
Portland State University Portland State University

PDXScholar PDXScholar

Electrical and Computer Engineering Faculty
Publications and Presentations Electrical and Computer Engineering

9-2005

ATPG for Reversible Circuits using Technology-ATPG for Reversible Circuits using Technology-

Related Fault Models Related Fault Models

Jeff S. Allen
Portland State University

Jacob D. Biamonte
Portland State University

Marek Perkowski
Portland State University

Follow this and additional works at: https://pdxscholar.library.pdx.edu/ece_fac

 Part of the Electrical and Computer Engineering Commons

Let us know how access to this document benefits you.

Citation Details Citation Details
Allen, Jeff S., Jacob D. Biamonte, and Marek A. Perkowski. "ATPG for reversible circuits using technology-
related fault models." Proc 7th international symposium on representations and methodology of future
computing technologies, RM2005, Tokyo, Japan. 2005.

This Pre-Print is brought to you for free and open access. It has been accepted for inclusion in Electrical and
Computer Engineering Faculty Publications and Presentations by an authorized administrator of PDXScholar.
Please contact us if we can make this document more accessible: pdxscholar@pdx.edu.

https://pdxscholar.library.pdx.edu/
https://pdxscholar.library.pdx.edu/ece_fac
https://pdxscholar.library.pdx.edu/ece_fac
https://pdxscholar.library.pdx.edu/ece
https://pdxscholar.library.pdx.edu/ece_fac?utm_source=pdxscholar.library.pdx.edu%2Fece_fac%2F173&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/266?utm_source=pdxscholar.library.pdx.edu%2Fece_fac%2F173&utm_medium=PDF&utm_campaign=PDFCoverPages
http://library.pdx.edu/services/pdxscholar-services/pdxscholar-feedback/?ref=https://pdxscholar.library.pdx.edu/ece_fac/173
mailto:pdxscholar@pdx.edu

 1

ATPG for Reversible Circuits using Technology-Related
Fault Models

Jeff S. Allen(1)
1Department of Electrical Engineering,

Portland State University,
Portland, Oregon, 97207-0751, USA

jeffal@cecs.pdx.edu

Jacob D. Biamonte(1,2)
2Portland State University

Department of Physics
Portland, Oregon, 97207-0751, USA

biamonte@ieee.org

Marek A. Perkowski(1,3)
3Department of Electronics and

Computer Science, Korea Advanced
Institute of Science and Technology,

Daejeon 305-701, South Korea.

mperkows@ee.pdx.edu

ABSTRACT
We address the problem of test set generation and test set
reduction, to first detect, and later localize faults occurring in
reversible circuits. Reversible Computation has high promise of
low power consumption. Some new fault models are first
presented here. An explanation of the new fault models is made
based on a physical realization representing the state of the art in
the reversible CMOS circuit technology. Evidence is then
presented showing that the fault models presented in the current
literature are not adequate for existing realizations of reversible
logic such as CMOS. We designed a ATPG software package
with a friendly graphical user interface to aid experimentation
with various fault models. The purpose of this work is to give an
overview of our findings and pave the way for a later paper fully
addressing the CMOS fault models. The key experimental results
are presented.

Categories and Subject Descriptors
D.3.3 [Verification]: Design validation and verification, design
experiences, emerging technology.

General Terms
Algorithms, Reliability, Verification

Keywords
Test Set Generation, Reversible Computing, CMOS Technology

1. INTRODUCTION

 According to Landauer's principle [1], it is possible to
construct a computer that dissipates a subjectively small amount
of heat. A necessary condition is that no information is lost in the
process of propagating logic values from input to output of the
circuit. Therefore, logical reversibility represents an important
and necessary subclass of computational apparatus that has, in
recent times, gained much interest from the EDA community;
with the preliminary results reported in [2]. For an introduction
on reversible circuits we refer the reader to Markov [3][5].
 Various reversible technologies have been proposed, such as
Optical [5, p. 287], Quantum [6] CMOS [4], Electrostatic[22], and
other switched technologies. Based on the current fabrication
capabilities the CMOS realization offers the most immediate
implementation prospects, although large power reduction will be
gained only in future generation technologies. For example, a 5

bit carry-look-ahead adder has been physically built with results
presented in [7]. Although reversible circuits in CMOS
technologies do not offer significant losses in power consumption,
the promise of low power consumption still makes them very
intriguing [8][9][10][11]. Surprisingly little work has been done
however to address the errors present in reversible technologies.
The main published results are in [12][13][14][23]. In [12] a
study is presented that extends the classical stuck-at fault model
to reversible circuits. In [14] the missing gate fault model is
presented. Here we present a comparison of these models, along
with two new fault models; one to complement a previous model
and another that addresses the needs of actual technology. We
relate these new fault models to logical testing of the dual line
switched technologies specifically CMOS technology presented
by De Vos in [4] and [7]. It has to be pointed out that these
circuits have been fabricated and proven operational in contrast to
many other reversible circuit proposals that were adiabatic-
reversible rather than physically reversible rather than physically
reversible (with no backward mapping) or pure theoretical
speculations. We simulated the De Vos circuits using Cadence
tools and proved that they operate both from input to output and
output to input, being thus truly physically and not only logically
reversible. We believe that the current literature on reversible test
set generation [12][14], does not include a completely correct
fault model, because this model is not good for both quantum and
CMOS realizations of reversible circuits. Below, we show
realizations of reversible logic circuits in the existing CMOS
technology, which demonstrate that the “stuck-at” and “missing
gate fault” fault models are insufficient. It should be mentioned
that we assume that the switching layout is switch minimized as
shown in [4] and therefore path minimized within the gate.
Previous research has showed that the fault models from [12],[14]
are inadequate also for quantum circuits.
 The first thing that must be mentioned about De Vos reversible
CMOS circuits is that they have no clock, no ground and no VDD
on chip, thus the classical stuck-at concept is not correct for them.
Every input, intermediate and output logic variable is repeated
twice, as a signal and its negation. To explain the functionality of
reversible CMOS realizations, consider Figure 1 (a.), where a
signal is represented by both a high and a low component, such
that a high signal is [1, 0] and a low signal is value [0, 1]. Gates
in this technology flip these signals back and forth, never losing
information. However, a stuck at fault internal to the CMOS
CNOT gate itself can result in output states such as [0, 0], [1,
1],[Z, Z] and float. The logical test set of the circuit is to set f to

 2

value high, toggle the input and then set f to low and allow a
signal to pass un-changed. This is different than in classical logic
circuits discussed by Reddy and past researchers in the field
[19,20,21] where every (two-input) EXOR gate in the circuit
should have 4 tests (00,01,10,11). The EXOR gate here is not a
general function that can fail to all functions other than XNOR
[19], but one particular realization built using CMOS switches.
The fault model is that each switch can be stuck-short (thus
removing the literal), or stuck-open (thus removing the entire
connection path from input to output. In Figure 1 (b.) we present a
model that is conceptually equivalent to Figure 1 (a.). We denote
the complement line of Ak as Ak’ and the corresponding output as
Pk and Pk’, respectively. To logically test this circuit we perform
the same set of tests as we did for the circuit from Figure 1 (a).
Automatic Test Equipment (ATE) must distinguish correct output
values from incorrect output values, so for the circuit given in
Figure 1 (a.) any time a value of [0, 0], [1, 1], [Z,Z] or float
appears on the output there is a fault in the circuit. To localize we
are thus propagating the incorrect states [0,0] and [1,1] through
the gold circuit, analogously as path propagation algorithms do
with values like stuck-at-0 and stuck-at-1.

Figure 1 (a.) CNOT GATE, its CMOS realization: The switches are
constructed with CMOS transistors; each switch is composed of one
n-MOS transistor in parallel with one p-MOS transistor (forming
together a transmission gate). When f is high, the Ak is routed to Pk’
and Ak’ is routed to Pk. When f is logic 0 the output is Ak routes to Pk
while Ak’ routes to Pk. An alternate way to describe this circuit is Pk
= f ⊕ Ak, where ⊕ represents EXOR.

Figure 1 (b.) CNOT GATE: An equivalent to the circuit shown in
Figure 1 (a.). This represents the circuit at the level known as the
quantum circuits model or program abstraction. When f is high, the
output of the circuit is inverted. When f is logic 0 the output is Pk =
Ak. An alternate way to describe this circuit is <Pk, Pk‘> = <f ⊕ Ak ,
f ⊕ Ak’>, where ⊕ represents EXOR.

2. Fault Models
 Recently two fault models for reversible circuits have been
introduced, “missing gate” [14], and “stuck-at” [12]. To test for
missing gates, k control lines must be set to logic 1. In many
cases, full coverage can result in one single test. In [14], in
addition to an ATPG method a DFT method is presented in [14]

to help reach this lower bound. Using the missing gate fault
model for the circuit shown in Figure 2 (a) we apply input test
vector (1,1,1) for full coverage. However, this does not account
for a control line that is always activated, or from Figure 1 (a.) a
switch f that is stuck short.

Figure 2 (a.) CCNOT Gate Under Test: An input test vector of (1,0,1)
is followed by input test vector of (0,1,0), this test set is complete for
the stuck at model, but fails to ‘turn on’ the CCNOT gate.

The “stuck-at” model in many circuits can be covered in two
tests, leaving all gates never activated. For this to happen all
CCNOT gates must have k > 1 control lines and set these lines in
such a way that the inverted values of the control lines still do not
turn on the gate. Assume a test set for stuck-at model that covers
all of the faults in two tests, for every vector from this set all
control bits when applied as well when inverted do not turn the
gate on. Please look now at Figure 2 (a.) and Figure 2 (b.) for
examples of complete equivalent test sets for the stuck-at model.
Consider Figure 2 (a.) again so we can explain the structure of a
CCNOT gate. For the CCNOT gate we simply create two sets of
duplicate logical paths, one pair of one g switch in series with
switch f to create two conjunctive paths (top and bottom), and
another pair with one g’ switch in parallel with one f’ switch
forming disjunctive paths (left and right). We must have a logical
AND of g and f to swap the target Ak, but the test set from both
Figure 2 (a.) and Figure 2 (b.) misses a critical path within the
gate. Thus the stuck-at model proposed in [12] as well in [23], are
both incomplete for CMOS technology. In other words, the logic
value Ak [1,0] is never swapped to its inverse based on the path
the input tests (1,0,1) and (0,1,0) take. This means that the stuck-
at model is not complete for CMOS technology.

Figure 2 (b.) Missing CCNOT Gate Under Test Containing Fault: An
input test vector of (1,0,1) is followed by input test vector of (0,1,0), this
test set is complete for the stuck at model.

 The other previous fault model under investigation the “missing
gate” fault model (MGF)[14], can be covered in some circuits in
as few as one tests [14], making it an attractive model. This
model checks to ensure that the gate can be activated. In dual-
line switched technologies this fault model checks the existence
of each gate’s inverting path. Essentially it ensures that the gate
can be “turned on”, it does not however ensure that the gate can
be “turned off” and therefore this model does not distinguish a
NOT gate from a CNOT, CCNOT, etc. Consider again Figure
2(b) with the open along the NOT path, the MGF will uncover
this fault. It should be obvious to the reader that with only two of
four+ paths checked the test is not complete for the gate.

1,0 1,0

0,1 0,1

1,0 1,0

1,0

0,1

1,0

1,0

0,1

1,0

f ⊕ Ak

 3

With the “missing gate” fault model covering the inverting path,
and the “stuck-at” fault model testing a minimum of one non-
inverting paths it would appear that the “missing gate” and
“stuck-at” models are complementary and when merged would be
sufficient. Together the two faults test that each gate can turn on
and off both paths separately, and that both logic values can be
produced. The fact that the gate is capable of separate traversal of
both paths ensures that no switch is “stuck-short”. To assist in
analyzing the cover produced by the two models we define and
explain the first fault model used in this work:

 Lock Gate Fault (LGF): Ensures the existence of a non-
inverting path along NOT gate, the logical complement to the
“missing gate” fault model.
 The Lock Gate Fault (LGF) is essentially the inverse to the
“missing gate” and is always covered by the “stuck-at”. There
exist no two MGF tests that are the inverse of one another. This
means that the LGF model is included within the “stuck-at”
model. This does not take away from usefulness in investigating
fault models for reversible circuits as it does represent the
existence of a path along one half of the four data paths for any
gate and completes the test for “stuck-short” switches.
 To further assist in analyzing the two fault models and their
effect on the gate under operation, we have added fault models
directly related to dual line technology switches. In doing so we
introduce the second fault model used in this work:
Control Switch Stuck Fault (CSSF): Broken control switch,
either stuck-short or stuck-open.

Vector<f,g,A> CSSF (f @ 1) CSSF (g @ 1) CSSF (f @ 0) CSSF (g @ 0)

0,0,dc

0,1,dc X

1,0,dc X

1,1,dc X X

Figure 3 CSSF CCNOT Gate Fault Table: Only one test exists for any
Control Switch Stuck Fault. As the size of k lines increases the gate gains
only one test, an extra “one cold” test in order to focus on a single switch
set.

 Although the Control Switch Stuck Fault is one in which a
switch is either stuck-open, stuck-closed, or missing, it is denoted
by Control-Switch-Stuck-at-1, CSSF-@-1, and Control-Switch-
Stuck-at-0, CSSF-@-0. This is to help localize to which path the
error belongs. Control-switch stuck-at-0 can be either a stuck-
open along one of the two (active) inverting paths, or a stuck-
short along one of the two (inactive) non-inverting paths.
Whereas the Control-Switch-Stuck-at-1 is either; a stuck-short
along one of the two (inactive) inverting paths or a stuck-open
along one of the two (active) non-inverting paths. The CSSF,
Figure 3, unfortunately lacks the forgiving properties of the
previous fault models and there are 2 * (k + 1) tests existing and
(k + 1) required tests to test a k CCNOT gate. On the positive
side there is a benefit of not ever caring about the value on the
controlled line. The CSSF-@-0 test vectors are identical to those
for the MGF.

3. ALGORITHM
 To analyze the fault models a reversible circuit testing program
was written to test for all “stuck-at”, “missing gate” and the
previously introduced “lock gate” models. To represent the
physical implementation for dual-line reversible technology we

add the previously mentioned control switch stuck fault model.
The goal of the software package was two-fold, one to quickly
create near optimal test patterns for the three fault models, the
second to check the actual cover for the technology at the gate’s
internal switches.
 The circuit is represented as a netlist containing fault
information through which we propagate signals bi-directionally,
to build test vectors as well as detect faults. The state of our
circuit is represented by a binary input vector, and the gates act on
this vector as operators would in the state space of the system.
Test Vector In Stk @ 0 In Stk @ 1 MGF LGF Out Stk @ 0 Out Stk @ 1

00 X X X

01 X X X

10 X X X

11 X X X

Figure 4 (a), A single CNOT Fault Table: As can be seen with this fault
model any test covers half of the faults, but the overlap is in such a way
where the first test will get 3, the second test 2, and either remaining test
will cover the last one fault.

 As can be seen in Figure 4(a), any arbitrary first test vector will
cover 3 faults, with the second test vector will cover exactly 2
faults, the final fault covered by either of the two remaining test
vectors. Fault coverage is determined by the interaction of the test
vector as it propagates through the netlist representing the circuit.
The propagation acts in both directions setting minimal bits to test
toward a prioritized list of the possible faults covered until a full
test vector is created. During localization the error result is
propagated in the reverse direction, making use of the intrinsic
properties of reversibility, and the error is compared against the
correct vector for each stage. This method is surprisingly fast,
loading and running all *.tfc circuits on Maslov’s site [18] in less
than 2 minutes and generated a complete set for a 1500+ gate
circuit, hwb9-1544, in less than 1 minute, using a 1.8Ghz w/512
MB P4 computer. The speed of our test set generation and its
efficiency are due to heuristics based on the analysis of test vector
coverage patterns, common AI programming techniques, along
with the luxury that absolute minimal cover is not a requirement
for this study.

Test
Vector In Stk @ 0 In Stk @ 1 MGF LGF Out Stk @ 0 Out Stk @ 1

000 X X X

001 X X X

010 X X X

011 X X X

100 X X X

101 X X X

110 X X X

111 X X X

Figure 4 (b.) CCNOT Gate Fault Table: This is like the single k line
CNOT example except there are two sets of three equivalent tests. The set
of equivalent tests increases, as k increases the number of equivalent tests
increases to two sets of 2(k+1) – 2 /2 equivalent tests. The MGF tests
however, do not gain equivalent tests and always have only two vectors to
cover. This makes those Toffoli gates that have the most control inputs
the most critical to test. The fact that there are extra equivalent tests to
cover the LGF model and the only requirement is applying a test that is not
testing for the “missing gate” model, one just needs to set any control bit
low. For example <*, 0, *> or <0, *, *> are adequate for setting the LGF
test vector.

 4

 To understand the basics of the heuristics used for prioritization
and selection of test vectors we look to Figure 4(a) and Figure
4(b) displaying test vector coverage for the CNOT and CCNOT
gate respectively. As can be seen in Figure 4(a) any three of the
four possible tests are required to cover a CNOT gate. As the
number of control lines is increased by one to a CCNOT gate
Figure 4(b), an interesting growth pattern emerges. The number
of vectors covering the MGF fault is always two whereas the
number of test vectors covering the LGF fault increases. Each of
the LGF test vectors from 4(a) is repeated (2(k) – 1) times and
requires only the setting of one bit to test. This makes MGF a
more infrequent test as the number of controls increases, while for
the other fault models the number of vectors that can be used as
tests increase with k. The nature of the growth as well as the ease
of testing the LGF faults are important factors for the order of
selecting test vectors for this path propagating technique. This
order for test vector prioritizations is as follows:

1. Select vector for Missing Gate Fault model [always only 2

possible tests].
2. Select vector for Lock Gate Fault model [2(k+1) – 2 possible

tests].
3. Vectors are selected towards any of remaining gate-wise

tests for untested vectors, of coverage one, generally input s0
or s1 or output s0 or s1. [2(k+1) possible tests].

 For a circuit with i input lines, at any stage with k control lines
there exist exactly 2(i - k) possible input vector variants that will
cover the same stage-wise test vector, example; A CNOT gate, a
two input two output gate, existing within a four input circuit has
two lines that are not used by the CNOT gate two don’t cares,
leaving four vectors combined with the stage test vector from
figure 3(a). This relation between the number of input lines and
control lines as well as the sparsity of the MGF test as k increases
illustrate the MGF for the stage with the most control lines as a
critical path.
 Below more details of our algorithm are presented. Paper [12]
used an algorithm which breaks the circuit into smaller disjoint
sub-circuit groups and sets bits accordingly for each group,
merging the groups to create test vectors. The approach taken here
is based on a single signal vector that propagates through the
circuit attempting to set a prioritized list of tests while
maintaining the largest set of possible tests for the next stage.
The signal vector moves forward and backward through the
circuit setting appropriate bits for test and leaving as many of the
lesser tested lines as possible in the don’t care state.
 As was shown earlier the first test on a gate will cover exactly
three of the six faults, this is universal for all gates in the system
and means that the first test will cover half of the faults
irregardless of the test vector. Although each test vector has an
equal number of faults covered in the initial fault table, the next
selected tests are not equivalent so that the variants that cover the
most critical remaining faults should be promoted first. Without
building the entire fault table, a group of variant tests covering the
most critical test can be easily achieved by starting at the stage
containing the most infrequent remaining test. This is the largest
Toffoli gate still in need of MGF test cover, in cases where all
MGF have been previously tested, the smallest Toffoli in need of
LGF test is chosen as the stage from which to start, if all MGF

and LGF have been tested the first untested stuck-at stage in the
circuit is selected as the final “clean up” point.
 Once the initial starting stage is selected the program
determines which direction to initially propagate the signal vector
through the circuit. It does this by performing a local blocking
analysis function, explained below.
For each line with a control bit at the selected starting stage a
quick count of stages to the first CNOT, CCNOT, etc in the
circuit is performed. The minimum count for each direction is
found, the propagation of the simulated test vector signal will then
flow in the other direction, the side of the largest minimum count.
When a CNOT, CCNOT, etc. is encountered the gate must be
either turned on or turned off, lines may need to be set without
gain of fault coverage. As this is reversible circuit with one to
one mappings throughout the circuit, the cost of setting a bit
divides the number of possible tests in half for all stages of the
circuit. This of course does not apply to handling of the test
overlap.
 The program then steps through the circuit setting lines for the
appropriate test based on the aforementioned priorities. When
setting bits for the LGF test, only one bit needs to be set. This bit
is determined through a line weighting system which is designed
to find which bit will prevent the fewest tests once it is set. In
cases where no test can be performed, no bits are set. Irregardless
of the existence of a possible test, if the bit under control, the
NOT line, has been given a value the gate must either be activated
or deactivated in order to propagate. The same line weighting
function as used for turning off a gate for the LGF test is used
with an additional option of activating the gate.
 Once the algorithm reaches either the input or output of the
circuit the current vector along with don’t cares is simulated back
to the starting point. From there the system steps to the opposing
end of the circuit. Upon reaching the opposite side, any
remaining bits that can be set to test for any remaining stuck-at
tests are set appropriately. Any bits still unset are set randomly to
fill the test vector.
 In cases where the actual circuit’s output value differs from the
value expected, the software switches its behavior to localize a
fault. The software is notified by the experimenter of the
difference between the expected output and that of the actual
circuit output. The incorrect output is propagated through the
system in parallel with the expected output. Assuming a single
fault within the system, stages where only the gates for which the
controlled bit and bits along the control line are incorrect and
have not passed test are flagged as possible errors. This is for
localization of MGF, LGF, and “stuck-at” fault models. This
method cannot be applied for the CSSF model because for this
model the expected output results depend on specifics of
implementation.

4. Experimental Results
 In this section we first present some data generated by our
software package and then illustrate the combined percentage
covers for the missing gate, stuck-at, and locked gate faults
against the cover of the CSSF for switching technology. In
Figure 5 (a) we can see the family of curves approaching full
combined coverage for the missing gate, stuck-at and locked gate
models. In Figure 5(b) the percentage cover of the same tests

 5

applied to the Control Switch Stuck Fault is shown. To give the
reader more exact details see Tables 1,2 and 3 in the appendix.
 With the exception of benchmark function xor5d1 none of the
complete tests for the combined fault models completely test the
functional parts of gates, the switches within the circuit. This is
only due to the fact that the xor5d1 is made entirely of Feynman
gates. Not surprisingly, a relationship was found between circuits
containing gates with a large number of control lines and a
decrease in CSSF coverage percentages.

1 3 5 7 9

11 13 15 17 19 21

mod104876adder

2of5d2

rd32
0

10
20
30
40
50
60

70
80

90

100
mod104876adder
hwb7tc
mod1024adder
cycle17_3
9symd2
2of5d2
3_17tc.tfc
Cycle10_2
ham7tc
xor5d1
rd32
5mod5tc

Figure 5(a): Graphical representation of combined MGF, LGF, and stuck-
at percentage cover for several members of the Maslov Benchmarks. The
X axis represents test count, the Y axis represents the percentage cover.

1 3 5 7 9

11 13 15 17 19 21

mod104876adder

2of5d2
rd32

0
10
20
30

40
50

60

70

80

90

100
mod104876adder
hwb7tc
mod1024adder
cycle17_3
9symd2
2of5d2
3_17tc.tfc
Cycle10_2
ham7tc
xor5d1
rd32
5mod5tc

Figure 5(b): Graphical representation of percentage cover for same test
vectors applied to the CSSF model for the same reversible functions from
the Maslov Benchmarks. The X axis represents test count, the Y axis
represents the percentage cover.

 Figures 6 (a.) and 6 (b.) show screen shots of a circuit under
test. In Figure 6 (a.) one can see a small display window that
shows percentage coverage of each of the fault models after each
of the fault models. We found that the missing gate and stuck at
models miss many faults; note the control squares with green
represent the untested switches (the colors are not seen in this
text).
 Figure 6 (c.) illustrates a selection between the different
libraries of gates present in the software working directory. Our
software takes a common reversible description language, .tfc
used by MMD [18] so it is very easy to generate test plans for
new circuits.

Figure 6 (a.): Screen shot of graphical interface.

Figure 6 (b.) Stuck high and low faults are represented in green and red
respectively. With the gate errors along the vertical axis, and the wire stuck
at errors represented in the same manner at the front and back of the CNOT
gate. Each vector that propagates though the circuit changes the colors to
black if a fault is covered.

Figure 6 (c.) Selection window for selecting circuits to be tested.
 The comparison of tests to cover for the MGF, LGF and Stuck
at fault models for Maslov reversible benchmarks [18] is shown in
Table 1. Table 2 includes the fault coverage percentage used for
visualization of few larger examples. Table 3 represents
percentage cover for the test vectors used in Table 2 applied to the
CSSF model.

5. CONCLUSION

This paper presents a very practical approach to reversible fault
detection, that is based on both old and new fault models we have
shown also a direct relation of these fault models to the current
CMOS reversible computing technology. For the combined fault
models, the software creates test sets larger but more complete
than any earlier model alone. However it has also been shown
that the combined models are not adequate for dual-line switching

 6

technologies such as CMOS. In order to test these technologies
one has to focus on the control switches rather than the concept of
a controlled inverter.

 In future works we plan to complete the test set generator for
the Control Switch Stuck Fault model. This is something of a
challenge to program without the use of a fault table as done with
the previous models due to the lack of structures that lend
themselves to straight forward heuristics. As the possible error
output is not a pair of valid complementary words we also plan to
use a multi-valued netlist localization against expected
complementary pair binary outputs.

6. ACKNOWLEDGMENTS

 Portland State University provided funding, resources, space
and support for this project. Some support by Ronald E. McNair
Post baccalaureate Achievement Program of Portland State
University, and the Korean Advanced Institute of Science and
Technology, was given during parts of this project. The views
and conclusions contained herein are those of the authors and
should not be interpreted as necessarily representing official
policies of endorsements, either expressed or implied, of the
Funding agencies.

7. REFERENCES
[1] R. Landauer: Irreversibility and heat generation in the

computing process. I.B.M. Journal of Research and
Development 5 (1961) 183-191

[2] E. Fredkin and T. Toffoli: Conservative logic. Int. Journal of
Theoretical Physics 21 (1982) 219-253

[3] I. L. Markov, ``An Introduction to Reversible Circuits''
IWLS, Laguna Beach, CA, May 2003 (invited),
http://www.eecs.umich.edu/~imarkov/pubs/

[4] A. De Vos, B. Desoete, A. Adamski, P. Pietrzak, M.
Sibinski, and T. Widerski: Design of reversible logic circuits
by means of control gates. In: D. Soudris, P. Pirsch, and E.
Barke (eds.): Proc. 10 th Int. Workshop Patmos, Gottingen
(Sept. 2000) 255-264

[5] M. Nielsen and I. Chuang, Quantum Computation and
Quantum Information, Cambridge Univ. Press, 2000.

[6] D. Vion, A. Aassime, A. Cottet, P. Joyez, H. Pothier, C.
Urbina, D. Esteve, M.H. Devoret, Manipulating the Quantum
State of an Electrical Circuit, arXiv:cond-mat/0304232, v2
15 Apr 2003.

[7] B. Desoete and A. De Vos. A Reversible Carry-Look-Ahead
Adder Using Control Gates. Integration, The VLSI Journal,
vol. 33, pp. 89–104, 2002.

[8] R.I. Bahar, J. Mundy and J. Chan, A Probabilistic Based
Design Methodology for Nanoscale Computation, ICCAD,
2003, pp. 480-486.

[9] J. Han, and P. Jonker, A System Architecture Solution for
Unreliable Nanoelectronic Devices, IEEE Trans. on
Nanotechnology, vol. 1, December 2002 pp. 201-208.

[10] J. Kim, J-S. Lee and S. Lee, Implementing unitary operators
in quantum computation, Phys. Rev. A 61 (2000) 032312,
quant-ph/9908052

[11] J. Kim, J-S. Lee, S. Lee and C. Cheong, Implementation of
the refined Deutsch-Jozsa algorithm on a 3-bit NMR
quantum computer, Phys. Rev. A 62, 022312 (2000),
http://arxiv.org/abs/quant-ph/9910015

[12] K. N. Patel, J. P. Hayes and I. L. Markov, Fault Testing for
Reversible Circuits, IEEE Trans. on CAD, 23(8), pp. 1220-
1230, August 2004, quant-ph/0404003

[13] J. Biamonte and M. Perkowski, Testing a Quantum
Computer, Proceedings of, KAIS, Workshop on Quantum
Information Sicence, Seoul Korea, August 29th - 31st, 2004.
http://arxiv.org/abs/quant-ph/0501108

[14] J.P. Hayes, I. Polian, B. Becker, Testing for Missing-Gate
Faults in Reversible Circuits, Proc. Asian Test Symposium,
Taiwain, November 2004.

[15] W. Zurek, Reversibility and Stability of Information
Processing Systems, Physical Review Letters, Vol. 53, pp.
391-394, 1984.

[16] D. Maslov and G. Dueck. Reversible Cascades with Minimal
Garbage. IEEE Transactions on CAD, vol. 23, issue 11, Nov.
2004, pp. 1497-1509.

[17] C. Landrault, Test and Design For Test,
www.ee.pdx.edu/~mperkows Translated by M. A.
Perkowski.

[18] Maslov Reversible Logic Benchmarks:
http://www.cs.uvic.ca/dmaslov/

[19] S.M. Reddy, “Easily Testable Realizations for Logic
Functions,” IEEE Trans. Computers, vol. 21, no. 11, pp.
1,183-1,188, Nov. 1972.

[20] D.K. Pradhan, “Universal Test Sets for Multiple Fault
Detection in AND-EXOR Arrays,” IEEE Trans. Computers,
vol. 27, no. 2, pp. 181-187, Feb. 1978.

[21] U. Kalay, D.V. Hall, M. A. Perkowski: A Minimal
Universal Test Set for Self-Test of EXOR-Sum-of-Products
Circuits. pp. 267-276, Volume 49, Number 3, March 2000

[22] R. C. Merkle, Reversible electronic logic using switches,
Nanotechnology, 4: pp. 21-40, 1993

[23] E. Perkins et al, Fault Testing for Reversible Circuits is
Easier, IWLS 2004.

 7

Name Model1 Gate Count Bits MGF LGF I/OSA-0-1 All
Models

2of5 GT 18 6 4 2 4 4

2of5 GT 15 6 3 2 4 4

2of5 NCT 12 7 3 2 5 5

rd32 NCT 4 4 2 2 3 3

3_17 NCT 6 3 2 2 4 4

4_49 GT 16 4 3 3 4 4

6sym NCT 20 10 4 3 5 5

9sym NCT 28 12 4 3 5 5

4mod5 NCT 8 5 1 2 3 3

4mod5 NCT 9 5 1 2 4 5

5mod5 GT 17 6 1 2 3 3

5mod5 GT 10 6 2 2 4 4

cycle10_2 GT 19 12 2 3 5 5

cycle17_3 GT 48 20 3 3 6 6

ham7 GT 23 7 4 3 4 4

ham15 GT 132 15 11 7 12 12

hwb4 GT 17 4 3 4 4 4

hwb4 GT&GF 11 4 2 2 4 4

hwb5 GT 55 5 6 7 7 7

hwb6 GT 126 6 12 5 11 12

hwb7 GT 289 7 19 11 13 19

mod5adder GT 21 6 3 2 4 4

mod1024adder GT 25 20 3 3 5 5

rd53 GT 4 7 2 2 3 3

rd53 GT 12 7 3 2 4 4

rd73 NCT 20 10 3 3 4 4

rd84 NCT 28 15 5 2 6 6

xor5 NCT 4 3 1 2 3 3

Table 1: # of tests required to cover fault. For Fault models “Missing Gate”, “Locked Gate”, “stuck-at”,
and combination of all models

Test

Count mod104876-adder hwb7tc mod1024adder cycle17_3 9symd2 2of5d2 3_17tc.tfc Cycle10_2 ham7tc xor5d1 rd32 5mod5tc

0 0 0 0 0 0 0 0 0 0 0 0 0
1 50 50 50 50 50 50 50 50 78.985 50 50 50
2 59.047 69.26 66.36 74.305 79.76 80.55 66.66 83 90.579 83.33 83.33 83.33
3 66.11 81.891 78.18 89.93 92.857 95.83 91.66 93 95.652 100 100 100
4 70.158 87.427 84.545 94.44 98.809 98.611 100 100 100 100 100 100
5 73.809 92.56 89.393 99.652 100 100 100 100 100 100 100 100
6 77.222 94.75 93.33 100 100 100 100 100 100 100 100 100
7 80.39 96.309 96.363 100 100 100 100 100 100 100 100 100
8 83.33 96.885 98.48 100 100 100 100 100 100 100 100 100
9 86.03 97.52 99.6963 100 100 100 100 100 100 100 100 100
10 88.49 98.327 100 100 100 100 100 100 100 100 100 100
11 90.714 98.442 100 100 100 100 100 100 100 100 100 100
12 92.698 98.904 100 100 100 100 100 100 100 100 100 100
13 94.444 98.961 100 100 100 100 100 100 100 100 100 100
14 95.952 99.192 100 100 100 100 100 100 100 100 100 100
15 97.22 99.711 100 100 100 100 100 100 100 100 100 100
16 98.253 99.884 100 100 100 100 100 100 100 100 100 100
17 99.047 99.942 100 100 100 100 100 100 100 100 100 100
18 99.603 100 100 100 100 100 100 100 100 100 100 100
19 99.92 100 100 100 100 100 100 100 100 100 100 100
20 100 100 100 100 100 100 100 100 100 100 100 100

Table 2: Percentage cover for combination of MGF, Stuck-at, and LGF models

 8

Test
Count

mod104876adde
r

hwb7t
c mod1024adder cycle17_3 9symd2 2of5d2 3_17tc.tfc Cycle10_2 ham7tc xor5d1 rd32 5mod5tc

0 0 0 0 0 0 0 0 0 0 0 0 0

1 12.987 23.379 22.727 22.493 39.583 42.105 50 32 39.705 50 41.36 50

2 24.707 38.31 41.136 40.953 63.541 71.052 78.571 54.5 64.705 100 83.33 56.578

3 30.292 47.222 49.545 55.623 80.208 84.21 85.714 63.5 77.941 100 83.33 56.578

4 35.259 55.729 55.909 55.623 89.583 89.473 92.857 63.5 94.117 100 83.33 56.578

5 39.642 62.789 60.454 55.623 94.791 89.473 92.857 63.5 97.058 100 83.33 56.578

6 43.506 68.287 63.636 57.579 94.791 89.473 92.857 63.5 97.058 100 83.33 56.578

7 46.883 74.594 65.681 57.579 94.791 89.473 92.857 63.5 97.058 100 83.33 56.578

8 49.805 76.851 66.818 57.579 94.791 89.473 92.857 63.5 97.058 100 83.33 56.578

9 52.305 78.935 67.272 57.579 94.791 89.473 92.857 63.5 97.058 100 83.33 56.578

10 54.415 82.002 70.681 57.579 94.791 89.473 92.857 63.5 97.058 100 83.33 56.578

11 56.168 82.986 70.681 57.579 94.791 89.473 92.857 63.5 97.058 100 83.33 56.578

12 57.597 85.879 70.681 57.579 94.791 89.473 92.857 63.5 97.058 100 83.33 56.578

13 58.733 87.152 70.681 57.579 94.791 89.473 92.857 63.5 97.058 100 83.33 56.578

14 59.61 89.12 70.681 57.579 94.791 89.473 92.857 63.5 97.058 100 83.33 56.578

15 60.259 91.724 70.681 57.579 94.791 89.473 92.857 63.5 97.058 100 83.33 56.578

16 60.715 93.344 70.681 57.579 94.791 89.473 92.857 63.5 97.058 100 83.33 56.578

17 61.006 93.807 70.681 57.579 94.791 89.473 92.857 63.5 97.058 100 83.33 56.578

18 61.168 94.155 70.681 57.579 94.791 89.473 92.857 63.5 97.058 100 83.33 56.578

19 61.233 94.155 70.681 57.579 94.791 89.473 92.857 63.5 97.058 100 83.33 56.578

20 62.37 94.155 70.681 57.579 94.791 89.473 92.857 63.5 97.058 100 83.33 56.578

Table 3: Percentage cover for CSSF model using test vectors from table 2, it should be noted that no new test vectors are created after 100% coverage from
table 1. First test cover percentages may be high due to the fact MGF covers CSSF at 0.

	ATPG for Reversible Circuits using Technology-Related Fault Models
	Let us know how access to this document benefits you.
	Citation Details

	Microsoft Word - jeffRev.doc

