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ABSTRACT 
We address the problem of test set generation and test set 
reduction, to first detect, and later localize faults occurring in 
reversible circuits. Reversible Computation has high promise of 
low power consumption.   Some new fault models are first 
presented here. An explanation of the new fault models is made 
based on a physical realization representing the state of the art in 
the reversible CMOS circuit technology.  Evidence is then 
presented showing that the fault models presented in the current 
literature are not adequate for existing realizations of reversible 
logic such as CMOS.  We designed a ATPG software package 
with a friendly graphical user interface to aid experimentation 
with various fault models.  The purpose of this work is to give an 
overview of our findings and pave the way for a later paper fully 
addressing the CMOS fault models.  The key experimental results 
are presented.   

Categories and Subject Descriptors 
D.3.3 [Verification]: Design validation and verification, design 
experiences, emerging technology. 

General Terms 
Algorithms, Reliability, Verification 

Keywords 
Test Set Generation, Reversible Computing, CMOS Technology 

1. INTRODUCTION 
 
      According to Landauer's principle [1], it is possible to 
construct a computer that dissipates a subjectively small amount 
of heat. A necessary condition is that no information is lost in the 
process of propagating logic values from input to output of the 
circuit.  Therefore, logical reversibility represents an important 
and necessary subclass of computational apparatus that has, in 
recent times, gained much interest from the EDA community; 
with the preliminary results reported in [2].  For an introduction 
on reversible circuits we refer the reader to Markov [3][5]. 
   Various reversible technologies have been proposed, such as 
Optical [5, p. 287], Quantum [6] CMOS [4], Electrostatic[22], and 
other switched technologies.  Based on the current fabrication 
capabilities the CMOS realization offers the most immediate 
implementation prospects, although large power reduction will be 
gained only in future generation technologies.  For example, a 5 

bit carry-look-ahead adder has been physically built with results 
presented in [7].   Although reversible circuits in CMOS 
technologies do not offer significant losses in power consumption, 
the promise of low power consumption still makes them very 
intriguing [8][9][10][11].  Surprisingly little work has been done 
however to address the errors present in reversible technologies. 
The main published results are in [12][13][14][23].  In [12] a 
study is presented that extends the classical stuck-at fault model 
to reversible circuits.  In [14] the missing gate fault model is 
presented.  Here we present a comparison of these models, along 
with two new fault models; one to complement a previous model 
and another that addresses the needs of actual technology.  We 
relate these new fault models to logical testing of the dual line 
switched technologies specifically CMOS technology presented 
by De Vos in [4] and [7]. It has to be pointed out that these 
circuits have been fabricated and proven operational in contrast to 
many other reversible circuit proposals that were adiabatic-
reversible rather than physically reversible rather than physically 
reversible (with no backward mapping) or pure theoretical 
speculations. We simulated the De Vos circuits using Cadence 
tools and proved that they operate both from input to output and 
output to input, being thus truly physically and not only logically 
reversible. We believe that the current literature on reversible test 
set generation [12][14], does not include a completely correct 
fault model, because this model is not good for both quantum and 
CMOS realizations of reversible circuits. Below, we show 
realizations of reversible logic circuits in the existing CMOS 
technology, which demonstrate that the “stuck-at” and “missing 
gate fault” fault models are insufficient.  It should be mentioned 
that we assume that the switching layout is switch minimized as 
shown in [4] and therefore path minimized within the gate.  
Previous research has showed that the fault models from [12],[14] 
are inadequate also for quantum circuits. 
   The first thing that must be mentioned about De Vos reversible 
CMOS circuits is that they have no clock, no ground and no VDD 
on chip, thus the classical stuck-at concept is not correct for them.  
Every input, intermediate and output logic variable is repeated 
twice, as a signal and its negation. To explain the functionality of 
reversible CMOS realizations, consider Figure 1 (a.), where a 
signal is represented by both a high and a low component, such 
that a high signal is [1, 0] and a low signal is value [0, 1].  Gates 
in this technology flip these signals back and forth, never losing 
information.  However, a stuck at fault internal to the CMOS 
CNOT gate itself can result in output states such as [0, 0], [1, 
1],[Z, Z] and float. The logical test set of the circuit is to set f to 
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value high, toggle the input and then set f to low and allow a 
signal to pass un-changed.  This is different than in classical logic 
circuits discussed by Reddy and past researchers in the field  
[19,20,21] where every (two-input) EXOR gate in the circuit 
should have 4 tests (00,01,10,11). The EXOR gate here is not a 
general function that can fail to all functions other than XNOR 
[19], but one particular realization built using CMOS switches.  
The fault model is that each switch can be stuck-short (thus 
removing the literal), or stuck-open (thus removing the entire 
connection path from input to output. In Figure 1 (b.) we present a 
model that is conceptually equivalent to Figure 1 (a.).  We denote 
the complement line of Ak as Ak’ and the corresponding output as 
Pk and Pk’, respectively.   To logically test this circuit we perform 
the same set of tests as we did for the circuit from Figure 1 (a).  
Automatic Test Equipment (ATE) must distinguish correct output 
values from incorrect output values, so for the circuit given in 
Figure 1 (a.) any time a value of [0, 0], [1, 1], [Z,Z] or float 
appears on the output there is a fault in the circuit.  To localize we 
are thus propagating the incorrect states [0,0] and [1,1] through 
the gold circuit, analogously as path propagation algorithms do 
with values like stuck-at-0 and stuck-at-1. 

 
Figure 1 (a.) CNOT GATE, its CMOS realization: The switches are 
constructed with CMOS transistors; each switch is composed of one 
n-MOS transistor in parallel with one p-MOS transistor (forming 
together a transmission gate).  When f is high, the Ak is routed to Pk’ 
and Ak’ is routed to Pk.  When f is logic 0 the output is Ak routes to Pk 
while Ak’ routes to Pk.  An alternate way to describe this circuit is Pk 
= f ⊕  Ak, where ⊕  represents EXOR. 

 
Figure 1 (b.) CNOT GATE: An equivalent to the circuit shown in 
Figure 1 (a.).  This represents the circuit at the level known as the 
quantum circuits model or program abstraction.  When f is high, the 
output of the circuit is inverted.  When f is logic 0 the output is Pk = 
Ak.  An alternate way to describe this circuit is <Pk, Pk‘> = <f ⊕  Ak , 
f ⊕ Ak’>, where ⊕  represents EXOR. 

 

2. Fault Models 
   Recently two fault models for reversible circuits have been 
introduced, “missing gate” [14], and “stuck-at” [12].  To test for 
missing gates, k control lines must be set to logic 1.  In many 
cases, full coverage can result in one single test.  In [14], in 
addition to an ATPG method a DFT method is presented in [14] 

to help reach this lower bound.  Using the missing gate fault 
model for the circuit shown in Figure 2 (a) we apply input test 
vector (1,1,1) for full coverage.  However, this does not account 
for a control line that is always activated, or from Figure 1 (a.) a 
switch f that is stuck short.   

 
Figure 2 (a.) CCNOT Gate Under Test:  An input test vector of (1,0,1) 
is followed by input test vector of (0,1,0), this test set is complete for 
the stuck at model, but fails to ‘turn on’ the CCNOT gate.   

The “stuck-at” model in many circuits can be covered in two 
tests, leaving all gates never activated.  For this to happen all 
CCNOT gates must have k > 1 control lines and set these lines in 
such a way that the inverted values of the control lines still do not 
turn on the gate.  Assume a test set for stuck-at model that covers 
all of the faults in two tests,  for every vector from this set all 
control bits when applied as well when inverted do not turn the 
gate on.  Please look now at Figure 2 (a.) and Figure 2 (b.) for 
examples of complete equivalent test sets for the stuck-at model.  
Consider Figure 2 (a.) again so we can explain the structure of a 
CCNOT gate.  For the CCNOT gate we simply create two sets of 
duplicate logical paths, one pair of one g switch in series with 
switch f to create two conjunctive paths (top and bottom), and 
another pair with one g’ switch in parallel with one f’ switch 
forming disjunctive paths (left and right).  We must have a logical 
AND of g and f to swap the target Ak, but the test set from both 
Figure 2 (a.) and Figure 2 (b.) misses a critical path within the 
gate. Thus the stuck-at model proposed in [12] as well in [23], are 
both incomplete for CMOS technology.  In other words, the logic 
value Ak [1,0] is never swapped to its inverse based on the path 
the input tests (1,0,1) and (0,1,0) take.  This means that the stuck-
at model is not complete for CMOS technology.   

 
Figure 2 (b.) Missing CCNOT Gate Under Test Containing Fault:  An 
input test vector of (1,0,1) is followed by input test vector of (0,1,0), this 
test set is complete for the stuck at model.   

   The other previous fault model under investigation the “missing 
gate” fault model (MGF)[14], can be covered in some circuits in 
as few as one tests [14], making it an attractive model.  This 
model checks to ensure that the gate can be activated.  In dual-
line switched technologies this fault model checks the existence 
of each gate’s inverting path.  Essentially it ensures that the gate 
can be “turned on”, it does not however ensure that the gate can 
be “turned off” and therefore this model does not distinguish a 
NOT gate from a CNOT, CCNOT, etc.  Consider again Figure 
2(b) with the open along the NOT path, the MGF will uncover 
this fault.  It should be obvious to the reader that with only two of 
four+ paths checked the test is not complete for the gate. 

1,0 1,0

0,1 0,1 

1,0 1,0 

1,0 

0,1 

1,0 

1,0 

0,1 

1,0 

f ⊕  Ak 
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With the “missing gate” fault model covering the inverting path, 
and the “stuck-at” fault model testing a minimum of one non-
inverting paths it would appear that the “missing gate” and 
“stuck-at” models are complementary and when merged would be 
sufficient.   Together the two faults test that each gate can turn on 
and off both paths separately, and that both logic values can be 
produced.  The fact that the gate is capable of separate traversal of 
both paths ensures that no switch is “stuck-short”.  To assist in 
analyzing the cover produced by the two models we define and 
explain the first fault model used in this work: 

   Lock Gate Fault (LGF): Ensures the existence of a non-
inverting path along NOT gate, the logical complement to the 
“missing gate” fault model. 
   The Lock Gate Fault (LGF) is essentially the inverse to the 
“missing gate” and is always covered by the “stuck-at”.  There 
exist no two MGF tests that are the inverse of one another.  This 
means that the LGF model is included within the “stuck-at” 
model.  This does not take away from usefulness in investigating 
fault models for reversible circuits as it does represent the 
existence of a path along one half of the four data paths for any 
gate and completes the test for “stuck-short” switches. 
   To further assist in analyzing the two fault models and their 
effect on the gate under operation, we have added fault models 
directly related to dual line technology switches.  In doing so we 
introduce the second fault model used in this work: 
Control Switch Stuck Fault (CSSF):  Broken control switch, 
either stuck-short or stuck-open. 

Vector<f,g,A> CSSF (f @ 1) CSSF (g @ 1) CSSF (f @ 0) CSSF (g @ 0) 

0,0,dc     

0,1,dc X    

1,0,dc  X   

1,1,dc   X X 

Figure 3   CSSF CCNOT Gate Fault Table:  Only one test exists for any 
Control Switch Stuck Fault.  As the size of k lines increases the gate gains 
only one test, an extra “one cold” test in order to focus on a single switch 
set. 

   Although the Control Switch Stuck Fault is one in which a 
switch is either stuck-open, stuck-closed, or missing, it is denoted 
by Control-Switch-Stuck-at-1, CSSF-@-1, and Control-Switch-
Stuck-at-0, CSSF-@-0.  This is to help localize to which path the 
error belongs.  Control-switch stuck-at-0 can be either a stuck-
open along one of the two (active) inverting paths, or a stuck-
short along one of the two (inactive) non-inverting paths.  
Whereas the Control-Switch-Stuck-at-1 is either; a stuck-short 
along one of the two (inactive) inverting paths or a stuck-open 
along one of the two (active) non-inverting paths.  The CSSF, 
Figure 3, unfortunately lacks the forgiving properties of the 
previous fault models and there are 2 * (k + 1) tests existing and 
(k + 1) required tests to test a k CCNOT gate.  On the positive 
side there is a benefit of not ever caring about the value on the 
controlled line.  The CSSF-@-0 test vectors are identical to those 
for the MGF. 
 

3. ALGORITHM 
   To analyze the fault models a reversible circuit testing program 
was written to test for all “stuck-at”, “missing gate” and the 
previously introduced “lock gate” models.  To represent the 
physical implementation for dual-line reversible technology we 

add the previously mentioned control switch stuck fault model.  
The goal of the software package was two-fold, one to quickly 
create near optimal test patterns for the three fault models, the 
second to check the actual cover for the technology at the gate’s 
internal switches.   
   The circuit is represented as a netlist containing fault 
information through which we propagate signals bi-directionally, 
to build test vectors as well as detect faults.  The state of our 
circuit is represented by a binary input vector, and the gates act on 
this vector as operators would in the state space of the system. 
Test Vector In Stk @ 0 In Stk @ 1 MGF LGF Out Stk @ 0 Out Stk @ 1 

00  X  X  X 

01 X   X X  

10  X X  X  

11 X  X   X 

Figure 4 (a), A single CNOT Fault Table: As can be seen with this fault 
model any test covers half of the faults, but the overlap is in such a way 
where the first test will get 3, the second test 2, and either remaining test 
will cover the last one fault.  

   As can be seen in Figure 4(a), any arbitrary first test vector will 
cover 3 faults, with the second test vector will cover exactly 2 
faults, the final fault covered by either of the two remaining test 
vectors. Fault coverage is determined by the interaction of the test 
vector as it propagates through the netlist representing the circuit.  
The propagation acts in both directions setting minimal bits to test 
toward a prioritized list of the possible faults covered until a full 
test vector is created.  During localization the error result is 
propagated in the reverse direction, making use of the intrinsic 
properties of reversibility, and the error is compared against the 
correct vector for each stage.  This method is surprisingly fast, 
loading and running all *.tfc circuits on Maslov’s site [18] in less 
than 2 minutes and generated a complete set for a 1500+ gate 
circuit, hwb9-1544, in less than 1 minute, using a 1.8Ghz w/512 
MB P4 computer.  The speed of our test set generation and its 
efficiency are due to heuristics based on the analysis of test vector 
coverage patterns, common AI programming techniques, along 
with the luxury that absolute minimal cover is not a requirement 
for this study.  

Test 
Vector In Stk @ 0 In Stk @ 1 MGF LGF Out Stk @ 0 Out Stk @ 1 

000  X  X  X 

001 X   X X  

010  X  X  X 

011 X   X X  

100  X  X  X 

101 X   X X  

110  X X  X  

111 X  X   X 

Figure 4 (b.) CCNOT Gate Fault Table: This is like the single k line 
CNOT example except there are two sets of three equivalent tests.  The set 
of equivalent tests increases, as k increases the number of equivalent tests 
increases to two sets of 2(k+1) – 2 /2 equivalent tests.   The MGF tests 
however, do not gain equivalent tests and always have only two vectors to 
cover.    This makes those Toffoli gates that have the most control inputs 
the most critical to test.  The fact that there are extra equivalent tests to 
cover the LGF model and the only requirement is applying a test that is not 
testing  for the “missing gate” model, one just needs to set any control bit 
low.  For  example <*, 0, *> or <0, *, *> are adequate for setting the LGF 
test vector.   
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   To understand the basics of the heuristics used for prioritization 
and selection of test vectors we look to Figure 4(a) and Figure 
4(b) displaying test vector coverage for the CNOT and CCNOT 
gate respectively.  As can be seen in Figure 4(a)  any three of the 
four possible tests are required to cover a CNOT gate.  As the 
number of control lines is increased by one to a CCNOT gate 
Figure 4(b), an interesting growth pattern emerges.  The number 
of vectors covering the MGF fault is always two whereas the 
number of test vectors covering the LGF fault increases.  Each of 
the LGF test vectors from 4(a) is repeated (2(k) – 1) times and 
requires only the setting of one bit to test.  This makes MGF a 
more infrequent test as the number of controls increases, while for 
the other fault models the number of vectors that can be used as 
tests increase with k.  The nature of the growth as well as the ease 
of testing the LGF faults are important factors for the order of 
selecting test vectors for this path propagating technique.  This 
order for test vector prioritizations is as follows: 
 
1. Select vector for Missing Gate Fault model [always only 2 

possible tests]. 
2. Select vector for Lock Gate Fault model [2(k+1) – 2 possible 

tests]. 
3.  Vectors are selected towards any of remaining gate-wise 

tests for untested vectors, of coverage one, generally input s0 
or s1 or output s0 or s1. [2(k+1)  possible tests]. 

 
   For a circuit with i input lines, at any stage with k control lines 
there exist exactly 2(i - k) possible input vector variants that will 
cover the same stage-wise test vector, example; A CNOT gate, a 
two input two output gate, existing within a four input circuit has 
two lines that are not used by the CNOT gate two don’t cares, 
leaving four vectors combined with the stage test vector from 
figure 3(a).  This relation between the number of input lines and 
control lines as well as the sparsity of the MGF test as k increases 
illustrate the MGF for the stage with the most control lines as a 
critical path.   
   Below more details of our algorithm are presented. Paper [12] 
used an algorithm which breaks the circuit into smaller disjoint 
sub-circuit groups and sets bits accordingly for each group, 
merging the groups to create test vectors. The approach taken here 
is based on a single signal vector that propagates through the 
circuit attempting to set a prioritized list of tests while 
maintaining the largest set of possible tests for the next stage.  
The signal vector moves forward and backward through the 
circuit setting appropriate bits for test and leaving as many of the 
lesser tested lines as possible in the don’t care state.   
   As was shown earlier the first test on a gate will cover exactly 
three of the six faults, this is universal for all gates in the system 
and means that the first test will cover half of the faults 
irregardless of the test vector.  Although each test vector has an 
equal number of faults covered in the initial fault table, the next 
selected tests are not equivalent so that the variants that cover the 
most critical remaining faults should be promoted first.   Without 
building the entire fault table, a group of variant tests covering the 
most critical test can be easily achieved by starting at the stage 
containing the most infrequent remaining test.  This is the largest 
Toffoli gate still in need of MGF test cover, in cases where all 
MGF have been previously tested, the smallest Toffoli in need of 
LGF test is chosen as the stage from which to start, if all MGF 

and LGF have been tested the first untested stuck-at stage in the 
circuit is selected as the final “clean up” point. 
   Once the initial starting stage is selected the program 
determines which direction to initially propagate the signal vector 
through the circuit.  It does this by performing a local blocking 
analysis function, explained below. 
For each line with a control bit at the selected starting stage a 
quick count of stages to the first CNOT, CCNOT, etc in the 
circuit is performed.  The minimum count for each direction is 
found, the propagation of the simulated test vector signal will then 
flow in the other direction, the side of the largest minimum count.   
When a CNOT, CCNOT, etc. is encountered the gate must be 
either turned on or turned off, lines may need to be set without 
gain of fault coverage.  As this is reversible circuit with one to 
one mappings throughout the circuit, the cost of setting a bit 
divides the number of possible tests in half for all stages of the 
circuit.  This of course does not apply to handling of the test 
overlap. 
   The program then steps through the circuit setting lines for the 
appropriate test based on the aforementioned priorities.  When 
setting bits for the LGF test, only one bit needs to be set.  This bit 
is determined through a line weighting system which is designed 
to find which bit will prevent the fewest tests once it is set.  In 
cases where no test can be performed, no bits are set.  Irregardless 
of the existence of a possible test, if the bit under control, the 
NOT line, has been given a value the gate must either be activated 
or deactivated in order to propagate.  The same line weighting 
function as used for turning off a gate for the LGF test is used 
with an additional option of activating the gate. 
   Once the algorithm reaches either the input or output of the 
circuit the current vector along with don’t cares is simulated back 
to the starting point.  From there the system steps to the opposing 
end of the circuit.  Upon reaching the opposite side, any 
remaining bits that can be set to test for any remaining stuck-at 
tests are set appropriately.  Any bits still unset are set randomly to 
fill the test vector. 
   In cases where the actual circuit’s output value differs from the 
value expected, the software switches its behavior to localize a 
fault.  The software is notified by the experimenter of the 
difference between the expected output and that of the actual 
circuit output.  The incorrect output is propagated through the 
system in parallel with the expected output.  Assuming a single 
fault within the system, stages where only the gates for which the 
controlled bit and bits along the control line are incorrect and 
have not passed test are flagged as possible errors.  This is for 
localization of MGF, LGF, and “stuck-at” fault models.  This 
method cannot be applied for the CSSF model because for this 
model the expected output results depend on specifics of 
implementation.  

4. Experimental Results 
   In this section we first present some data generated by our 
software package and then illustrate the combined percentage 
covers for the missing gate, stuck-at, and locked gate faults 
against the cover of the CSSF for switching technology.  In 
Figure 5 (a) we can see the family of curves approaching full 
combined coverage for the missing gate, stuck-at and locked gate 
models.  In Figure 5(b) the percentage cover of the same tests 
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applied to the Control Switch Stuck Fault is shown.  To give the 
reader more exact details see Tables 1,2 and 3 in the appendix.  
   With the exception of benchmark function xor5d1 none of the 
complete tests for the combined fault models completely test the 
functional parts of gates, the switches within the circuit.  This is 
only due to the fact that the xor5d1 is made entirely of Feynman 
gates.  Not surprisingly, a relationship was found between circuits 
containing gates with a large number of control lines and a 
decrease in CSSF coverage percentages. 
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Figure 5(a): Graphical representation of combined MGF, LGF, and stuck-
at percentage cover for several members of the Maslov Benchmarks.  The 
X axis represents test count, the Y axis represents the percentage cover.   
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Figure 5(b): Graphical representation of percentage cover for same test 
vectors applied to the CSSF model for the same reversible functions from 
the Maslov Benchmarks.  The X axis represents test count, the Y axis 
represents the percentage cover. 

   Figures 6 (a.) and 6 (b.) show screen shots of a circuit under 
test.  In Figure 6 (a.) one can see a small display window that 
shows percentage coverage of each of the fault models after each 
of the fault models.  We found that the missing gate and stuck at 
models miss many faults; note the control squares with green 
represent the untested switches (the colors are not seen in this 
text).   
   Figure 6 (c.) illustrates a selection between the different 
libraries of gates present in the software working directory.  Our 
software takes a common reversible description language, .tfc 
used by MMD [18] so it is very easy to generate test plans for 
new circuits.   

 
Figure 6 (a.): Screen shot of graphical interface. 

 
Figure 6 (b.) Stuck high and low faults are represented in green and red 
respectively.  With the gate errors along the vertical axis, and the wire stuck 
at errors represented in the same manner at the front and back of the CNOT 
gate.  Each vector that propagates though the circuit changes the colors to 
black if a fault is covered.   

 
Figure 6 (c.) Selection window for selecting circuits to be tested.   
   The comparison of tests to cover for the MGF, LGF and Stuck 
at fault models for Maslov reversible benchmarks [18] is shown in 
Table 1. Table 2 includes the fault coverage percentage used for 
visualization of few larger examples.  Table 3 represents 
percentage cover for the test vectors used in Table 2 applied to the 
CSSF model. 

5. CONCLUSION  
 

This paper presents a very practical approach to reversible fault 
detection, that is based on both old and new fault models we have 
shown also a direct relation of these fault models to the current 
CMOS reversible computing technology.  For the combined fault 
models, the software creates test sets larger but more complete 
than any earlier model alone.  However it has also been shown 
that the combined models are not adequate for dual-line switching 
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technologies such as CMOS.  In order to test these technologies 
one has to focus on the control switches rather than the concept of 
a controlled inverter. 

   In future works we plan to complete the test set generator for 
the Control Switch Stuck Fault model.  This is something of a 
challenge to program without the use of a fault table as done with 
the previous models due to the lack of structures that lend 
themselves to straight forward heuristics.  As the possible error 
output is not a pair of valid complementary words we also plan to 
use a multi-valued netlist localization against expected 
complementary pair binary outputs. 
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Name Model1 Gate Count Bits MGF LGF I/OSA-0-1 All 
Models 

2of5 GT 18 6 4 2 4 4 

2of5 GT 15 6 3 2 4 4 

2of5 NCT 12 7 3 2 5 5 

rd32 NCT 4 4 2 2 3 3 

3_17 NCT 6 3 2 2 4 4 

4_49 GT 16 4 3 3 4 4 

6sym NCT 20 10 4 3 5 5 

9sym NCT 28 12 4 3 5 5 

4mod5 NCT 8 5 1 2 3 3 

4mod5 NCT 9 5 1 2 4 5 

5mod5 GT 17 6 1 2 3 3 

5mod5 GT 10 6 2 2 4 4 

cycle10_2 GT 19 12 2 3 5 5 

cycle17_3 GT 48 20 3 3 6 6 

ham7 GT 23 7 4 3 4 4 

ham15 GT 132 15 11 7 12 12 

hwb4 GT 17 4 3 4 4 4 

hwb4 GT&GF 11 4 2 2 4 4 

hwb5 GT 55 5 6 7 7 7 

hwb6 GT 126 6 12 5 11 12 

hwb7 GT 289 7 19 11 13 19 

mod5adder GT 21 6 3 2 4 4 

mod1024adder GT 25 20 3 3 5 5 

rd53 GT 4 7 2 2 3 3 

rd53 GT 12 7 3 2 4 4 

rd73 NCT 20 10 3 3 4 4 

rd84 NCT 28 15 5 2 6 6 

xor5 NCT 4 3 1 2 3 3 

Table 1:  # of tests required to cover fault.   For Fault models “Missing Gate”, “Locked Gate”, “stuck-at”, 
and combination of all models 

 
Test 

Count mod104876-adder hwb7tc mod1024adder cycle17_3 9symd2 2of5d2 3_17tc.tfc Cycle10_2 ham7tc xor5d1 rd32 5mod5tc 

0 0 0 0 0 0 0 0 0 0 0 0 0 
1 50 50 50 50 50 50 50 50 78.985 50 50 50 
2 59.047 69.26 66.36 74.305 79.76 80.55 66.66 83 90.579 83.33 83.33 83.33 
3 66.11 81.891 78.18 89.93 92.857 95.83 91.66 93 95.652 100 100 100 
4 70.158 87.427 84.545 94.44 98.809 98.611 100 100 100 100 100 100 
5 73.809 92.56 89.393 99.652 100 100 100 100 100 100 100 100 
6 77.222 94.75 93.33 100 100 100 100 100 100 100 100 100 
7 80.39 96.309 96.363 100 100 100 100 100 100 100 100 100 
8 83.33 96.885 98.48 100 100 100 100 100 100 100 100 100 
9 86.03 97.52 99.6963 100 100 100 100 100 100 100 100 100 
10 88.49 98.327 100 100 100 100 100 100 100 100 100 100 
11 90.714 98.442 100 100 100 100 100 100 100 100 100 100 
12 92.698 98.904 100 100 100 100 100 100 100 100 100 100 
13 94.444 98.961 100 100 100 100 100 100 100 100 100 100 
14 95.952 99.192 100 100 100 100 100 100 100 100 100 100 
15 97.22 99.711 100 100 100 100 100 100 100 100 100 100 
16 98.253 99.884 100 100 100 100 100 100 100 100 100 100 
17 99.047 99.942 100 100 100 100 100 100 100 100 100 100 
18 99.603 100 100 100 100 100 100 100 100 100 100 100 
19 99.92 100 100 100 100 100 100 100 100 100 100 100 
20 100 100 100 100 100 100 100 100 100 100 100 100 

Table 2: Percentage cover for combination of MGF, Stuck-at, and LGF models 
 

 

                                                                 

 



 8

 

 

 

Test 
Count 

mod104876adde
r 

hwb7t
c mod1024adder cycle17_3 9symd2 2of5d2 3_17tc.tfc Cycle10_2 ham7tc xor5d1 rd32 5mod5tc 

0 0 0 0 0 0 0 0 0 0 0 0 0 

1 12.987 23.379 22.727 22.493 39.583 42.105 50 32 39.705 50 41.36 50 

2 24.707 38.31 41.136 40.953 63.541 71.052 78.571 54.5 64.705 100 83.33 56.578 

3 30.292 47.222 49.545 55.623 80.208 84.21 85.714 63.5 77.941 100 83.33 56.578 

4 35.259 55.729 55.909 55.623 89.583 89.473 92.857 63.5 94.117 100 83.33 56.578 

5 39.642 62.789 60.454 55.623 94.791 89.473 92.857 63.5 97.058 100 83.33 56.578 

6 43.506 68.287 63.636 57.579 94.791 89.473 92.857 63.5 97.058 100 83.33 56.578 

7 46.883 74.594 65.681 57.579 94.791 89.473 92.857 63.5 97.058 100 83.33 56.578 

8 49.805 76.851 66.818 57.579 94.791 89.473 92.857 63.5 97.058 100 83.33 56.578 

9 52.305 78.935 67.272 57.579 94.791 89.473 92.857 63.5 97.058 100 83.33 56.578 

10 54.415 82.002 70.681 57.579 94.791 89.473 92.857 63.5 97.058 100 83.33 56.578 

11 56.168 82.986 70.681 57.579 94.791 89.473 92.857 63.5 97.058 100 83.33 56.578 

12 57.597 85.879 70.681 57.579 94.791 89.473 92.857 63.5 97.058 100 83.33 56.578 

13 58.733 87.152 70.681 57.579 94.791 89.473 92.857 63.5 97.058 100 83.33 56.578 

14 59.61 89.12 70.681 57.579 94.791 89.473 92.857 63.5 97.058 100 83.33 56.578 

15 60.259 91.724 70.681 57.579 94.791 89.473 92.857 63.5 97.058 100 83.33 56.578 

16 60.715 93.344 70.681 57.579 94.791 89.473 92.857 63.5 97.058 100 83.33 56.578 

17 61.006 93.807 70.681 57.579 94.791 89.473 92.857 63.5 97.058 100 83.33 56.578 

18 61.168 94.155 70.681 57.579 94.791 89.473 92.857 63.5 97.058 100 83.33 56.578 

19 61.233 94.155 70.681 57.579 94.791 89.473 92.857 63.5 97.058 100 83.33 56.578 

20 62.37 94.155 70.681 57.579 94.791 89.473 92.857 63.5 97.058 100 83.33 56.578 

Table 3: Percentage cover for CSSF model using test vectors from table 2, it should be noted that no new test vectors are created after 100% coverage from 
table 1.  First test cover percentages may be high due to the fact MGF covers CSSF at 0. 
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