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Abstract

Broken water pumps continue to impede efforts to deliver clean and economically-viable

water to the global poor. The literature has demonstrated that customers’ health benefits

and willingness to pay for clean water are best realized when clean water infrastructure per-

forms extremely well (>99% uptime). In this paper, we used sensor data from 42 Afridev-

brand handpumps observed for 14 months in western Kenya to demonstrate how sensors

and supervised ensemble machine learning could be used to increase total fleet uptime

from a best-practices baseline of about 70% to >99%. We accomplish this increase in

uptime by forecasting pump failures and identifying existing failures very quickly. Comparing

the costs of operating the pump per functional year over a lifetime of 10 years, we estimate

that implementing this algorithm would save 7% on the levelized cost of water relative to a

sensor-less scheduled maintenance program. Combined with a rigorous system for dis-

patching maintenance personnel, implementing this algorithm in a real-world program could

significantly improve health outcomes and customers’ willingness to pay for water services.

Introduction

Reliable and sustained water service delivery for the global poor remains a significant challenge

[1]. In emerging economies, today’s most common approach for delivering water services

focuses on deploying, maintaining, and monitoring aid projects for a short period of time.

Maintenance and impact evaluation is nominally performed by implementers (non-profits,

private companies, and governments alike), but often these infrastructure and aid projects fail

after short-term subsidies and supervision lapses. For example, in rural sub-Saharan Africa, a

large proportion of hand-operated pumps (handpumps) are broken; the Rural Water Supply

Network estimates that 10-67% of improved water sources are non-functional at any given

time [2], and much of this infrastructure will never be repaired.

Even when pumps work, only half of functioning handpumps adequately meet the implicit

intent of the World Health Organization’s Millennium Development Goal 7 (MDG 7): “ensure

environmental sustainability, targeting safe drinking water” [3]. The handpumps fail to meet
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the MDG 7 because they often deliver poor-quality groundwater or drive users to consume

surface water during outages resulting from pump damage or seasonal fluctuations in water

table levels [4]. Finally, imprecise methods used by non-profits, private companies, and well

drillers to evaluate handpumps before and after implementation adds to the reduction of true

water access improvements figures in developing countries [5]. Hence, there is increasing evi-

dence that much of the water, sanitation and energy services provided in developing countries

have failed to keep the promise of delivering clean water over decadal time scales.

Under today’s industry-standard service delivery model, a water pump implementation

agency will repair pumps when a community contact calls to report a pump failure (if the

implementation agency is still the active steward of the pump). However, this model breaks

down if community members do not initiate communication with the implementation agency,

or if the implementation agency does not respond to community requests because of a lack of

accountability. By contrast, in previous work we used sensor data and a public dashboard for

pump failure identification and accountability [6]. The model to identify pump failures was

very simple: uncharacteristically long gaps in pump use were used as a pump failure heuristic,

and service was dispatched accordingly. This pump maintenance model was termed the

“ambulance model” and resulted in an average of 91% of the pump fleet functioning at any

given time compared to just 56% of pumps functioning under the industry-standard service

model [6].

Achieving even higher fleet uptime (>99%) is seen as a critical step towards healthy and

financially-sustainable water delivery. Intermittent access to clean water is known to substan-

tially increase health risks; drinking clean water 9 out of 10 weeks is not enough to prevent

diarrheal and other disease. However, substantial gains in health outcomes can be realized if

infrastructure delivers clean water >99% of the time. A recently-published model compared

the health impacts (in terms of averted disability-adjusted life-years, ADALYs) between con-

sumption of untreated water and consumption of water free of microbial contamination.

The model found that “high adherence” to consuming clean drinking water yielded dramatic

improvements in health outcomes relative to “moderate” adherence [7]. Additionally, many

stakeholders believe that high reliability is key to unlocking consumers’ willingness to pay for

improved water service delivery; working pumps may illicit a virtuous cycle where reliable

water delivery unlocks payments which in turn are used to maintain pumps [8].

Although sustained high-quality water delivery requires the entire system of water delivery

to function effectively (i.e. a “systems thinking” approach to water delivery) [9], data from sen-

sors has demonstrated substantial increases in fleet performance. In our prior work, we imple-

mented the “ambulance maintenance model” where sensors enabled as-needed pump repairs.

This maintenance model led to about 9% of pumps being broken on average, and the primary

driver of downtime was the lag time between when a pump failed and when it was repaired.

This lag time is a result of the combination of the time it took for the failure heuristic to iden-

tify a failure and the delay in dispatching a repair person; it typically took 21 days between

when a pump failed and when a successful repair in the field was performed.

To boost uptime from 91% to>99%, we need a new preventative maintenance framework

that services pumps as soon as, or ideally before, they fail. Often, preventative maintenance is

operationalized by servicing equipment on a fixed schedule [10, 11]. However, a campaign of

routine scheduled maintenance and service in rural Africa could be expensive and cumber-

some; sending maintenance workers to the field to service working pumps is a drain on imple-

mentation agencies’ limited resources. Instead, agencies would prefer to identify pumps at

high risk for failure and service them as-needed and “just-in-time” before they break.

This condition-based maintenance, or the dispatch of maintenance resources in response

to a measured or predicted fault, has several advantages over time-based (scheduled)
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maintenance. The most important advantage of condition-based maintenance is the ability to

allocate limited maintenance resources where they are needed instead of spreading mainte-

nance resources evenly, including where they may not be needed [12]. A key factor in condi-

tion-based maintenance is the estimation of remaining useful life (RUL) which is the amount

of time left before a particular device fails or requires maintenance. Techniques for estimation

of RUL fall largely into two groups: physical models (based on a predefined relationship

between physical properties of a device and failure), and data-driven statistical (probabilistic)

or machine learning (predictive) models [13]. Such techniques have been applied in a wide

variety of industries [14] including aerospace [15], computing [13], and electrical distribution

[16].

In this study, we explore the possibility of a preventative maintenance of handpumps

enabled by machine learning. We train a model based on human-verified and sensor-observed

pump failures, and we analyze the ability of the learner to forecast failures and to identify fail-

ures quickly after they happen. We use the results of this learner to assess the impacts of a

hypothetical implementation of the scheme on a real-world pump fleet in western Kenya. We

analyze the hypothetical performance of the fleet as well as estimated impacts on costs to the

implementation agency and the lifetime cost of pump operation.

Design and methods

Study population

For this study, we analyzed a group of 42 Afridev-brand handpumps in western Kenya. The

pumps are maintained by The Water Project, “a 501(c)(3) non-profit organization unlocking

human potential by providing reliable water projects to communities in sub-Saharan Africa

who suffer needlessly from a lack of access to clean water and proper sanitation.” All pumps

were monitored by a SweetSense-brand cellular data-enabled handpump sensor. Data on

3-axis acceleration (measuring standpipe vibrations inducted by pumping activity) and pump

basin gauge pressure (a proxy for flowrate out of the nozzle attached to the water basin) were

logged at 10-second intervals while there was activity at the pump. This strategy reduced data

volumes by not sending 10-secondly data for times where the pump is not in use. For this

study, we used sensor data from mid-January 2016 through March 2017, for a total of 8962

sensor-observed pump days (not all pumps were monitored by sensors for the full study).

Super learner

We employed a supervised ensemble machine learning tool, Super Learner [17], for predicting

pump failures. Super Learner employs an ensemble of robust machine learning classification

techniques, using cross-validation methods to tune model parameters. We employed a number

of candidate machine learning algorithms (“learners”), including simple regression models,

Support Vector Machines, [18] Multivariate Adaptive Regression Splines, [19] and Random

Forests [20]. We then combined estimates from this ensemble of learning methods using

cross-validation. Cross validation masks random sections of the training set (pump-wise in

our case) and tests the performance of a learner trained on the remaining data against the

masked data [21]. In this way, the full dataset is both the training and the testing set, but cut

into multiple random subsets to be used as training and testing. This technique is the best

practice to avoid over-fitting in supervised machine learning.

This strategy allowed us to find optimal convex combination (weighted average) of an

ensemble of candidate prediction algorithms (i.e. model stacking/Super Learning) [17, 22].

Our classifier is probabilistic, but the eventual output of the machine learning tool is a thre-

sholded binary outcome: to dispatch a service person or not. The goal of this technique was to
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create a data-adaptive system capable of predicting failure well enough in advance to allow pre-

ventive maintenance, repair, or replacement.

Training

The Water Project keeps detailed records of pumps service visits, and these records served as a

training set for the Super Learner. Ground-truth data about when and why pumps failed was

used to classify a training set spanning the entire duration of the sensor-observed dataset. The

Water Project’s records indicate when a pump site was visited, what was wrong (if anything),

and when the pump was repaired (if applicable). However, the Water Project’s in-field records

do not contain precise start dates for pump failures. This lack of information is expected

because field workers can only confirm that pumps are broken and record when pumps are

repaired; it is difficult for field staff to define precisely when a broken pump’s problems began.

Therefore, manual inspection of sensor data was used to estimate the start time for field-veri-

fied pump failures.

In addition to field-verified pump failures, several events of persistent pump disuse

occurred that were not represented in failure records by The Water Project. These events

could have represented a short-term pump failure that did not initiate a service call (such as

silt buildup or low water table), or could have been due to cultural or environmental factors

(disuse due to holidays or heavy rain, for example). Regardless, these events were difficult to

distinguish from sudden pump failures. Because of the nature of these events, we believed that

they still warranted service call or site visit and thus needed prediction, so we also manually

classified them as “failures.” In total, 24 pump failure events were identified. These failures

ranged from 1 to 42 days in length, with a mean and standard deviation of 12.0 and 9.8 days,

respectively. This amounts to 288 pump failure days observed over the 8962 pump-day obser-

vation period.

The 24 observed failure events were used to train the learner. Although the handpump data

was collected at 10-second intervals, the training set for the learner was defined in terms of cal-

endar days. The positive class of the “current pump failure” training set was any calendar day

for which a failure event was ongoing. In some studies, times series data (such as pump vibra-

tion and pressure) are labeled using the positive or negative class, but our data collection strat-

egy did not send data to our servers when the pump was not in use. For this reason, “broken

days” made more sense as a positive training class than “broken data points.” We chose to

train using broken days versus broken hours/minutes/seconds because of (1) an a priori
assumption that the learner could not generate accurate predictions on time resolutions of less

than a day, and (2) the reality that implementers can not take action on pump failure informa-

tion at time scales less than a day.

To train the learner for forecasting failures, we programmatically defined seven different

positive (“will fail”) training classes ranging from 1-7 calendar days before the start date of any

pump failure (e.g. “pump will fail in 3 days”). Each of these 7 training classes trained their own

separate Super Learner, then the predictions of these 7 learners were pooled and used as covar-

iates in a final “forecast failure” learner.

Feature definition

Using the raw pressure and acceleration time series data, we defined the concept of a “pump-

ing event.” Vibration and head pressure in the water basin were measured by a SweetSense

unit as proxies for handle motion and water flow, respectively. The start of an event is defined

from when the pump’s handle begins to move and ends when the handle stops moving for 3 or

more minutes. For each pumping event, we calculated summary metrics. Then, we rolled up
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event-wise metrics into day-wise features that, based on domain knowledge, we believed were

predictive of imminent pump failure. Because all features are defined calendar-day-wise, all of

the learners’ predictions are also calendar-day-wise.

Feature extraction using domain knowledge is a common technique in machine learning

that reduces complex raw data into a smaller set of relevant variables that have a more simple

and consistent relationship with the outcome of interest, in our case device failure [23]. We

identified nine features that were of significant predictive value. These features broke down

into four categories: features based on the number of pumping events per day, the pump’s flow

rate, the duration of pumping events, and the ratio of a pump’s flow rate to amount of handle

motion (i.e. volume of water per human effort). For each category, we defined features based

not only on the per-event metric, but also several measures of deviation between the per-event

metric and the expected value (based on recent historical data). The three most important are

plotted in Fig 1. We were surprised to find that, often times, the features that represented the

absolute value of a physical property (e.g. flow) were often weighted less heavily than the same

property’s deviation from a recent historical trends. Although its not possible to know how

certain features would have been weighted with a larger data set, our study points to the poten-

tial value of features that rate historically-relative properties of a pump rather than just the

properties themselves. It is interesting to note that some of these features capture physical

properties of our pumps, and therefore our model is not a purely statistical model, but partially

a physical model.

Learner customization

The learner operates in two-stages. The first stage of the learner makes predictions day-wise;

only data from that particular day is used to estimate whether the pump has or will fail. In the

second stage, the learner accounts for long periods of time. For example, in its second stage the

learner may discount the probability of a single failed day islanded in a long stretch of working

days. The final predictors of current and forecast failure used for further analysis are given by

the output of the second stage. The model was unable to forecast failure with any better capa-

bility than a random guess at forecast horizons beyond 7 days.

The current and forecast learners do not directly predict the binary outcome of “not failed

vs. failed” or “won’t fail vs. will fail.” Instead, they provide a probability of failure for each day.

Any given pump-day will fall on a probability scale from 0-1 both in terms of the probability

that the pump is currently failed (current failure prediction), or will fail within 7 days (forecast

failure prediction). This probability that a pump has/will fail on any given day is illustrated in

the bottom three panels of Fig 1.

To operationalize the learner and turn its output into a binary “not failed vs. failed” or

“won’t fail vs. will fail” outcome, the implementer sets a threshold between 0 and 1 on the out-

put of the second stage prediction; above the threshold, the implementer assumes that the

pump has/will fail, and below the threshold the implementer assumes the pump has/will not

fail. The closer to 1 this threshold is set, the fewer false positives (believing the pump is broken

when it is not) will be classified, but this will be balanced with an increased number of false

negatives (thinking the pump is working when it has actually failed).

Implementation assumptions

Several assumptions had to be made about how an implementing agency would incorporate

this learner and how preventative maintenance would affect pump performance. First, we

analyzed a range of dispatch delays from 1 day to 21 days. We define the dispatch delay as the

amount of time between when the model identifies a pump failure and when a “dispatch”
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takes place. In this context, a dispatch could be any action from a phone call to sending a main-

tenance worker to the site.

Next, we needed to consider what would happen in the case of a dispatch resulting from a

forecasted failure. If a service person called or visited the site with the forecasted failure, but

the pump seemed to be working well, the service person would assume (rightly) that the fore-

casting model had generated a false positive, and would leave without performing mainte-

nance. Conversely, a service person who arrived on site to find a deteriorating (but not quite

broken) pump would assume the model had correctly forecasted a failure and perform preven-

tative maintenance. For this study, we assume that a pump that is within one week of a true

failure will show significant enough deterioration that the service person will perform

Fig 1. Features and model outputs plotted as time series. All data is colored by field-verified failure status. Three features are plotted: number of events

is the number of pumping events counted in a given day, while event deviation and flow deviation are normalized log-scale deviation of an event’s duration

and flow from its expected duration (correcting for day of week). Following the features are the outputs of the current failure prediction, the forecast failure

prediction, and the combined prediction (max of current and forecast). The y-axis of these metrics can be thought of as the probability that the pump has

failed (current prediction), will fail (future forecast prediction), or has/will fail (combined prediction). For a threshold probability of 0.5, a future failure would be

forecast the day before the true failure occurred for both the forecast classifier and the combined classifier.

https://doi.org/10.1371/journal.pone.0188808.g001
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preventative maintenance, thus preventing the future failure. In other words, we assume that a

preventative maintenance service visit only prevents failures that would have happened within

one week of the service visit. Thus, this assumption is conservative.

Finally, we assumed that in a real-world implementation, there would be a re-dispatch

interval. For example, if our model identified a false positive failure on a Monday and a service

person arrived on site to find a pump working well, it would not be reasonable to expect that

service person to re-dispatch on Tuesday if the model still predicted a failure. For this study,

we assume a one week re-dispatch interval before a service person would re-dispatch to the

same site.

Results

The top panel of Fig 2 illustrates the learners’ receiver operating characteristic which show the

trade-off between true positive rate (TPR) and false positive rate (FPR). In this context, a “true

positive” occurs when the classifier correctly (true) identifies a pump failure (condition posi-

tive), and a “false positive” occurs when the classifier incorrectly (false) identifies a working

pump as failed (condition negative). The TPR is the ratio of all true positives to condition posi-

tives, while FPR is the ratio of false positives to condition negatives. A perfect learner would

have an operating point where the true positive rate is 1 and the false positive rate is 0, but

most real-world solutions are a balance between true and false positives. ROC performance of

the current failure classifier is substantially better than the performance of the forecast failure

classifier because it is easier to predict when pumps have already failed compared to forecast-

ing when they will fail. For example, to achieve a true positive rate of 0.75, the current failure

classifier would have a false positive rate of *1%, but the future failure classifier would have a

false positive rate of *30%.

The bottom panel of Fig 2 illustrates the relationship between the cutoff threshold for failure

classification and the performance of the classifier. As the threshold for determining whether a

pump has failed is increased, the standard for a pump to be classified as failed becomes more

difficult. This is why, as the threshold approaches 1, then true positive rate falls to zero; there

are no pump days where the classifier is 100% sure that the pump is failed, so the ratio of

pump days classified as failed to the days pumps are actually failed falls to zero. Similarly, as

the threshold for failure classification increases, the likelihood of accurately identifying a

pump as working when it is really working increases, and this is observed as a rise in the true

negative rate. Positive predictive value (PPV) is the ratio of true positive classifications to all

positive classifications, and negative predictive value (NPV) is the corollary. Positive predictive

value generally increases with increasing threshold because the probability of of any given pos-

itive classification (failure) being true increases with the threshold, but the total number of pos-

itive classifications (PPV’s denominator) approaches zero as the threshold increases, leading to

erratic behavior near a threshold of 1.

For this paper, most figures are presented over the full range of possible thresholds, but

where full ranges are not presented, predictions are thresholded at 0.5 as discussed in Fig 1. A

summary of learner performance for a threshold 0.5 is shown in Table 1. Table 1 also shows

the performance of a solo generalized linear model (GLM) for reference against the ensemble

learner. The GLM has a slightly higher true positive rate than the ensemble learner, but a

much lower positive predictive value as well. This can be interpreted, roughly, as the GLM

being less “nuanced” than the ensemble model with slightly more correctly-identified pump

failures, but at the expense of many more incorrectly-identified pump failures.

Results discussed up to this point have been presented day-wise. However, most implemen-

ters consider failures in terms of strings of failure days which we call a “failure event.” So,
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Fig 2. Performance of the ensemble learner. Top: the Receiver Operating Characteristic (ROC) curve for both current and forecast failure prediction.

The ROC represents the range of possible trade-offs between the classifiers’ true positive (truly failed pump classified as a failure) and false positive (truly

functional pump classified as a failure) rates when choosing a threshold to operationalize the classifier. Bottom: the true positive rate (TPR), true negative

rate (TNR), positive predictive value (PPV), and negative predictive value (NPV, not to be confused with net present value) are plotted as a function of the

learner’s probability threshold. This bottom panel illustrates the relationship between learner performance and the implementer-defined probability

threshold to decide of a pump is broken (current) or will break (forecast) on any given day.

https://doi.org/10.1371/journal.pone.0188808.g002
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consecutive runs of predicted failures (either current or forecast) were modeled as “prediction

events.” If a predicted failure event overlapped a true failure event, that true failure event was

determined to be “detected.” At a threshold of 0.5, the model was able to detect 23 of the 24

failure events in the data set. Fig 3 illustrates the model’s time delay in detecting these true fail-

ure events.

Discussion

From a program viewpoint, implementers are primarily interested in increasing reliable and

cost-effective water services. Fig 4 illustrates the trade-off between fleet uptime and dispatch

responsiveness as a function of the number of model-initiated dispatches per pump-year. The

figure is faceted by dispatch delays ranging from 1 to 21 days. There are two important insights

visible in this figure. First, on a per-dispatch perspective, there is very little difference between

current, forecast, and combined models. The current failure model typically performs slightly

better on a per-dispatch basis (as a result of its higher positive predictive value). However, the

Table 1. Learner performance for classifying current and forecasted failures. A solo GLM model is shown for reference against the ensemble model.

metrics ensemble current failure ensemble forecasted failure GLM current failure (ref.) GLM forecasted failure (ref.)

true positive rate (sensitivity) 85.4% 51.0% 89.5% 59.4%

true negative rate (specificity) 99.4% 99.3% 98.4% 96.5%

positive predictive value 84.8% 82.5% 69.7% 54.4%

negative predictive value 99.4% 96.7% 99.6% 97.2%

Performance values shown for a failure threshold of 0.5.

https://doi.org/10.1371/journal.pone.0188808.t001

Fig 3. Histogram of forecasting performance. The detection delay for the 23 correctly-identified failures.

Negative numbers indicate forecasted failures, 0 indicates the model detected the failure on the failure day,

and positive numbers indicate detection lag. The learners in this study detected 22 out of 24 (92%) of these

failure events within 1 day of failure.

https://doi.org/10.1371/journal.pone.0188808.g003
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most important difference in fleet uptime results from the implementing agency’s dispatch

delay, and, to a lesser extent, the implementing agency’s capacity to perform many dispatches

in a pump-year. The goal of 99% fleet uptime could be achieved with our machine learning

model using just 2 dispatches per pump-year paired with a 1-day dispatch delay, or 22 dis-

patches per pump-year with a 7-day dispatch delay.

Table 2 estimates costs (in today dollars) of operating four different pump maintenance

models in Kenya over a pump lifetime of 10 years. These maintenance models are: (1) a nomi-

nal sensor-less baseline model where pumps are repaired as-needed prompted by requests

from local contacts, (2) a circuit model of sensor-less scheduled preventative maintenance

where pumps are serviced on a fixed schedule, (3) an ambulance model of sensor-enabled

maintenance where sensor data indicates handpump failure and initiates service events, and

(4) the machine learning model described in this paper where machine learning is used to

both forecast failures and/or detect failures very quickly after they happen. Although we have

estimated costs for all 4 models, The Water Project currently only implements two different

maintenance models in Kenya: a circuit model for pumps without sensors, and an ambulance

model for pumps with sensors. Therefore, we did not directly measure the cost of implement-

ing the nominal baseline (sensor-less as-needed maintenance) model in Kenya, but we esti-

mate its cost by extrapolating from previous work in Rwanda [6].

Fig 4. Achieving 99% uptime. The uptime of the pump fleet is plotted as a function of the number of dispatches per year for different dispatch delays.

Achieving 99% uptime requires either a very short dispatch delay or many dispatches per year.

https://doi.org/10.1371/journal.pone.0188808.g004
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For operational expenditures, we measured that sensors cost some $110 in spare parts per

sensor-year. Additionally, we estimate that running an effective machine learning-enabled

program or ambulance model will require 3 extra dispatches of field staff per year: 2 false posi-

tive dispatches per year (using a 1-day dispatch delay) and 1 additional battery-swapping dis-

patch. We conservatively estimate that these extra dispatches will cost $100 per dispatch. We

note that batteries on the sensor must actually be swapped twice per year, but we assume only

one dispatch is dedicated solely to battery swapping because the other swap could be per-

formed performed during a maintenance visit or false positive dispatch. Kenya-based pump

operational expenses and USA-based administration expenses represent the staff and non-

sensor-related material expenses of maintaining a pump fleet. Deploying sensors requires

additional staff effort in Kenya and the USA to serve as stewards of the sensor fleet, and the

associated increases in costs are shown in Table 2.

From a cost perspective, the most important comparison in Table 2 is between the sensor-

less circuit (scheduled) maintenance model and the sensor-enabled machine learning model.

Both of these maintenance models aim to increase fleet uptime by performing preventative

maintenance. The machine learning model costs more over its lifetime to implement than the

circuit model ($22,174 vs. $17,413), but the machine learning model also has significantly

higher performance, boosting fleet uptime from 72.9% to 99.0%. When we adjust the cost of

operating the pump to account for how much it costs to operate per year that the pump is work-
ing, the machine learning model is less expensive, saving 7% relative to the circuit model on

the cost of water delivered.

In addition to modest savings in the direct cost of delivering water, there could be large eco-

nomic and health gains realized from the high fleet uptimes enabled by machine learning. For

example, prior work has shown that small improvements to pump uptime can unlock signifi-

cantly higher willingness to pay: improving the downtime between failures from 27 to 2.6

days per failure (at 2 failures per year, an improvement in fleet uptime from 85% to 99%)

increased willingness to pay by 5X from from 0.2 USD to 1.0 USD per day [8]. Additionally, as

previously mentioned, health outcomes and access to clean water may have a highly non-linear

Table 2. The cost of delivering the ML-derived preventative maintenance model compared to other models.

Category Sub-category Nominal baseline

maintenance (no sensor,

as needed)

Circuit (scheduled)

maintenance (no sensor,

preventative)

Ambulance maintenance

(sensor-enabled, as-

needed)

Machine learning

maintenance (sensor-

enabled, preventative)

Capital Exp. Pump $10,000 $10,000 $10,000 $10,000

Sensor $0 $0 $360 $360

Annual

Operational

Exp.

Sensor $0 $0 $410 $410

Kenya-Based

Pump

$120 $230 $300 $300

USA-Based

Admin.

$730 $730 $820 $820

NPV (5% cost of

money)

CapEx $10,000 $10,000 $10,360 $10,360

OpEx $6,563 $7,413 $11,814 $11,814

Total $16,563 $17,413 $22,174 $22,174

Cost of Service

Delivered

Uptime 67.5% 72.9% 96.5% 99.0%

USD per

Working Year

$2,453 $2,387 $2,298 $2,240

Note: the uptimes for the nominal baseline and circuit models were not observed in this study; uptime data for the nominal baseline and circuit models are

shown for comparison from Nagel et al., 2015. Net present value calculations assume a 5% annual cost of money.

https://doi.org/10.1371/journal.pone.0188808.t002
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relationship. The health benefits of drinking clean water may not be realized until clean water

is highly reliable, readily available, and consumed nearly exclusively [7]. In other words, not

only do sensors and machine learning make it more affordable to operate a working pump,

sensors and machine learning also have the potential to unlock additional health benefits and

financial sustainability.

The marginal cost of implementing sensors, machine learning, and preventative mainte-

nance activity are spread over the total utility that the equipment (a handpump in this case),

delivers to customers over its lifetime. For this reason, there would be an even greater per-dol-

lar benefit from implementing a sensor and machine learning-enabled preventative mainte-

nance program on larger commercial assets such as motorized borehole pumping stations.

While the cost of sensors and algorithms would not be significantly changed, the total benefit

delivered to customers per functional pump-year would be greatly increased because of the

larger pumping capacity of these stations.

In conclusion, the highly non-linear relationship between pump performance and health &

economic outcomes illustrates that pumps need to perform extremely well before their benefits

to society can be realized. This non-linear relationship also suggests that there is more con-

sumer surplus to be gained by improving the function of existing pumps rather than building

ever more new pumps that function only marginally well. This study has demonstrated that a

machine-learning-enabled preventative maintenance model has the potential to enable fleets

of handpumps that function extremely well by driving total fleet uptime to>99%, thus provid-

ing a realistic path forward towards reliable and sustained clean water delivery.
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