Utility of Spirometry as a Measurement Tool to Evaluate Breathing and Swallowing Coordination (BSC)

Aamna Malik
Portland State University

Jessica Thurman

Deanna Britton
Portland State University

Andrew Demetrius Palmer
Portland State University

Donna Jensen Graville
Portland State University

Follow this and additional works at: https://pdxscholar.library.pdx.edu/studentsymposium

Part of the Speech and Hearing Science Commons

Let us know how access to this document benefits you.

Malik, Aamna; Thurman, Jessica; Britton, Deanna; Palmer, Andrew Demetrius; and Graville, Donna Jensen, "Utility of Spirometry as a Measurement Tool to Evaluate Breathing and Swallowing Coordination (BSC)" (2018). *Student Research Symposium*. 9.
https://pdxscholar.library.pdx.edu/studentsymposium/2018/Presentations/9

This Oral Presentation is brought to you for free and open access. It has been accepted for inclusion in Student Research Symposium by an authorized administrator of PDXScholar. Please contact us if we can make this document more accessible: pdxscholar@pdx.edu.
Utility of Spirometry as a Measurement Tool to Evaluate Breathing and Swallowing Coordination (BSC)

Aamna Malik, Jessica Thurman, Dr. Deanna Britton
Additional collaborators: Andrew Palmer, Donna Graville
Introduction

Current methods include:

<table>
<thead>
<tr>
<th>Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nasal Thermistry</td>
</tr>
<tr>
<td>Respiratory Inductance Plethysmography</td>
</tr>
<tr>
<td>Electromyography (EMG) of diaphragm and abdominal muscles</td>
</tr>
</tbody>
</table>

Limitations: These methods do not capture the volume of inspired and expired air. They are limited to detection of the presence and direction of airflow.
What is spirometry?

- A measurement tool that allows researchers to track flow and volume of air inspired and expired. It can be used to measure the respiratory phase pattern and swallow apnea duration.

Figure 1: Measures of Breathing Swallowing Coordination (BSC):
Swallow apnea duration and respiratory phase pattern

- Swallow apnea duration (SAD)- circled
- Respiratory phase pattern – squared
 (Associated volume/flow will be reported as well.)
- Swallow Duration:
 (bordered by vertical bars)
Is it feasible to measure BSC via spirometry?
Method

- Recruitment of healthy adults
 - SPHR Undergraduate and Post-Bacc Students
 - Faculty and community members

- Exclusion criteria:
 - Neurological condition
 - Difficulty with breathing and or swallowing
Method

Nasal mask (Phillips Wisk) set-up on participant.
Method

The nasal mask was then connected to pneumotachograph (Hans Rudolph 3813) and spirometer/Powerlab (ADInstruments, Inc.)

Participants were instructed to keep their lips sealed unless they were taking bites and sips of food.
Method

<table>
<thead>
<tr>
<th>DRINK</th>
<th>FOOD</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Three 10-ml sips of water via medicine cups</td>
<td>1. Three teaspoons of applesauce</td>
</tr>
<tr>
<td>2. One 30-ml sequential sip</td>
<td>2. One bite of cracker</td>
</tr>
</tbody>
</table>
Method

Sips of liquids were administered in a cup with a straw.
Method

Participants were given apple sauce by the researcher
Method

- LabChart 8 (ADInstruments):
 - Swallow apnea duration (SAD)
 - Respiratory Phase Pattern (RPP)
 - Volume of pre- and post- apnea respirations
 - Average of peak flow (RMS)

- The RPP data was also compared to the same measures derived from inspiratory and expiratory phases of tidal breathing.
Results - Feasibility

Eleven subjects were recruited. One was later excluded from analysis due to possible history of neurological injury.

Measurement of BSC was quick and easily tolerated by participants.
* On average collection of all data took less than 10 minutes.
Results – Single Sips (N=10)

• Average swallow apnea duration (SAD) was 0.91s (SD=0.63)

• RPP:
 o Expiratory/ Expiratory - 83% of swallows
 o Expiratory / Inspiratory – 10% of swallows (one subject)
 o Inspiratory / Expiratory – 7% of swallows (2 subjects – 1 of 3 swallows)
Example of tidal breathing

Inspiration above

Expiration below
RPP – volume and flow during single sips of water

N = 10

<table>
<thead>
<tr>
<th></th>
<th>Volume (L)*</th>
<th>Flow RMS (L/s)*</th>
<th>Volume - % of Average TV*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre-Swallow apnea RPP</td>
<td>0.16 (0.14)</td>
<td>0.16 (0.06)</td>
<td>0.20 (0.16)</td>
</tr>
<tr>
<td>Post-Swallow apnea RPP</td>
<td>0.32 (0.29)</td>
<td>0.21 (0.10)</td>
<td>0.43 (0.36)</td>
</tr>
</tbody>
</table>

*Mean (SD)

Acronyms: Respiratory phase pattern (RPP); Liters (L); Root mean square (RMS); Liters/second (L/s); Tidal volume (TV)
Results: Average SAD with Sequential Sips

<table>
<thead>
<tr>
<th>Sequential Sips</th>
<th># SADs</th>
<th>SAD (s) - Mean</th>
<th>SAD (s) - SD</th>
<th>Average SAD per swallow</th>
</tr>
</thead>
<tbody>
<tr>
<td>N=3</td>
<td>1</td>
<td>3.26</td>
<td>0.21</td>
<td>1.09</td>
</tr>
<tr>
<td>N=1</td>
<td>2</td>
<td>1.53</td>
<td>1.19</td>
<td>1.02</td>
</tr>
<tr>
<td>N=6</td>
<td>3</td>
<td>0.65</td>
<td>0.21</td>
<td>0.65</td>
</tr>
</tbody>
</table>
Results – RPP with Sequential Sips (N=10)

<table>
<thead>
<tr>
<th>RPP</th>
<th># SADs</th>
<th>EX-EX</th>
<th>IN-EX</th>
<th>EX-IN</th>
<th>IN-IN</th>
</tr>
</thead>
<tbody>
<tr>
<td>N=3</td>
<td>1</td>
<td>.66 (2 of 3)</td>
<td>0</td>
<td>.33 (1 of 3)</td>
<td>0</td>
</tr>
<tr>
<td>N=1</td>
<td>2</td>
<td>1 (1 of 1)</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>N=6 (of 18 samples)</td>
<td>3</td>
<td>0.72</td>
<td>0.17</td>
<td>0.11</td>
<td>0</td>
</tr>
</tbody>
</table>
Results – Sequential Sips (N= 10)

RPP volume and airflow

<table>
<thead>
<tr>
<th></th>
<th>Volume (L)*</th>
<th>Flow RMS (L/s)*</th>
<th>Volume - % of Average TV*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre-Swallow apnea RPP</td>
<td>0.19 (0.16)</td>
<td>0.16 (0.06)</td>
<td>0.21</td>
</tr>
<tr>
<td>Post-Swallow apnea RPP</td>
<td>0.31 (0.28)</td>
<td>0.23 (0.11)</td>
<td>0.35</td>
</tr>
</tbody>
</table>

Mean (SD)

Acronyms: Respiratory phase pattern (RPP); Liters (L); Root mean square (RMS); Liters/second (L/s); Tidal volume (TV)
Preliminary differences with sequential sips

- Variability in swallows
 - Number of SADs (duration varied with the number)
 - RPP – More instances of inspiration before and after

- However, the volume and flow during RPPs were similar to single sips.
Variations in sequential sips

One long swallow apnea

Three separate sips
Breath holding & disruptions in tidal breathing

Breath hold before swallowing a sip of water

A “sniff” during tidal breathing followed by a saliva swallow
Informal Observation: “Schluckathmung”/ʃʊk.at.mɛn/

- An “inspiratory effort” at the beginning or end of the swallow
Discussion

Possible significance of findings:
- Evaluation of BSC via spirometry is feasible and yields additional airflow measures which may further aid assessment of BSC in individuals with neuromuscular and respiratory impairments.

Future directions:
Spirometry may potentially be useful as a form of biofeedback for BSC.
Limits and future studies

- Small pilot study.
 - Larger sample size needed

- Measuring disordered swallows

- Test run with a bite of food/liquid to ensure participant understands instructions

- Future study with ALS patients
 - Spirometry with simultaneous Videofluoroscopic Swallow Study (VFSS)
Questions?