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Abstract 

Reconstructability analysis, a methodology based on information theory and 

graph theory, was used to perform a sensitivity analysis of an agent-based model. 

The NetLogo Behavior Space feature was employed to do a full 2k factorial 

parameter sweep on Uri Wilensky’s Wealth Distribution NetLogo model, to 

which a Gini-coefficient convergence condition was added. The analysis 

identified the most influential predictors (parameters and their interactions) of the 

Gini-coefficient wealth inequality outcome. Implications of this type of analysis 

for building and testing agent-based simulation models are discussed. 
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Key words: reconstructability analysis; machine learning; agent-based simulation; 

information theory; sensitivity analysis; wealth distribution model 

1. Introduction 

In agent-based simulation (ABS), agents interact with each other in a dynamic environment. 

By following simple rules, these interactions result in emergent behavior patterns. SugarScape is 

a widely studied ABS model developed by Joshua M. Epstein and Robert Axtell (Epstein and 

Axtell 1996). The NetLogo Wealth Distribution model, developed by Uri Wilensky, is based on 

the SugarScape model and includes output variables for the Gini coefficient, a measure of wealth 

inequality, and for the class distribution in the simulation population. This project applied a 

machine learning methodology to the outputs generated by Wilensky’s Wealth Distribution 

model to answer the following questions, “Can a machine learning algorithm detect relations 

between model parameters and model output that augment our understanding of the model? 

Specifically, can such an algorithm reveal the degree to which the model parameters and their 

interactions predict the model output?” 

To address these questions, data produced by simulations of the NetLogo Wilensky Wealth 

Distribution (WWD) model were analyzed with a software tool called OCCAM (named after the 

principle of parsimony – or ‘Organizational Complexity Computation and Modeling’). OCCAM 

implements a machine learning methodology known as Reconstructability Analysis (RA), well 

suited for detecting nonlinear and high ordinality multivariate interactions, and is available both 

online and as open-source code (Zwick 2019). The results of the OCCAM analysis illuminated 
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the sensitivity of Gini coefficient outcomes to the parameters and interactions between the 

parameters in the model. 

RA modeling of data from WWD simulations is a particularly powerful type of sensitivity 

analysis of the WWD model, since sensitivity analysis usually involves varying input parameters 

one at a time to see how variation affects the output, i.e., it is commonly done without 

considering interactions among the inputs. Our sensitivity analysis is much more substantial, 

since we do not look only at main effects. We deploy a full-scale RA analysis on top of the 

WWD simulation, i.e., we add data-driven modeling (RA), as a meta-level, to theory-driven 

modeling (WWD), as the base level. In theory-driven modeling one posits a set of theoretically 

plausible relations between variables. In the data-driven modeling, by contrast, relations are 

derived directly from data rather than from theory. For the WWD model, one has a theory-based 

expectation of a property that will emerge from the hypothesized relations, namely income 

inequality, but one does not have theoretical expectations about how this property will actually 

depend upon the model parameters. To discover this dependence, we applied RA to data 

generated by WWD simulations. RA is a general machine learning methodology which could be 

applied to data from any simulation, but it is likely that other machine learning approaches would 

also usefully supplement agent-based simulation. Our purpose here was not to advocate 

specifically for RA., and we have not compared its effectiveness to other machine learning 

approaches. Our aim is primarily to offer a proof of concept: to show that adding a machine 

learning post-processing step usefully augments ABS. We expect that our proof of concept will 

suggest new modeling possibilities to researchers, since such two level analyses are rare in 

literatures of both simulation and machine learning. Demonstrating the capabilities of RA, the 

specific methodology that we used, is only a secondary aim of this paper. However, since RA is 
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less well known than other machine learning methodologies, this demonstration adds value to 

this study. 

The Wealth Distribution NetLogo Model 

Economists Joshua M. Epstein and Robert Axtell’s 1996 book Growing Artificial 

Societies, introduced the SugarScape model and the idea of using agent-based simulation as a 

form of generative social science research. Overall patterns of population behaviors emerge from 

the simple rules involving individual agents’ fitness parameters, the abundance or scarcity of 

resources in the environment, and population dynamics (Epstein 1999, Wilensky and Rand 

2015). The inspiration for studying the SugarScape model and the focus of this paper is best 

articulated in the following quote from Epstein & Axtell (1996) regarding the importance of 

studying agent-based models: “The ability to alter agent-interaction rules and compute the effect 

on the Gini-coefficient and other summary statistics is one of the most powerful features.” The 

aim of this study is to explore to what degree a machine-learning algorithm can predict a macro-

emergent condition – the Gini coefficient – from the simulation parameters. 

Based on SugarScape, Wilensky’s Wealth Distribution model is included in the NetLogo 

models library with the two additional output variables: the Gini-coefficient and a class 

histogram (for low, middle, and upper class) to display the overall distribution of the primary 

resource among the simulated population of agents. The primary resource is sugar in SugarScape 

and is grain in the Wealth Distribution model. The outcomes of both models demonstrate the 

Pareto Principle with most people being poor, some middle-class, and a very few being wealthy; 

and the richest 20% of the population hold 80% (or more) of the total wealth (Wilensky 1998). 
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The following description of the Wealth Distribution model is summarized directly from 

Wilensky’s (1996) Info tab in the NetLogo model library. When the model is set up, the 

environment, consisting of equally sized patches (nonmobile agents) in a two-dimensional plane, 

is endowed with a random assignment of grain and grain growing capacity. A population of 

individuals is randomly endowed with an initial wealth level and fitness characteristics, and then 

randomly dispersed throughout the environment. The model is executed in time-steps, where at 

each step, individuals look around at neighboring patches for grain, move towards the most 

plentiful patch within the limits of their visual capabilities, and harvest. Each time step involves 

this maneuver and costs the individual the amount of grain specified by their random metabolism 

assignment. After harvest, patches re-grow grain according to their random assignment for 

growth patterns. The calculation of the wealth distribution for individuals and population is 

executed and updated in the NetLogo interface. An individual agent that fails to find enough 

grain to meet its metabolism demand does not survive and is replaced with another randomly 

generated individual in order to maintain the population number. Agents can also expire by 

meeting the limit of their randomly assigned life expectancy. At each step the wealth distribution 

is determined by ranking the individuals according to portion of total population of wealth 

owned and then calculating the Gini coefficient. 

When Wilensky, Epstein, Axtell, Resnick and others wrote about agent-based simulation 

models they discuss agents as being anything in the model that can be coded to follow simple 

rules. In NetLogo, agents are then distinguished between environmental agents, which they 

called patches and the individuals which they called turtles. In this paper, we will use the term 

agents in a more narrowly defined way to refer only to the population of individuals. 

The following table summarizes the parameters in the Wealth Distribution model. 
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(Table 1) 

Reconstructability Analysis and the OCCAM software tool 

Only a brief description of Reconstructability Analysis (RA) is provided here. 

Cornerstones of RA include Weiner’s (1914) work in set theory and relations, Shannon’s (1948) 

concept of entropy, Ashby’s (1964) constraint analysis, and Klir’s (1969) general systems theory 

(Jones 1985, Klir 1985, Zwick 2004). Foundations of RA are information theory, graph theory, 

classical set theory, and probability theory (Klir 1986, Zwick 2004). RA overlaps with log-linear 

methods, Bayesian networks, and other probabilistic graphical modeling methodologies and is 

applicable to both nominal and continuous multivariate data (Zwick 2004). It is qualitatively 

different from continuous variable methods such as neural networks and regression techniques. 

Klir defined RA as a methodology that deals with the class of problems characterized by 

the relationship between an overall system, referred to here as the whole, and the multiple 

subsystems – mathematically, the projected relations – that comprise the structure of the system, 

referred to here as the parts (Klir 1985, Zwick 2001). The aim of the most standard uses of RA is 

to find the simplest set of parts from which a good approximation to the whole can be 

constructed (Klir 1985, Zwick 2004). The whole is an observed relation in data; the 

approximation to the whole from a set of parts is a calculated relation. The synthesis of the 

calculated relation is done using a maximum entropy formalism, which typically gives results 

equivalent to maximum likelihood calculations. 

The two versions of RA are information-theoretic, which applies to frequency and 

probability distributions, and set-theoretic, which applies to set-theoretic relations and mappings 

(Klir 1985, Krippendorff 1986, Zwick 2004). Both versions use the same Lattice of Structures 
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for the exploration of possible models. However, set-theoretic RA utilizes Hartley entropy, is 

non-statistical, and overlaps with logic design and machine learning methodologies (Zwick 

2004), while information-theoretic RA uses Shannon entropy and a Chi-squared distribution to 

assess models for statistical significance, similar to log-linear methods (Knoke & Burke 1980, 

Krippendorff 1986, Zwick 2004). This study uses information-theoretic RA to predict the Gini 

outcomes from the model parameters of the NetLogo agent-based model. 

OCCAM is a web-based RA software package for exploratory modeling (Zwick 2019). It 

can be used to analyze data sets involving nominal variables or continuous variables that are 

binned (discretized). It performs a beam search of the Lattice of Structures and summarizes this 

search with the three best models based on Bayesian Information Criterion (BIC), Akaike 

Information Criterion (AIC), and a third criterion that seeks the highest information model that is 

‘cumulatively’ statistically significant relative to independence and ‘incrementally’ significant 

for every step in some path from independence to the model. These statistical tests use the Chi-

square distribution and a user-specified p-value cutoff where 0.05 is the default value. Usually, a 

model is selected using one of these three criteria, and the model’s conditional distribution of the 

dependent variable (DV) – here the Gini coefficient – given the independent variables (IV) – 

here the ABS parameter settings – is used to predict the DV. In this study, models were first fit 

on training data, and then applied to test data. The goodness of a model’s prediction is quantified 

by the model’s reduction of uncertainty of the DV, given the model’s predicting IVs, and the 

percent correct (%C) in the test predictions. 

Three types of models were considered – models without loops, disjoint models, and all 

models (including those with loops) – and thus three model searches were performed. These 

model types can be illustrated as follows. Suppose one has three IVs, namely A, B, and C, and 



   
 

                  

                 

                  

                 

                  

                

                 

       

               

               

              

                  

                 

                

         

              

                

              

               

            

               

                 

9 

one DV, namely Z. A model without loops has the form IV:ABZ where the ‘IV’ relation in the 

model means a relation involving all the IVs, which here is ABC. The ABZ relation in this 

model says that there is an interaction effect between IVs A and B with the DV, Z. Models 

without loops pick out a single subset of predictors from among the IVs. In other context, this 

search is useful for feature selection, but in this study, all IVs are retained in all searches, so 

loopless models are of interest only for their simplicity. The results of a loopless model search 

where the predicting relation involves only one IV is given ahead in Table 4, which lists the 

individual IVs in order of predictive strength. 

An example of a model with loops is IV:ABZ:BCZ. This model has the usual relation 

among all the IVs, plus two predicting relations, ABZ and BCZ; each of these predicting 

relations involves a three-way interaction effect. Such models are invariably more predictive of a 

DV than loopless models, but they require iteration to be fitted. A disjoint model is a simple type 

of a model with loops. It can have multiple predicting relations, but these relations are disjoint in 

the predicting IVs. An example is IV:ABZ:CZ, in which no IV is present in both predicting 

relations. Disjoint models also require iteration to be fitted. 

An all-models search allows loops and overlaps of IVs in the predicting relations; it 

performs the best, i.e. it finds the most predictive models. A search restricted to disjoint models 

finds somewhat less predictive models, but the separation of predicting IVs into disjoint groups 

allows for simpler interpretation of the model. Finally, searches of loopless models find even less 

predictive models, but these models are maximally simple and easier to understand. 

Models are fit on training data and their generalizability is assessed on test data. The 

predictive strength of a model on the training data is indicated by its reduction of uncertainty, its 



   
 

               

               

                

               

  

  

            

               

              

             

              

               

                  

                 

                   

              

                   

           

 

10 

𝛥𝛥BIC value, and its percent correct on the training set (%Cdata). Its generalizing performance is 

assessed by percent correct on the test set (%Ctest). The statistical significance of the model 

relative to reference of independence, is given by a p-value (‘alpha’). The complexity of a model, 

relative to independence, is its 𝛥𝛥degrees of freedom. These measures are summarized in Table 2. 

(Table 2) 

2. Methodology 

The experiments conducted in this study using the NetLogo (v.5.3.1) Wealth Distribution 

Model represent a type of analysis that is similar to sensitivity analysis but more comprehensive. 

Wilensky and Rand describe the sensitivity analysis of an agent-based model within the context 

of model verification, validation, and replication (2015). The inquiry begins with the question, 

“Sensitive to what?”, and depends on whether the results being considered are qualitative or 

quantitative (Wilensky and Rand 2015). Here we are interested in the outcome of the Gini 

coefficient when the value tends to converge, so a stopping criteria was added to the end of the 

code which tells the simulation to stop when the difference between the last step and the mean 

Gini-Index value for the last 25 steps is less than 0.001 or one-tenth of a percent. We used the 

NetLogo Behavior Space tool to run the simulation over selected variable settings and collect 

data on the Gini-Index at the end of the run. This section describes the process in two phases: the 

NetLogo simulation data collection and processing, and the OCCAM (v.3.3.11) simulation 

analysis. 

https://v.3.3.11
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Data collection and processing 

The data collection approach for this experiment was adapted from Uri Wilensky and 

William Rand’s An Introduction to Agent-Based Modeling, specifically it used NetLogo’s 

BehaviorSpace tool to run the set of experiments to generate the large data set needed for the 

data mining application (Wilensky and Rand 2015). 

NetLogo Wealth Distribution Model Parameter Definitions and Variable Descriptions 

Of the NetLogo Wealth Distribution model variable names and definitions given in Table 

1, the first five population parameters listed are agent variables which determine behavior and 

interactions of free-roaming agents, while the last four are environmental variables that 

determine how patches behave and interact. This set-up gives nine model parameters as IV 

predictors of the Gini-coefficient DV. 

Both the time-step and the Gini coefficient are continuous variables, and must be binned 

or recoded into discrete categories before passing the data file to OCCAM for analysis. An Excel 

Macro tool designed for rebinning continuous data and formatting an OCCAM input file was 

used to recode the time-step into three bins, and the Gini coefficient into four equal interval bins 

where 1 corresponds to low values and 4 corresponds to high values of the Gini-Index 

outcome 1. 

NetLogo BehaviorSpace experimental design and data collection 

1 The Gini coefficient recoded is interpreted as lower values representing more equitable 
distributions of wealth and higher values representing greater inequity among the population. 
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A full factorial 2𝑘𝑘 statistical design was chosen to sample the model parameter space. 

Table 3 defines the parameter range and the experimental values chosen for the low and high 

states. The max-grain variable that is imbedded in the model code was given the baseline “as-is” 

model value of 50 as the low value, and a resource rich environment value of 500 for the high 

value. The simulation was done by setting the max-grain value in the code and running a full 29 

design twice. This whole experiment was replicated twenty times for the training data and five 

times for the test data. A different random number generator seed was used for each replication. 

(Table 3) 

For each run, BehaviorSpace was set to record the ending time-step of the run and the 

converged Gini-coefficient value. Since the stopping condition used a running average of 25 

time-steps for the Gini-coefficient, the earliest step the run would stop is 26 steps. Stopping time 

is not a model parameter or variable, but is used in this analysis as an IV to capture a possible 

relationship between the Gini-coefficient outcome and the number of steps before the 

equilibrium stopping condition is reached. This experimental design resulted in a state space size 

of 29 (for the first nine parameters in Table 3) x 3 (number of bins for the last Table 3 variable) x 

4 (number of bins for the DV) = 6144. The 20 training replicates and the 5 test replicates gave a 

total sample size of 10240 runs for training data and 2560 runs for test data. 

OCCAM analysis set-up 

OCCAM analysis consists of two steps: search and fit. The search step was conducted 

using the default OCCAM settings as follows: default search direction up; sort by 𝛥𝛥BIC (dBIC) 

during search; when searching look for larger 𝛥𝛥BIC values, use alpha threshold of 0.05; sort 
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report by descending information percentage, and include all reporting options for statistical 

calculations. A search width of 10 was selected for all searches for several reasons: to obtain the 

order in which single predictor models (for each variable) reduce uncertainty; to observe top 10 

predictors at each search level; and to try to avoid best model summary results that are search 

path dependent. The number of levels searched depended upon the search type: for loopless 

models, 12 levels (one more than the number of variables); disjoint models searched 20 levels; 

and all models search was set to 70 levels. These values were selected experimentally as to have 

conducted each search to either the top of the lattice, or high enough that the three best models 

selected were one or more levels under the top-most searched lattice level. 

The OCCAM search output provides a log of the report settings, a summary with selected 

statistical measures for top models at each search level, followed by a list of the Best Models by 

𝛥𝛥BIC, 𝛥𝛥AIC, and Incremental-p-value. The last of these criteria picks the highest information 

model whose difference from the reference is statistically significant and for which a path from 

the reference to the model exists where each incremental increase in complexity is also 

statistically significant (for some user-specified p-value cutoff). 

Since the input file contains both a training set and a test set of data, this list also includes 

a Best Model by %C(Test) with the warning that models should not be selected based on the 

percent correct in the test data. This fourth ‘best model’ just allows the user to see how close the 

three model selection criteria are to what would have been an optimal model for the test data if 

the DV values for the test had been known (which, for true test data is never the case). The Best 

Model by %C(Test) thus indicates for each of the three selection criteria whether it overfits or 

underfits the training data. These indications can be seen in Figures 1, 2, and 3. 
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The Fit step uses the 𝛥𝛥BIC best model from the all model search on the training data. 

This step displays the conditional probability distributions for this model on the training and test 

data, as well as the percent correct on training and test data for the model as a whole and for each 

relation in the model. It also shows for the model as a whole and for each relation how much 

their percent correct improves upon the reference model percent correct. Specifically, 

improvement varies from 0 to 1 and is given by 

%𝐶𝐶(𝐼𝐼𝐼𝐼𝑚𝑚𝐼𝐼𝑚𝑚) − %𝐶𝐶(𝐼𝐼𝐼𝐼𝑟𝑟𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑟𝑟𝐼𝐼)
𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 = 

%𝐶𝐶(ℎ𝑖𝑖𝑖𝑖ℎ𝐼𝐼𝑒𝑒𝐼𝐼𝐼𝐼𝐼𝐼𝑒𝑒𝑒𝑒𝑖𝑖𝑒𝑒𝑚𝑚𝐼𝐼) − %𝐶𝐶(𝐼𝐼𝐼𝐼𝑟𝑟𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑟𝑟𝐼𝐼) 

where %C(highest possible) is the percent correct for rules that would optimally predict the DV 

given the IV states, which is not 100% because the data is stochastic. For some IV states, the DV 

outcomes have some probability distribution, so perfect prediction is inherently impossible. The 

optimal rule set predicts, for each IV state, the most probable DV state. 

3. Results & Discussion 

Search Results 

We begn our analysis by using a loopless search to order each independent variable (IV) 

as a single predictor of the dependent variable (DV). By selecting the search width equal to the 

number of IVs, we can see the reduction of uncertainty in predicting the DV and the 

corresponding percent correct in predicting the training data and the test data, as shown in Table 

4. This orders the single IV predictors by their strength in reducing uncertainty; the strongest 

predictors are likely to show up in the search log for the disjoint and all-models searches. 

Specifically, in this case the top five predictors consistently show up in the best models at each 
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of the first several levels in every search mode that follows. For Table 4, and also Table 5 

(ahead), the asterisk next to an ID number indicates that the model has satisfied the IncrP 

requirement. 

(Table 4) 

The minimum age of the agents is the poorest single predictor of the Gini coefficient as it 

has a negative 𝛥𝛥BIC value, which means that its BIC scores was worse than the reference 

model. The population variable was the best single predictor, followed closely by the vision 

variable. The table also shows how uncertainty reduction and the percent correct predictions for 

training and test data are not linearly related measures of model fitness. We see from these 

results that Pop is the only single predictor that improved the percent correct on both training 

data and test data over the independence model. 

(Table 4) 

Table 5 gives the best models summaries from each search type: loopless, disjoint, and 

all-models. Similar to Table 4, the asterisk (*) next to the model ID indicates that the model 

satisfies the IncrP requirement. For each of the search types that follows, details from the search 

log summary showing models from each level in the lattice are plotted to show the trade off 

between complexity as 𝛥𝛥Degrees of Freedom (𝛥𝛥DF) and the reduction of uncertainty obtained 

by the model as the search moves up the lattice from the reference model. Figure 1 shows first 

the loopless model search lattice with 282 total models. Figure 2 shows the disjoint model search 

lattice with 1285 total models, and finally Figure 3 shows the all-model search lattice with 15429 

total models. 
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(Figure 1) 

(Figure 2) 

(Figure 3) 

(Table 5) 

In the loopless search, IVs appeared in the order shown in Table 4. The 𝛥𝛥AIC model and 

the %C(test) model were the same model (shown also in Table 5 as model ID 87) yielding 

52.85% reduction of uncertainty with 765 degrees of freedom. Defining a model that does worse 

than the %C(test) model and is more complex or less complex than this model as “overfit” or 

“underfit”, respectively, the IncrP model overfit and the 𝛥𝛥BIC model underfit. The 𝛥𝛥BIC model 

was more conservative by not including the Pbland term that showed up in the 𝛥𝛥AIC and 

%C(test) model. 

In the disjoint search, all three best models overfit the test data with the 𝛥𝛥BIC model 

being the closest to %C(test). All three best models from this search contained interaction terms 

with five or more variables, whereas the %C(test) model was much simpler with only a four-

way, a three-way, and two single term interactions with the DV. For the all-models search 𝛥𝛥AIC 

overfit, but IncrP and 𝛥𝛥BIC both came very close to the %C(test) model with 𝛥𝛥BIC being 

slightly closer than IncrP. 

In all OCCAM search results in Table 5, the best models include relations where 

interaction effects involve at least 2 IVs and in several relations, 3 or 4 IVs are present; this 
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illustrates the capacity of RA to detect complex interaction effects. Hypergraph representations 

of the all-models search result best model by 𝛥𝛥BIC are included in the Supplemental Figures, 

after the References section. 

Uncertainty reduction can be partitioned between the agent variables, environmental variables, 

and interactions between the two types of variables by providing only the variables of interest in 

the input file (by telling OCCAM to ignore the other variables in the data). Table 6 shows the 

results of this partitioning exercise. When all ten IVs are used the uncertainty reduction is 48.2%, 

whereas the agent variables provide 21.0% uncertainty reduction while the environmental 

variables provide 8.3% uncertainty reduction. The Time variable alone provides a fraction of one 

percent uncertainty reduction. What this shows is that while the agent variables have a 

considerably larger impact on uncertainty reduction than the environmental variables, there 

indeed is a substantial agent-environment interaction effect in reducing uncertainty for the Gini 

outcome. This is described in more specific detail in the Fit Analysis Results section that 

follows. 

(Table 6) 

Fit Analysis Results 

The best model by 𝛥𝛥BIC from the all-models search (see Table 5) is: 

IV: PopMetabVisGini: PopMetabGrrateGini: PopMetabPblandMaxgrGini: 
PopVisMaxageGini: PopVisGrintGrrateGini: PopVisPblandGini: 
PopVisMaxgrGini: PopGrratePblandGini: PopGrrateMaxgrGini: 
MetabVisGrintGini: MetabVisGrrateGini: MetabVisPblandGini: 
MetabGrintGrrateGini: MaxageMaxgrGini: GrintPblandGini: TimeGini. 
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The OCCAM Fit results summarize (for each relation) the frequencies for each IV state, 

the calculated conditional probabilities for the model, and the selected prediction rule. 

Additionally, the prediction rule gives the expected DV state along with percent and number 

correct on the data and the associated p-values. The Fit summary for test data includes a 

frequency table and percent correct based on the training data prediction rule, as well as a 

summary of the relation’s performance on test data with the percent improvement by model 

based on the optimal prediction rule case for the test data. The OCCAM Fit analysis thus 

identifies which relations (which interaction effects) are the most important. 

The best model in terms of 𝛥𝛥BIC from the all-models search contains the IV relation and 

sixteen model predicting relations. These predicting relations are listed in Table 7, starting on the 

second line, in order of percent correct on test data, %C(test). The first line of the table shows, 

for comparison, the percent correct of a model that is the data, namely that includes all ten IVs. 

Using all the IVs allows us to correctly predict the test data DV only 60% of the time; that is, the 

IV-DV relationship in the data is stochastic, not deterministic. Note that within the 16 relations, 

there are only two relations where all IV predictors are the agent variables and only one relation 

where they are all environment parameters; all the other thirteen relations involve interaction 

effects between one or more environmental and one or more agent parameters. All of the 

deviations of the conditional DV probability distribution given the composite IV states from both 

a uniform DV distribution and the marginal DV probabilities are statistically significant at the 

0.00 level. Table 7 summarizes, for each relation, its percent correct and its percent 
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improvement2 (derived from equation shown on page 8) from the independence model baseline. 

A high %Improvement means that the prediction rule of the relation gotten from the training data 

comes close to the best possible prediction rule, namely the rule that would have been optimal 

for the test data. %Improvement does not have a simple relationship with %C(test) for the 

following reason. %C(test) is for prediction rules applied to the test data, where these rules are 

obtained from the probability distribution of the relation fitted to the training data, while 

%C(highest possible) is for prediction rules applied to the test data obtained from the probability 

distribution of the relation fitted to the test data. A relation, fitted as it should be on the training 

data, might predict very well, but nowhere near as well as if it had been fitted – illegitimately – 

on the test data itself. 

(Table 7) 

The relations are also summarized in Table 8 by frequency of predictors, and the last 

column gives the number of variables in each relation (listed in same order as Table 7) and the 

bottom row gives the number of relations containing each predictor variable (listed in order of 

single predictor strength, Table 4). The top two single predictors, namely Pop and Vis show up 

as the most frequent predictors in the all-models 𝛥𝛥BIC model relations. While the metabolism 

variable, Metab, was not in the top 5 of single predictor models, it did show up as the third most 

frequently occurring variable in the model relations which reveals its importance in terms of 

interaction effects. 

(Table 8) 

%𝐶𝐶(𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐)−%𝐶𝐶(𝑟𝑟𝑐𝑐𝑟𝑟𝑐𝑐𝑟𝑟𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐)2 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 = 
%𝐶𝐶(ℎ𝑖𝑖𝑖𝑖ℎ𝑐𝑐𝑒𝑒𝑐𝑐𝑐𝑐𝑐𝑐𝑒𝑒𝑒𝑒𝑖𝑖𝑒𝑒𝑒𝑒𝑐𝑐)−%𝐶𝐶(𝑟𝑟𝑐𝑐𝑟𝑟𝑐𝑐𝑟𝑟𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐) 
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Additionally, the OCCAM Fit output provides, for each relation, the expected DV state 

for the various IV composite states. Here we will only discuss the Fit output of one of the 16 

relations in the 𝛥𝛥BIC model, which is summarized in Table 9 and illustrated in Figure 4. The 

most predictive (highest %correct in test data) relation, PopVisMaxgr, is a three way interaction 

between the population size, the potential vision range for the agents, and the environmental max 

grain parameter. OCCAM provides for all relations, the conditional probability of all Gini states 

for each IV state. Table 9 shows part of this output. The first three columns specify the IV state. 

The “Gini=” columns are percentages of the frequencies for each IV state with these outcomes, 

where Gini=1 is the most equitable state and Gini=4 is the most inequitable state. The rule is a 

prediction rule based on the highest percentage DV outcome given the IV state; the probability 

of this DV state is shaded. Note that for two IVs states (the third and fourth rows of the table), 

the probability of the next lower Gini state is only slightly lower than the probability of the most 

likely Gini state; this is shown in the table with lighter shading, and the prediction rule indicates 

this alternative Gini state in parenthesis. Ratio_G1 and Ratio_G4 are the ratios of the 

probabilities of the predicted DV outcome for a given IV state relative to the marginal 

probabilities of Gini=1 and Gini=4. Ratio > 1.0 means increased probability of occurrence and 

Ratio < 1.0 mean decreased probability of occurrence. Red is used to indicate a tendency towards 

inequity and blue is used to indicate a tendency toward more equitable Gini states. Extreme cases 

are bolded. For each IV state, the conditional probability for the most probable DV state – which 

yields the prediction rule -- is shaded; states with probabilities close to the rule state are shaded 

more lightly. The frequency of every IV state is 1280; the total sample size is thus 10240. 

(Table 9) 
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For example, the IV state (Pop, Vis, Maxgr) = (100, 15, 50) has rule = 2, which means that 

Gini=2 is predicted for this state, although Gini=1 is only slightly less probable. For this IV state, 

the probability of Gini=1 is .3383, 2.04 times the marginal p(Gini=1) = .1656, the probability of 

a highly equitable outcome. Also, for this IV state, the probability of Gini=4 is .0773, 0.49 times 

less likely than the marginal p(Gini=4) = .1584, the probability of a highly inequitable outcome. 

The table also shows that the IV state (1000, 15, 500) is neither more nor less likely to produce 

the most equitable outcome (Ratio_G1 = 1), but is extremely unlikely (Ratio_G4 = .02) to 

produce a highly inequitable outcome. 

Here we can see that when the population is small (100) and vision is limited (1), and the 

environment is resource rich (500) the most inequitable Gini outcome is 4.24 times as likely to 

occur. Conversely, with a small population (100) with greater range of vision (15) and the 

baseline resource environment (50), the most equitable Gini=1 outcome is twice (2.04) as likely 

to occur, although the prediction rule is for Gini=2. Overall we see an increased probability of a 

more equitable Gini outcome (all Ratio_G1 values ≥ 1) when the population has a higher vision 

(Vis = 15); the values are 2.04, 1.62, 1.46, and 1.00. The prediction rules of the table can be 

summarized in a decision tree diagram in Figure 4. 

(Figure 4) 

4. Conclusions 

Summary of Findings 

The Introduction of this paper posed the following questions “Can a machine learning 

algorithm detect relations between the model parameters and the model output that augment our 
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understanding of the model? Specifically, can such an algorithm reveal the degree to which the 

parameters and their interactions predict the model output?” We have shown that the answers to 

these questions are “Yes. RA tells us how predictive are (i) single parameters, (ii) multi-

parameter relations, and (iii) multi-relation models.” The following summarizes the RA 

findings: 

1) At its simplest (main effects) level, RA quantifies the degree of dependence of the model 

output upon each of the ten individual parameters in the model. It does so using an information 

theoretic measure (reduction of uncertainty) and allied measures (e.g., the Bayesian information 

criterion) that are more informative than more general %correct measure of prediction accuracy. 

The most predictive parameter, Pop, reduces the output uncertainty by 6.4% (Table 4). This may 

seem small, but %uncertainty reduction is very different from %variance explained because of 

the logarithm term in the expression for uncertainty; an uncertainty reduction of as little as 8% 

can correspond in some cases to the odds of two possible outcomes changing as much as from 

1:1 to 2:1 (Zwick 2020). The second most predictive parameter, almost as predictive as the first, 

is the vision range parameter, Vis, which reduces the output uncertainty by 6.3%. These two 

parameters have considerably greater predictive power than the other eight parameters. There are 

five agent parameters, four environment parameters, and time, a neutral parameter. Both of the 

top two predictors are agent parameters. 

2) The full RA analysis (Table 5) yields a best model that reduces the output uncertainty by 

48.2%. Even though this model was selected using BIC, the most conservative model selection 

criterion available in OCCAM, the model is very complex, consisting of 16 predictive relations, 

which when fused together yield the 48.2% overall uncertainty reduction. 15 of these relations 

involve interaction effects where at least two parameters predict the output, while most relations 
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involve three predicting parameters (the 16th relation has time as a sole predictor). Of these 15 

relations, 2 involve only agent parameters, 1 involves only environment parameters, while the 

remaining 12 involve both agent and environment parameters (Table 5, Table 7, Table 8). So the 

best BIC model is complex in the dependence of the output on the parameters in three different 

ways: (a) the model consists in multiple predictive relations, (b) nearly all these relations involve 

interaction effects of two or more parameters with the Gini output, and (c) most interaction 

effects involve both agent parameters and environment parameters. The complexity of the model 

can also be visualized in the hypergraph displays shown in the Supplemental Figures. 

3) While there are many strong agent-environment parameter interactions, still the agent 

parameters taken all together are more predictive (21.0% uncertainty reduction) than the 

environment parameters taken all together (8.3% uncertainty reduction) (Table 6). 

4) Just as in the simplest RA analysis one can rank individual parameters by their predictive 

efficacy, one can also rank the 16 relations in the best BIC model by their predictive efficacy 

(Table 7). Not surprisingly, the four most predictive relations all involve the top two predicting 

parameters, Pop and Vis, which are supplemented by one additional parameter, either an agent 

parameter or an environmental parameter. 

5) RA analysis also tells us what the predictions actually are for all possible states of 

individual parameters, multi-parameter relations, or multi-relation models. However, there are 

too many states for the 10 parameters in the BIC model to show predictions for all of them, so 

Table 9 shows the predictions for states of only the single most predictive relation in the model, 

namely PopVisMaxgrGini. Predictions are expressed as conditional probability distributions. 

Table 9 also shows how many times more likely the predicted Gini is than Gini=1, the lowest 
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income inequality, and Gini=4, the highest income inequality. Figure 4 summarizes the 

conditional probabilities in an easy-to-grasp decision tree. 

OCCAM thus provides a detailed analysis of the relations between the parameters in the 

NetLogo model and indicates which parameters and interactions among parameters are 

influential in determining the emergent properties of the simulation. Such detailed exploration of 

the parameter space is not only interesting as a simulation post-processing. It is also interesting 

in providing new perspectives to the simulation designer, and it can additionally be useful for 

determining the extent to which an implemented model corresponds to a conceptual model and 

has realistic outputs. The potential use of OCCAM as an exploratory tool for NetLogo and other 

ABS packages also offers a promising mode of exploring other model validation procedures 

including microvalidation, macrovalidation, and empirical validation as described by Wilensky 

and Rand (Wilensky and Rand 2015). 

Discussion and next steps 

This sensitivity analysis of Wilensky’s Wealth Distribution Model is intended to be portable 

to other simulation models, thereby adding another model analysis tool to the modeler’s toolkit. 

Another approach could have used the Behavior Search feature in NetLogo, however the output 

of that process would require a considerable degree of statistical analysis and interpretation. The 

approach demonstrated here directly provides the interpretable results for the modeler. 

Additionally, OCCAM is well suited for studying different agent-based models for 

equivalence. Two models are considered to be approximately equivalent if both produce similar 

distributions of results that cannot be distinguished statistically or the results of the two models 

produce the same internal relationships (Axtell, et al. 1996). These two categories of equivalence 
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could be tested simultaneously and very quickly using the OCCAM comparison feature which 

allows the user to perform and compare the same search sequence on two data files. 

An additional OCCAM capability that can provide more detailed examination of an 

agent-based simulation model is the state-based search and state-based fit, in which state-based 

RA considers many more models using a finer granularity of the Lattice of Structures, where the 

the number of structures in this lattice is affected by the cardinalities of the variables (Zwick 

2019). 

Further investigation on the roles of fitness or wealth inheritance and population carrying 

capacity under resource redistribution (trading and markets) by adding these features to the 

model and testing the sensitivity of the Gini coefficient to changes in such features could lead to 

new insights regarding wealth distributions and sustainability in simple economies. Additionally, 

altruistic rules could be given to some agents in order to study how wealth might be redistributed 

without the coordinating role of a central authority. 

Robert Axelrod stated, “Perhaps the most useful outcome of a simulation model is to 

provide new ways of thinking about old problems” (1996). Since the inception of computer 

simulation models like agent-based models, there have been challenges in testing the sensitivity 

of model outcomes to initial conditions and parameter settings (Epstein and Axtell (1996). Data-

mining and machine learning applications offer a new approach for exploring the relations 

between the model parameters and the model outcomes. Machine learning analyses such as this 

expands the modelers’ options in the verification and validation process of building and testing 

agent-based simulation models, and provide insight into how macro system properties, such as 

wealth inequality, emerge from micro agent-environment interactions. 
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Table 1: NetLogo Wealth Distribution model variables with descriptions 

Variable Name Definition and function 
Agent parameters 
num-people 

metabolism-max 

max-vision 

life-expectancy-min 
life-expectancy-max 

Environment parameters 
grain-growth-interval 

num-grain-grown 
percent-best-land 

max-grain 

Total size of the population. This number does not represent a maximum population 
size, but rather it is a fixed number of individuals for each simulation. The population 
size is thus static; it only changes when the parameter value (using the NetLogo 
interface slider) is changed. 
Each individual at birth is assigned a number that determines how much grain at each 
time step is required to stay alive. The maximum number is set by the slider, but each 
agent is assigned a random number in the range [1, max] for a metabolism value. 
Similar to metabolism-max, this is a set-point for the maximum vision level, where 
each individual at birth is assigned a random number in the range [1, max] that 
determines how far around itself it can see in order to find grain and execute the 
decision rule to move. 
New individual agents in the population will live at least this many time steps. 
Individuals live at most this many time steps. 

How long it takes for grain to grow back once a patch’s resources have been depleted. 
Low values are associated with more abundant resources because it takes fewer time 
steps for the patch to recover. 
How much grain is grown at each time step. 
The initial setting for the density of patches that are seeded with the maximum amount 
of grain at time = 0. 
Global variable in the model code tab, default value set to 50. This variable determines 
the maximum amount of grain any patch can hold at any time during the simulation. 
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Table 2: Definitions for OCCAM output search measures (Zwick 2019) 

OCCAM measure 
search ID number 

model specification 

abbreviation 
ID 

MODEL 

description 
unique model identifier assigned during search 

specified model where "IV" is a relation with all the independent 
variables in it 

𝛥𝛥-Degrees of Freedom 𝛥𝛥DF difference in degrees of freedom between the model and the 
reference (the independent model); for the reference, this delta is 0 

uncertainty reduction %𝛥𝛥H(DV) percent reduction in uncertainty of the dependent variable for the 
model 

𝛥𝛥Bayesian Information 
Criterion 

𝛥𝛥BIC difference of the values for Bayesian Information Criterion between 
the reference and the model 

%correct training data 

percent coverage 

%C(train) 

%cover 

performance of the model in predicting the training data 

portion of the state space of predictors in the model that is present in 
the data 

%correct test data %C(test) performance of the model in predicting the test data 
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Table 3: NetLogo BehaviorSpace Experimental Design Settings 
NetLogo Name OCCAM abbreviation low high 
num-people Pop 100 1000 
metabolism-max Metab 1 25 
max-vision Vis 1 15 
life-expectancy-min MinAge 1 15 
life-expectancy-max MaxAge 50 100 
grain-growth-interval GrInt 1 10 
num-grain-grown GrRate 1 10 
percent-best-land PBLand 5 25 
max-grain Maxgr 50 500 
step Time 26 determined in BehaviorSpace 
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Table 4: Summary of each variable as a single predictor of the Gini coefficient 
outcome for the NetLogo wealth distribution model. (The model’s predictive 
relation is listed; its ‘IV’ relation is omitted.) 

ID Model ΔDF Alpha %𝛥𝛥H(DV) 𝛥𝛥BIC %C(train) %C(test) 
11* PopGini 3 0.000 6.376 1658.4 46.1 40.5 
10* VisGini 3 0.000 6.280 1632.9 44.1 38.4 
9* GrrateGini 3 0.000 2.939 749.3 44.1 38.4 
8* GrintGini 3 0.000 2.023 507.2 44.1 38.4 
7* MaxageGini 3 0.000 1.930 482.5 44.1 38.4 
6* MetabGini 3 0.000 1.897 473.8 44.1 38.4 
5* MaxgrGini 3 0.000 1.771 440.5 44.1 38.4 
4* PblandGini 3 0.000 0.516 108.6 44.1 38.4 
3* TimeGini 6 0.000 0.454 64.5 44.1 38.4 
2 MinageGini 3 0.926 0.002 -27.3 44.1 38.4 
1* Gini 0 1.000 0.000 0.0 44.1 38.4 
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Table 5: Best Model Summaries from OCCAM Search Results (IV relations are deleted) 

Loopless Models Search 
% ΔH ΔBI %C %C 

ID Model ΔDF (DV) C train test 
ΔBIC 78* PopMetabVisMaxageGrintGrrateMaxgrGini 381 46.2 8688 66.0 55.5 
ΔAIC 87* PopMetabVisMaxageGrintGrratePblandMaxgrGini 765 52.9 6912 70.1 60.0 
IncrP 89* PopMetabVisMaxageGrintGrratePblandMaxgrTimeGini 2301 57.3 -6103 72.5 59.1 
%C(test) 87* PopMetabVisMaxageGrintGrratePblandMaxgrGini 765 52.9 6912 70.1 60.0 

Disjoint Models Search 
% ΔH %C %C 

ID Model ΔDF (DV) ΔBIC train test 
ΔBIC 86* PopGrintGini:MetabGini:VisMaxgrGini:MaxageGini:GrrateGini 27 30.5 7819 59.3 52.7 
ΔAIC 84* PopGrrateGini:MetabVisGini:MaxageGini:GrintGini:MaxgrGini 27 30.5 7804 60.6 54.7 
IncrP 82* PopGini:MetabVisGini:MaxageGini:GrintGini:GrrateGini:Pbland 27 30.4 7789 61.3 54.2 

Gini:MaxgrGini 
%C(test) 79* PopGrintGrrateGini:VisGini:MaxageGini:MaxgrGini 30 28.9 7369 59.0 52.4 

All Models Search 
% ΔH %C %C 

ID Model ΔDF (DV) ΔBIC train test 
ΔBIC 531 PopMetabVisGini:PopMetabGrrateGini:PopMetabPblandMaxgrGini 162 48.2 11248 68.2 60.3 

:PopVisMaxageGini:PopVisGrintGrrateGini:PopVisPblandGini:Pop 
VisMaxgrGini:PopGrratePblandGini:PopGrrateMaxgrGini:MetabVi 
sGrintGini:MetabVisGrrateGini:MetabVisPblandGini:MetabGrintGr 
rateGini:MaxageMaxgrGini:GrintPblandGini:TimeGini 

ΔAIC 701 PopMetabVisGini:PopMetabGrratePblandGini:PopMetabPblandMax 213 49.2 11046 68.5 60.3 
grGini:PopVisMaxageGini:PopVisGrintGrrateGini:PopVisPblandM 
axgrGini:PopGrratePblandMaxgrGini:MetabVisGrintPblandGini:Me 
tabVisGrrateGini:MetabVisPblandMaxgrGini:MetabGrintGrrateGini 
:VisMaxageMaxgrGini:VisGrratePblandMaxgrGini:MaxagePbland 
MaxgrGini:TimeGini 

IncrP 530 PopMetabVisGini:PopMetabGrrateGini:PopMetabPblandMaxgrGini 162 48.1 11226 67.9 60.1 
* :PopVisMaxageGini:PopVisGrintGrrateGini:PopVisPblandMaxgrGi 

ni:PopGrrateMaxgrGini:MetabVisGrintGini:MetabVisGrrateGini:M 
etabVisPblandGini:MetabGrintGrrateGini:MaxageMaxgrGini:Grint 
PblandGini:TimeGini 

%C 551 PopMetabVisGini:PopMetabGrrateGini:PopMetabPblandMaxgrGini 168 48.4 11239 68.4 60.7 
(test) :PopVisMaxageGini:PopVisGrintGrrateGini:PopVisPblandMaxgrGi 

ni:PopGrratePblandGini:PopGrrateMaxgrGini:MetabVisGrintGini: 
MetabVisGrrateGini:MetabVisPblandGini:MetabGrintGrrateGini:M 
axageMaxgrGini:GrintPblandGini:TimeGini 
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Table 6: Partitioning Uncertainty Reduction by Variable Type 
description IV count ΔDF %𝛥𝛥H(DV) ΔBIC %C(train) %C(test) 
All variables 10 162 48.2 68.2 60.3 
Agent IVs (Pop, Metab, Vis, 5 33 21.0 5258 54.5 47.9 
Minage, Maxage) 
Agent IVs omitting Pop 4 15 12.3 46.5 40.6 
(Metab, Vis, Minage, 
Maxage) 
Environment IVs (Grit, 4 27 8.3 1890 46.7 38.7 
Grrate, Pbland, Maxgr) 
Other IV (Time) 1 6 0.5 65 47.5 45.6 
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Table 7: Percent Correct by Model for each Relation and model improvement in best all-
models ΔBIC model 
Relation 
PopMetabVisMinageMaxageGrintGrratePblandMaxgrTime 
PopVisMaxgrGini 
PopMetabVisGini  (all agent predictors) 
PopVisMaxageGini (all agent predictors) 
PopVisPblandGini 
PopGrrateMaxgrGini 
PopVisGrintGrrateGini 
PopMetabPblandMaxgrGini 
MetabVisGrrateGini 
MetabVisPblandGini 
MetabVisGrintGini 
PopMetabGrrateGini 
PopGrratePblandGini 
MetabGrintGrrateGini 
MaxageMaxgrGini 
GrintPblandGini  (all environmental predictors) 
TimeGini 

%C(test) %Improvement 
60 56 
50 82 
49 94 
49 100 
49 97 
47 97 
46 61 
46 62 
42 63 
41 56 
41 45 
41 41 
40 26 
38 3 
38 0 
38 0 
38 0 
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Table 8: Table of variables present in relations of best all-models ΔBIC model 

Relation 

Po
p

V
is

G
rr

at
e

G
rin

t

M
ax

ag
e

M
et

ab

M
ax

gr

Pb
la

nd

Ti
m

e

N
um

be
r o

f 
va

ria
bl

es
 in

re
la

tio
n 

PopMetabVisGini 1 1 1 3 
PopMetabGrrateGini 1 1 1 3 
PopMetabPblandMaxgrGini 1 1 1 1 4 
PopVisMaxageGini 1 1 1 3 
PopVisGrintGrrateGini 1 1 1 1 4 
PopVisPblandGini 1 1 1 3 
PopVisMaxgrGini 1 1 1 3 
PopGrratePblandGini 1 1 1 3 
PopGrrateMaxgrGini 1 1 1 3 
MetabVisGrintGini 1 1 1 3 
MetabVisGrrateGini 1 1 1 3 
MetabVisPblandGini 1 1 1 3 
MetabGrintGrrateGini 1 1 1 3 
MaxageMaxgrGini 1 1 2 
GrintPblandGini 1 1 2 
TimeGini 1 1 
Variable Frequency 9 8 6 4 2 7 4 5 1 
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Table 9: OCCAM Fit Output example of most predictive relation within the best all-
models ΔBIC model: conditional probabilities for DV states given IV states 

Pop 
IV state 

Vis Maxgr Gini=1 
p(DV|IV) a
Gini=2 

s percentage 
Gini=3 Gini=4 

predic
rule 

tion & risk ra
Ratio_G1 

tios 
Ratio_G4 

100 1 50 15.08 23.75 36.8 24.38 3 0.91 1.54 
100 1 500 3.59 8.52 20.78 67.11 4 0.22 4.24 
100 15 50 33.83 34.14 24.3 7.73 2(1) 2.04 0.49 
100 15 500 26.88 35.16 35.7 2.27 3(2) 1.62 0.14 
1000 1 50 8.67 81.8 8.13 1.41 2 0.52 0.09 
1000 1 500 3.75 47.58 28.75 19.92 2 0.23 1.26 
1000 15 50 24.22 57.11 15.08 3.59 2 1.46 0.23 
1000 15 500 16.48 64.61 18.59 0.31 2 1 0.02 

Marginal values 16.56 44.08 23.52 15.84 2 
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List of Figures 

Figure 1: OCCAM Loopless Search results with ΔDF plotted on log10 scale on X-axis and 

Percent Uncertainty Reduction %ΔH(DV) on Y-axis 

Figure 2: OCCAM Disjoint Search results with ΔDF plotted on log10 scale on X-axis and 

Percent Uncertainty Reduction %ΔH(DV) on Y-axis 

Figure 3: OCCAM All-Models Search results with ΔDF plotted on log10 scale on X-axis and 

Percent Uncertainty Reduction %ΔH(DV) on Y-axis 

Figure 4: Decision Tree indicating predicted DV state for the most predictive Fit relation 

(PopVisMaxgr) from the best model by ΔBIC results of the OCCAM all-models search 
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Figure 1: OCCAM Loopless Search results with ΔDF plotted on log10 scale on X-axis and 

Percent Uncertainty Reduction %ΔH(DV) on Y-axis 
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Figure 2: OCCAM Disjoint Search results with ΔDF plotted on log10 scale on X-axis and 

Percent Uncertainty Reduction %ΔH(DV) on Y-axis 
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Figure 3: OCCAM All-Models Search results with ΔDF plotted on log10 scale on X-axis and 

Percent Uncertainty Reduction %ΔH(DV) on Y-axis 
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Figure 4: Decision Tree indicating predicted DV state for the most predictive Fit relation 

(PopVisMaxGr) from the best model by ΔBIC results of the OCCAM all-models search. For 

(Pop, Vis) = (100, 15), a second predicted state is shown in parentheses; this state is only slightly 

less probable than the state not in parentheses. 
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Supplemental Figures 

Hypergraphs of all-models search result best 𝜟𝜟BIC model 

𝛥𝛥BIC Model 
IV:PopMetabVisGini:PopMetabGrrateGini:PopMetabPblandMaxgrGini:PopVisMaxageGini:Po 
pVisGrintGrrateGini:PopVisPblandGini:PopVisMaxgrGini:PopGrratePblandGini:PopGrrateMa 
xgrGini:MetabVisGrintGini:MetabVisGrrateGini:MetabVisPblandGini:MetabGrintGrrateGini: 
MaxageMaxgrGini:GrintPblandGini:TimeGini 

Sugiyama layout 
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Kamada-Kawai layout 
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Fruchterman-Reingold layout 
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