. Browser” button and choose the bus stop input shape file (e.g., 
BusStops_UTA.shp). Then click the “2. Setting” button to choose the field in the shape file 
which can represent the stop id as shown in the figure below. 

 
Figure 2. Select stop id 

Finally, click “Set” -> “Done”. 

3.2.2. CHOOSE BLOCK INPUT SHAPE FILE 
First, click the “3. Browser” button and choose the block input shape file (e.g., 
UT_blck_grp_2010.shp). Then click the “4. Setting” button to choose the field in the shape file 
which can represent the population id as shown in the figure below. The example chooses the 
“Age” as the population field, but others such as “Race” and “Poverty” are also acceptable. 

 
Figure 3. Select population id 

Finally, click “Set” -> “Done”. 



 

4 
 

3.2.3. CHOOSE BUS ROUTES INPUT SHAPE FILE 
First, click the “5. Browser” button and choose the bus routes input shape file (e.g., 
BusRoutes_UTA.shp). Then click the “6. Setting” button to choose the field in the shape file 
which can represent the bus line id as shown in the figure below.  

 
Figure 4. Select bus line id 

Finally, click “Set” -> “Done”. 

3.2.4. CHOOSE GTFS FILES 
Click buttons “7. Browser”, “8. Browser” and “9. Browser” to choose GTFS routes.txt, stop 
times.txt and trips.txt. 

3.2.5. CHOOSE OUTPUT FOLDER 
Click button “10. Browser” to choose the output folder. The result files of calculating equality 
(cal_equality.json and equality_csv.csv) will be generated in the output folder. 

3.2.6. CALCULATE THE RESULTS 
There are two methods to generate the results. If you want to use Overlap method, just click the 
“Calculate Overlap” button. If you want to use Centroid method, just click the “Calculate 
Centroid” button. After clicking the button, a window will appear to indicate that it may take a 
long time to calculate, especially for Overlap method. Therefore, do NOT click any button until 
the window shows finished. 

3.3. CALCULATE OPERATIONAL EFFICIENCY 

3.3.1. CHOOSE OUTPUT FOLDER 
See 3.2.5. 

3.3.2. CHOOSE DEA INPUT EXCEL FILE 
First, click the “11. Browser” button and choose the bus routes input shape file, e.g. 
DEA_input_dataset.xlsx. Then click the “12. Setting” button to choose the field in the shape file 
which can represent the bus line id, input fields and output fields as shown in the figures below.  

1) Select bus line field, the click “Set” below. 
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Figure 5. Select bus line id 

2) Select input fields, the click “Set” below. 

 

 
Figure 6. Select input fields 

3) Select output fields, the click “Set” below. 

 

 
Figure 7. Select output fields 

4) Click “Done” button. 

3.3.3. CALCULATE THE RESULTS 
Click “Calculate Operational Efficiency” button to generate the results. The result files of DEA 
(cal_dea.json and cal_dea.csv) will be generated in output folder. 

3.4. OPTIMIZATION 

3.4.1. CHOOSE INPUT SHAPE FILES 
See 3.2.2 and 3.2.3. 
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3.4.2. CHOOSE OUTPUT FOLDER 
See 3.2.5. 

3.4.3. CHOOSE EQUALITY OUTPUT JSON FILE 
Click button “13. Browser” to choose the “cal_equality.json”, which is the result of 3.2.6. 

3.4.4. CHOOSE OPERATIONAL EFFICIENCY JSON 
FILE 

Click button “14. Browser” to choose the “cal_dea.json”, which is the result of 3.3.3. 

3.4.5. CHOOSE GLPSOL BINARY FILE 
Click button “15. Browser” to choose the “glpsol.exe”, which is in glpk package, e.g. “winglpk-
4.61\glpk-4.61\w64\glpsol.exe”. If your system is 32-bit, please choose “winglpk-4.61\glpk-
4.61\w32\glpsol.exe”. 

3.4.6. CHOOSE OUTPUT RANK FOLDER 
Click button “16. Browser” to choose the output rank folder, which is used to store the results of 
optimization. 

3.4.7. DO OPTIMIZATION 
Click button “Do Optimization” to run optimization. 
Then a window below will appear. 

 
Figure 8. Optimizing 

Do NOT click any button or combo box until it finished. If it finished, you can see the window 
as follows. Then click the combo box to choose the remaining lines you wish. 
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Figure 9. Optimization finished 

Then you can see a window as follows, which shows the result of the remaining bus lines. Each 
red circle is a result due to different operational efficiency score and disadvantage population 
served. 

 
Figure 10. Results of remaining bus lines 

In the Figure above, you can click any red circle to see the map view according to selected bus 
lines and block group. But if you have clicked a circle, do NOT click a circle again before the 
chart of previous clicking appeared. 

3.4.8. VIEW RESULTS 
If you have done an optimization once, you can just click the “View” button to see the previous 
results without calculating. But before clicking the “View” button, please make sure: 

1) You have done an optimization before 
2) Fill the item 3 ~ 6 (see 3.2.2 and 3.2.3), item 10 (see 3.2.5), item 13 ~ 14 (see 3.4.3 and 

3.4.4) and item 16 (see 3.4.6). 
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