
Portland State University Portland State University 

PDXScholar PDXScholar 

Electrical and Computer Engineering Faculty 
Publications and Presentations Electrical and Computer Engineering 

9-2010 

Application of CUDA in the Boolean Domain for the Application of CUDA in the Boolean Domain for the 

Unate Covering Problem Unate Covering Problem 

Eric Paul 
Portland State University 

Bernd Steinbach 
Freiberg University of Mining and Technology 

Marek Perkowski 
Portland State University 

Follow this and additional works at: https://pdxscholar.library.pdx.edu/ece_fac 

 Part of the Electrical and Computer Engineering Commons 

Let us know how access to this document benefits you. 

Citation Details Citation Details 
Paul, Eric, Bernd Steinbach, and Marek Perkowski. "Application of CUDA in the Boolean Domain for the 
Unate Covering Problem." Boolean Problems, Proceedings of the 9th International Workshops on Boolean 
Problems. 2010. 

This Pre-Print is brought to you for free and open access. It has been accepted for inclusion in Electrical and 
Computer Engineering Faculty Publications and Presentations by an authorized administrator of PDXScholar. 
Please contact us if we can make this document more accessible: pdxscholar@pdx.edu. 

https://pdxscholar.library.pdx.edu/
https://pdxscholar.library.pdx.edu/ece_fac
https://pdxscholar.library.pdx.edu/ece_fac
https://pdxscholar.library.pdx.edu/ece
https://pdxscholar.library.pdx.edu/ece_fac?utm_source=pdxscholar.library.pdx.edu%2Fece_fac%2F171&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/266?utm_source=pdxscholar.library.pdx.edu%2Fece_fac%2F171&utm_medium=PDF&utm_campaign=PDFCoverPages
http://library.pdx.edu/services/pdxscholar-services/pdxscholar-feedback/?ref=https://pdxscholar.library.pdx.edu/ece_fac/171
mailto:pdxscholar@pdx.edu


Application of CUDA in the Boolean Domain

for the Unate Covering Problem

Eric Paul1, Bernd Steinbach2, and Marek Perkowski3

1,3Portland State University

Department of Electrical Engineering

Portland, Oregon, USA

email: epaul@cecs.pdx.edu1, mperkows@cecs.pdx.edu3

2Freiberg University of Mining and Technology

Institute of Computer Science

D-09596 Freiberg, Germany

email: steinb@informatik.tu-freiberg.de

Abstract

NVIDIA’s Compute Unified Device Architecture (CUDA) is a relatively-recent devel-
opment that allows to realize very fast algorithms for several Constraint Satisfaction and
Computer Aided Design tasks. In this paper we present an approach to use Graphics Pro-
cessing Units (GPU) and CUDA for solving Unate Covering Problem, a practical problem
related to SAT. In particular we present a CUDA-enabled Petrick Function Minimizer. We
compare the performance of a pipeline-processor (CPU) and a parallel processor (GPU)
implementation of the matrix-multiplication method for solving unate covering problems.

1 Introduction

It is well-known that many important problems can be reduced to SAT [1], [3], [4], [5], [6], [7], [8],
[9], and [16]. An Oracle is a Boolean function that evaluates some set of solution candidates with
yes or no output. In graph coloring [13], an oracle is commonly used to determine if there exists
a valid coloring below some threshold—the decision. Finding the minimum coloring involves
running the solver iteratively with lower thresholds until a “no” is produced. It is often faster
to solve the decision problem than it is to find the minimal coloring for this type of problem.

The SAT oracle [13] is also a Boolean function, just a Product of Sums (POS) of literals.
The feature of interest for the SAT solver is an assignment of variables such that the objective
function is satisfied. This is inherently more complex than the simple decision problem.

A special type of SAT problems is given when each literal appears in a fixed polarity in
the POS. This restriction to a unate Boolean function simplifies the SAT problem, because a
trivial solution, where all literals are assigned with the value of the given polarity, can be given
immediately. In this paper we solve the more difficult Unate Covering Problem (UCP) where
only solutions are searched having minimal cost (number of literals required) that satisfy the
given Boolean equation. The UCP is encountered in practice in many places, such as in SOP
(Sum of Product) minimization of Boolean functions, minimization of finite state machines, test
minimization and scheduling/allocation, logistics, to name just a few.

It is main aim of this paper to explore the application of CUDA in the Boolean domain.
We have chosen the UCP as example of the task to solve because solutions to this task are
required in logic synthesis, the known solution algorithms have an exponential complexity, and
the number of variables is typically much larger than the number of variables in the basic
functions explored in this paer. Due to our aim of demonstrating CUDA application design,
we selected a simple algorithm and compared the runtime between the CPU-only and GPU-
acccelerated implementations. We are certain that more efficient approaches for the UCP could



be developed which will be studied in the future.
Our results indicate that an algorithm solving arbitrary UCPs with matrix-multiplication

on CUDA results in nearly-linear speedup . One factor predicting the amount of speedup for
any given problem is the problem size itself. In general, the larger the problem, the greater the
speedup. For the experiments in this paper, we found that speedup was achieved on problems
with as few as 16 literals (fig. 5(c)).

Our paper is structured as follows. In Section 2, we discuss the UCP problem and how a
matrix-multiplication algorithm can be used as a solver. For comparison, we summarize the
CPU-only approach in Section 3. We explain the CPU + GPU implementation using CUDA in
more detail in Section 4. All programs are written in ANSI C. Our experiments are restricted
to a range that allows to observe the expected speedup. The experimental results are given in
Section 5. In Section 6, we conclude the presented approaches and explain some directions of
our future work.

2 The Unate Covering Problem

2.1 Unate Functions

The Unate Covering Problem (UCP) is an important simplification of general SAT, in that
it simplifies solving techniques. To see this, we first set forth a working definition for unate
functions using the simple derivative of the Boolean differential calculus, see [18] and section
four in [11].

Definition 1 Unate Functions

For some arbitrary Boolean function of n variables, f(x1, x2, . . . , xi, . . . , xn), f is considered
positively unate in xi iff

xi ∧
∂f(x1, x2, . . . , xi, . . . , xn)

∂xi

= 0 . (1)

Similarly, the function f is negatively unate in xi iff

xi ∧
∂f(x1, x2, . . . , xi, . . . , xn)

∂xi

= 0 (2)

holds. If f is positively (negatively) unate in all xi, then we say that the function is positively
(negatively) unate. If either (1) or (2) holds for each variable xi, then the function f is called
unate. If this condition fails (at least one variable is binate) for any variable, then we say that
the function is not unate; it is binate.

If the function we wish to solve is either negatively- or positively-unate, then the solution we
seek is not concerned with the polarity of the variables in the solution, we are only interested
in which literals appear in a given solution. Thus, the technique presented here works for unate
problems of either polarity. This further reduces the problem to subset selection, which is
computationally simpler than variable assignment, as in general SAT.

2.2 UCP Formulation

Let us take the SOP minimization of Boolean function as an example of a UCP. The associated
unate covering problem can be expressed as a prime implicant (PI) chart. In Table 1, we see
such a chart.

Expressing Table 1 in the form of a Product-of-Sums (POS) Boolean function, we find the
following function:

P = (L ∨M) · (N ∨Q) · (L ∨N) · (K ∨R) ·K · (M ∨R) · (K ∨Q) · (K ∨ S) · S . (3)

The Boolean-expression form of (3) is referred to as a Petrick function. There are many
ways to find an assignment of a product of the prime implicants such that the function evaluates
to true (all clauses are true). One such method it tree branching. Paths to the leaves of the tree
resulting from branching on the expression represent a product of literals that satisfies the chart.



Table 1: The Prime Implicant Chart for Equation (3).
Prime Clauses

Implicants 1 2 3 4 5 6 7 8 9
K X X X X
L X X
M X X
N X X
Q X X
R X X
S X X

Prime Clauses
Implicants 1 2

A X
B X X
C X

N =





1 0
1 1
0 1





(a) (b)

Figure 1: Prime implicant chart (a) and matrix (b) representations of the Petrick function in
Equation (5).

The minimal solutions are the shortest path to the leaves; we have a single minimal solution of
cost 4,

P = K · S ·M ·N . (4)

Well-known methods for implementing a tree-search algorithm requires recursion and se-
quential data structures: a stack for depth-first search, a queue for breadth-first search, or both
for a hybrid method like iterative deepening. Our target hardware platform in this case is an
NVIDIA Compute-Unified Device Architecture-enabled graphics processing unit (CUDA GPU).
At the top level, a single CPU thread launches a multi-threaded GPU routine referred to as a
GPU kernel. Recursions are not allowed in GPU kernels [2].

This intuitively makes sense due to the fact that we wish to operate on blocks of data in
parallel, which goes against the sequential nature of recursion. More importantly, the data struc-
tures themselves in tree search—and recursion in general—are not “data-parallel,” i.e. stacks
and queues only allow access to the ends of the structure.

In order to achieve an appreciable amount of speed up with CUDA, the underlying data
structures should be random-access in nature. One-, two-, and three-dimensional arrays are
one of the primary data structures used in CUDA programming. One particular method of
computation that is well suited for CUDA execution is matrix multiplication. Seeking a quick
implementation, we chose to implement the solver with Boolean matrix multiplication. Obvi-
ously, there are other ways to implement the solver, but this is one simple way that produced
a quick prototype and allows us to compare the runtime between a CPU- and an equivalent
GPU-implementation.

2.3 Solving UCP with Boolean Matrix Multiplication

Let us consider the algorithm with a simple example. In eq. (5) we have a 3-literal, 2-clause
Petrick function. The associated prime implicant chart and its matrix representation are shown
in Figure 1.

P = (A ∨B) · (B ∨ C) (5)

We can see by inspection that the minimal-cost solution is B, since chosing that literal
satifies both clauses. In the matrix representation of eq. (5), a 1 in a clause column indicates
that the associated literal appears in that clause. Whether or not this literal appears positively
or negatively is irrelevant since this is a unate function. Table 2 shows the truth table for this
function.



Table 2: Truth table for the Petrick function in Equation (5).
Input Clauses Output Literal
ABC A ∨B B ∨ C P Cost
0 0 0 0 0 0 0
0 0 1 0 1 0 1
0 1 0 1 1 1 1
0 1 1 1 1 1 2
1 0 0 0 0 0 1
1 0 1 1 1 1 2
1 1 0 1 1 1 2
1 1 1 1 1 1 3

Again, the input patterns denote whether or not the associated literal appears in a solution
candidate. From this we can explicitly see five solutions: B is the minimal solution of cost = 1.
BC, AC, and AB are solutions of cost 2, and ABC is the maximum-cost solution with 3 literals.
We sort the truth table according to literal cost of the input patterns, then define matrix M

that represents the truth table (all possible solutions are represented). Finally, M is Boolean-
multiplied by N from fig. 1 (b). The resulting output matrix P is produced, as indicated in
eq. (5):

M ×N =

























0 0 0
0 0 1
0 1 0
1 0 0
0 1 1
1 0 1
1 1 0
1 1 1

























×





1 0
1 1
0 1



 =

























0 0
0 1
1 1
1 0
1 1
1 1
1 1
1 1

























= P (6)

The Boolean matrix multiplication algorithm is the same as arithmetic matrix multiplication
except that we replace the scalar multiplication operator with the Boolean AND operator, and
replace the arithmetic sum operator with the Boolean OR operator. Any given element in the
output matrix, P (i, j), represents whether or not the input pattern (literals included in the
candidate solution) from row i in M satisfies the clause in column j in N .

Take row 2 of the output matrix as an example: multiplying the second row of M with the
first column of N , we obtain zero for the Boolean OR of the three Boolan ANDs, so a zero is
entered in the associated output position, P (2, 1). To complete the row in the output matrix, we
perform the same operations with the second clause in the function (second column of N) with
the same input pattern. This time the output element is a logic 1 since there was a match—a 1
in corresponding positions—between the input pattern and the second clause. Thus a 1 is stored
in P (2, 2).

The minimal condition for a single solution candidate satisfying the constraint matrix is just
a row in the output matrix containing no zeros. The first row in the output matrix with no
zeros is the third, which is associated with the input pattern 010, representing the solution B.
We also have non-zero-containing rows below row 2. Since the rows in the all-possible-solutions
matrix M are sorted by cost, the rows of the output matrix are ordered by the cost of their
associated solution candidate. The non-zero rows in P are associated with the input patterns
{010, 011, 101, 110, 111}. These input patterns have a cost of {1, 2, 2, 2, 3}; sorting the input
space by literal cost is key to finding minimal solutions first.

One could argue that that if a zero is produced in the output matrix, the search for that
solution cadidate should be cut off. While this would be efficient for a sequential solution,
interupting CUDA matrix multiplication on a per-row basis is not only hard to design, but
would be an ineffective CUDA-programming tactic. When designing for CUDA, we want to
parse our algorithms into bulk operations that can be performed without branching, i.e. if-then
constructs.

The algorithm we implement in the software performs this multiplication without regard to
whether or not a zero is produced in the output matrix. We just perform the multiplication, and
then evaluate the output matrix in a separate routine. This allows us to use complete matrix



multiplication as our solver engine. Further, it allows us to test arbitrary UCPs that can be repre-
sented as different instantiations of matrix N , regardless of the features of the UCP constraints
themselves. In other words, different UCPs of the same size will have a predictable—ideally
identical—evaluation time, no matter how difficult the problem is to solve. When comparing
problems of the same size, those with fewer good solutions are considerd more difficult; our
technique is indifferent to this metric.

3 CPU-Only Appraoch

Since these problems can get quite large, we decided to implement the reading of the PI chart
and the reporting of solutions via file I/O using ANSI C. The basic algorithm our program
implements is indicated in Algorithm 1.

Algorithm 1 Top-Level Sequential (CPU-only) UCP Algorithm

1: read the PI chart from input file (initialize N)
2: create ordered solution space based on number of literals in PI chart (initialize M)
3: perform sequential Boolean matrix multiplication (P = M ×N)
4: search output rows of P for satisfying rows
5: report minimal solutions to output file

The primary data structure in use for the software is a one-dimensional array of Boolean
flags. This is very efficient in that it only uses a single bit per matrix element. Matrices are
stored in row-major order, meaning matrix rows are stored in the array sequentially.

Both simple examples were run for the example Petrick functions in eq. (5) and eq. (3);
minimal solutions of cost 1 and 4 were found, respectively. This verifies the correctness of the
algorithm, and verifies the result obtained by branching, indicated in [13], and [10]. Results of
larger benchmarks are given in Section 5.

4 GPU-Enabled Appraoch

The CUDA-enabled algorithm is nearly identical to the sequential version. In Algorithm 2, we
added memory transfers between the GPU and main system memory. The memory transfers are
not a zero-time phenomenon; they are in many cases one of the main bottlenecks in any CUDA
program. There are ways to combat the memory transfer bottleneck (page-locked and/or pinned
host memory [2], partitioning, etc.), but that is a topic for future research.

Algorithm 2 Top-Level Parallel UCP Algorithm

1: read the PI chart from input file (initialize N)
2: create ordered solution space based on number of literals in PI chart (initialize M)
3: transfer input matrices to the GPU
4: perform CUDA Boolean matrix multiplication (P = M ×N)
5: transfer results from GPU to main system memory
6: search output rows of P for satisfying rows
7: report minimal solutions to output file

4.1 CUDA Matrix Multiplication

The matrix product A×B = C is represented graphically in Figure 2. We parse the input and
output matrices into sub-matrices represented by the yellow blocks. Note that this block size
is square, and is consistent for both of the input matrices and the output matrix. The input
matrices A and B have dimensions wA × hA and wB × hB, respectively, where hB = wA.

The chosen block size must cover—exactly—the dimensions of the matrices we wish to mul-
tiply. Meaning that the height and width of both matrices must be an integer multiple of the
chosen block size. The key feature of this blockwise algorithm is that each GPU thread computes
a single output-matrix element within the respective block.



A

B

C

wA wB

Block Dim Block Dim Block Dim

B
l
o
c
k

D
im

B
l
o
c
k

D
im

B
l
o
c
k

D
im

h
A

h
B

=
w
A

- -� �

6

6

?

?

-�

6

?

-� -�

6

?

6

?

Figure 2: Matrix multiplication on CUDA

Before the kernel execution begins, we copy the input matrices entirely to the GPU’s global
memory in a single asynchronous memory transaction for each input matrix. Once there, it is
available to all blocks in the kernel. Then, the output matrix is partitioned into sub-matrices
Csub (yellow block, fig. 2). These sub-blocks of the output matrix are the GPU kernel thread
blocks that are calculated in parallel. More precisely, all the elements in any given output
submatrix are concurrently computed on the GPU within a single thread block, and as many
blocks are computed in parallel as the specific CUDA device will allow (see sec. 4.2.1).

This is effectively accomplished utilizing shared memory. For a single output sub-matrix
(yellow sub-block of C in fig. 2), the kernel block first loads the left-most sub-matrix of A, and
the uppermost sub-matrix of B in fig. 2 into the block’s local shared memory. Then, the Boolean
multiply-and-accumulate is performed with those input sub-matrices. We iteratively continue
this until all the required multiply-and-accumulate operations have been performed to compute
a single sub-block.

Since threads within a block, along with blocks themselves are calculated in parallel, we end
up with multiple copies of distinct ranges of global memory residing in separate shared memory
blocks. While this may seem redundant and inefficient, it speeds up the process since we can
then compute all (or as many as the device will allow) the sub-matrices of the output in parallel;
we do not induce bank conflicts since each thread block has it’s own copy of the data required
for the computation.

As presented earlier, the matrices we wish to multiply on the device must be sized such that
the number of rows and columns in the input matrices must be an integer multiple of the block
size. This creates an unwanted connection between input size and the block size we choose for
the GPU kernel. Again, we’re in pursuit of a quick prototype for this basic research, so we move
forward with the restricted input sizes. To better understand CUDA in general, and how it
applies to the UCP solver, we now explore GPU kernel design basics.

4.2 CUDA-based UCP Solver Implementation

4.2.1 GPU Kernel Design

Part of utilizing CUDA effectively involves designing kernel configurations that strike a balance
between dense thread blocks and masking memory latency [2]. Most CUDA devices can handle



Device DeviceKernel
grid

Block 0 Block 1

Block 2 Block 3

Block 4 Block 5

Block 6 Block 7

Block 0 Block 1 Block 2 Block 3

Block 4 Block 5 Block 6 Block 7

Block 0

Block 1

Block 2

Block 3

Block 4

Block 5

Block 6

Block 7

?

?

time

time

Figure 3: Transparent GPU Kernel Grid Scaling

a maximum of 512 threads per block. Pushing the thread density up against this limit reveals
memory latency (bank conflicts), while lowering the thread density to near 1 doesn’t efficiently
utilize computing resources on the device (under-occupation). In either case, we suffer significant
performance degradation. Further, we want the thread count per block to be a multiple of the
warp size [2]—32 for most CUDA devices. NVIDIA documentation suggests that thread density
in general should be set somewhere between 128 and 256 threads per block to achive the balance
of device occupancy and latency masking.

Taking this into account, we chose a block size of 8× 8 = 64 threads per block (Block Dim

= 8 in fig. 2). This is an integer multiple of the 32-thread warp size for our devices, and is
much less than the 512-thread limit for kernel blocks on our device. Although we know that
64 threads per block does not adequately occupy the device, choosing this size allowed us to
solve UCPs whose literal and clause counts are a multiple of 8. Again, we’re looking for a quick
prototype, future work would certainly consider flexible block sizing—perhaps dynamic, based
on input size. Ultimately, we’d like to decouple input size from GPU kernel configuration.

Setting the block sizes as such, we then end up with some number of blocks of threads to
execute in the GPU kernel grid. Depending on input size and the specific device we are working
with, we may or may not be able to process all blocks in concurrently. One of the key design
goals of the CUDA architecture and programming model is to facilitate transparent scaling of a
GPU kernel grid across many devices—without recompiling.

Given the number of blocks that are required to cover the data, and the thread density of
those blocks, the CUDA runtime subsystem will manage and execute as many blocks concurrently
as possible [2] (see Figure 3). Clearly, larger devices can execute more blocks in parallel than
smaller devices.

5 Experimental Results

We built a random input file generator to create a series of PI charts. For comparison purposes
to the GPU implementation (see Section 4), we generated input files with 8 and 16 literals,
varying the clause count between 8 and 256. We then ran the same source program compiled
for the two machines indicated in Table 3. The timing results are indicated in Table 4.

For the 8-literal cases, we see an approximately-constant execution time for both machines.
More than 95% of the execution time for those small cases is spent on generating the ordered
solution space. It is not until the 16 × 32 case that the algorithm spends more time on matrix
multiplication than generating the solution space. This is somewhat expected in that the 8-
literal problems only have 256 possible solutions, corresponding to matrix rows in the input
space. This is a very small matrix in terms of memory requirements. Hence, the supporting
tasks strongly dominate the main task of matrix multiplication. Further, the cost of memory
transfer outweighs the performance gain from using the GPU, so GPU utilization for small



Table 3: Test machines

Machine A Machine B

CPU Intel Core i7 940 (2.93 GHz) Intel Core 2 Duo (2.66 GHz)
RAM 12 GB 4 GB
OS Windows 7 (64 bit) Mac OS 10.6.4 (64 bit)
GPU NVIDIA GeForce 9600 GT NVIDIA GeForce 9600M GT
global memory 512 MB 256 MB
cores/SM count 64/8 16/2
compute capability 1.1 1.1

Table 4: Timing results in milliseconds

CPU-only CPU-GPU
Literals Clauses Machine A Machine B Machine A Machine B

8 8 17.503914 7.493989 54.658726 43.221001
16 17.733423 7.595000 54.835838 42.880010
32 17.965380 8.541000 54.090714 41.702999
64 18.462826 8.506000 55.762260 42.201000
128 18.562735 8.989000 54.305553 43.050999
256 19.586273 10.229000 54.915833 42.980000

16 8 46.765251 60.618999 62.663292 61.612000
16 70.407600 77.098999 70.512749 77.869003
32 131.675659 119.874001 78.657043 108.890999
64 222.917694 247.671005 93.964371 172.565002
128 421.712708 433.269012 138.112427 305.154999
256 810.593933 910.721985 236.531815 431.035094

problems slow down the total run time, which can clearly be seen in fig. 5(a). However, the
maximal run time of less than 60 milliseconds is so short that no special fitted algorithms are
needed.

The 16-literal cases exhibit the expected behavior of execution time growing with input size,
and the execution time is nearly identical between the two machines for the CPU-only case. This
is somewhat expected in that the CPU-only program is a single-threaded application running
on a single core of CPUs with nearly identical features per core (see Table 3). The GPU-enabled
versions exhibit a slower increase of computation time with respect to problem size, as seen in
the plot of fig. 5(b).

We can more precisely examine the computational benefit yeilded by the CUDA implementa-
tion for the 16-literal case with the speedup-ratio plot presented in fig. 5(c). Speedup is defined
as the ratio of the CPU-only execution time to the GPU-enabled execution time. We clearly
see the effects of transparent scaling in this plot, as the 9600 GT’s speedup ratio grows much
faster than the 9600M GT’s—a direct result of the larger device being able to compute more
sub-blocks of the output matrix in parallel.

It should be noted that the CUDA devices these tests were performed on were supporting
display (rendering screen output) while computing. Thus, the speedup metrics are likely lower
than what a computation-only (dedicated) CUDA device could deliver. In any case, our results
indicate that the largest problem (16 × 256), the runtime is reduced by a factor of 3.4. This
reinforces our earlier idea that the larger the problem, the more computational benefit we yeild
by utilizing the CUDA architechture.

6 Conclusions and Future Work

We presented initial work on a basic UCP-solver parallelization. This simple method could likely
be extended to work with more general constraint-satisfaction and oracle-like problems. The
idea is that if we understand how to effectively use the hardware, we can map that knowledge
into solving more complex problems. Although the problems solved here are very small with



4

8

16

32

64

0 50 100 150 200 250 300

time
(ms)

clauses

CPU and GPU

CPU
@@

(a) Execution Time (8 literals)

32

64

128

256

512

1024

0 50 100 150 200 250 300

time
(ms)

clauses

CPU

CPU and GPU
@

@
@@

(b) Execution Time (16 literals)

0.5

1

1.5

2

2.5

3

3.5

0 50 100 150 200 250 300

clauses

speedup
ratio

(c) Speedup (16 literals)

Figure 4: Timing results: machine A (solid lines) / machine B (dotted lines)

respect to standard benchmarks, this early work clearly indicates computational benefits can
easily be obtained with CUDA.

Matrix multiplication is an excellent example problem to explore the CUDA architecture and
programming model. Although transparent scaling allows us to abstract away the capacaties
of specific CUDA devices, we must learn to think in parallel with the CUDA architecture in
mind: both the problem we wish to solve and the general CUDA architecture must be taken
into account to develop effective CUDA-enabled applications.

Future work will include learing more about the CUDA memory model. We did not explore
utilizing thread-local registers as a memory optimization as outlined in [19]. Flexibility improve-
ments could be made by decoupling the GPU kernel configurations from input sizes. Along those
same lines, a partitioning scheme could allow us to problems larger than 16 literals by searching
lower-cost solution candidate groups sequentially.

Finally, we did not implement any heuristics when developing the solution candidate space.
There are many well-known methods that have been published [10], [11], [12], [13], [14], [15],
and [17]. Since this was a CUDA exploration, rather than a SAT project, we largely ignored the
available literature regarding heuristic methods. The sheer size of the memory requirements uti-
lizing this brute-force method clearly indicate that implementing heuristics would be an effective
tactic in creating a more efficient solver.



References

[1] Cook, S. The Complexity of Theorem-Proving Procedures. Proceedings Third Annual ACM
Symposium on the Theory of Computing, Association for Computing Machinery, New York,
1971, pp. 151–198.

[2] Current CUDA Programming Guide see: http://www.nvidia.com/object/cuda get.html

[3] Davis, M. and Putnam H. A Computing Procedure for Quantification Theory. Journal of
the ACM, Volume 7, Issue 3, New York, 1960, pp. 201–215.

[4] Davis M., Logemann, G. and Loveland M.D. A Machine Program for Theorem Proving.
Communications of the ACM 5, New York, 1962, pp. 394–397.

[5] Gu J., Purdom P., Franco J. and Wah B. Algorithms for the Satisfiability (SAT) Problem:
A Survey. Preliminary version, 1996, see: http://citeseer.nj.nec.com/56722.html.

[6] Johnson M. and Posthoff Ch. TRISAT - A SAT - Solver Using Ternary-Valued Logics. 14th
International Workshop on Post-Binary ULSI Systems, Calgary, Canada, 2005, pp. 1–17.

[7] Johnson G. Computers and Intractability: A guide to the theory of NP-Completeness. W.
H. Freeman and Company, New York, 1979, ISBN 0-7167-1045-5.

[8] Karp R. M. Complexity of Computer Computations. In: Miller R. E. and Thatcher J. W.
(editors): Reducibility Among Combinatorial Problems, New York, Plenum Press. 1972,
pages 85–103.

[9] Levin, L. Universal’nye Perebornye Zadachi. Problemy Peredachi Informatsii Volume 9 Is-
sue 3, 1973, pp. 265-266. English translation: Universal Search Problems. In: Trakhtenbrot
B. A. A Survey of Russian Approaches to Perebor (Brute-Force Search) Algorithms. Annals
of the History of Computing Volume6 Issue4, 1984, pp. 384–400.

[10] Paul, E. M.Sc. thesis in preparation. PSU, 2010.

[11] Posthoff, Ch. and Steinbach, B. Logic Functions and Equations - Binary Models for Com-
puter Science. Springer, Dordrecht, The Netherlands, 2004.

[12] Perkowski M. and Mishchenko, A. Logic Synthesis for Regular Layout using Satisfiability.
in: Proceedings of the 5th International Workshop on Boolean Problems, 2002, pp. 225–232.

[13] Perkowski, M. et. al. Using Veloce for Oracle Implementation. PSU. Submitted 2010.

[14] Posthoff, Ch. and Steinbach, B. A Multi-Processor Approach to SAT-Problems. 7th Interna-
tional Workshop on Boolean Problems, 19th - 20th of September 2006, Freiberg University
of Mining and Technology, Freiberg, Germany, 2006, pp. 49–62.

[15] Posthoff, Ch. and Steinbach, B.: SAT-Problems - New Findings. in: Proceeding of the
6th WSEAS International Conference on Data Networks, Communications, Computers,
Trinidad and Tobago, November 5–7, 2007, pp. 339–344.

[16] Rish I. and Dechter R. Resolution versus Search: Two strategies for SAT. SAT2000: High-
lights of Satisfiability Research in the Year 2000, ; Vol. 63 of Frontiers in: Artificial Intelli-
gence and Applications, Gent, I., et al, (Editors) IOS Press, ISBN 1-58603-061-2, 2000, pp.
215–259.

[17] Schöning, U. A probabilistic algorithm for k-SAT and constraint satisfaction problems. Pro-
ceedings of the 40th Symposium on Foundations of Computer Science, IEEE, October 1999,
pp. 410-414.

[18] Steinbach, B. and Posthoff, Ch.: Boolean Differential Calculus. in: Sasao, T. and Butler,
J.T.; Progress in Applications of Boolean Functions Synthesis Lecturers on Digital Circuits
and Systems # 26. Morgan & Claypool Publishers, San Rafael, CA USA, 2010, ISBN
978-1-60845-181-4, pp. 55-78, and 121-126.

[19] Kirk, David B. and Hwu, Wen-mei W. Programming Massively Parallel Processors: A
Hands-on Approach. Morgan Kaufmann Publishers, 2010, 0-1238-1472-3.


	Application of CUDA in the Boolean Domain for the Unate Covering Problem
	Let us know how access to this document benefits you.
	Citation Details

	C:/Users/steinb/Documents/Vorträge/IWSBP2010/CPP_SAT/final_3/ACBD_UCP.dvi

