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Effects of Future Connected Autonomous Vehicles on 
Freeway Congestion Using Fuzzy Cognitive Mapping 

Hakan Kutgun, Vivian Du Pont, Henry Janzen 
Engineering and Technology Management Department, Portland State University, Portland, OR, USA 

 
Abstract—Continuing population growth and urbanization 

are projected to add 2.5 billion people to the world’s urban 
population by 2050 [1]. It is evident that this will increase traffic 
congestion especially in the urban areas, which will bring 
economic, safety, environmental and quality of life challenges. 
There are various organizations looking for possible solutions to 
reduce the impact of future congestion by long term planning [2], 
most of these studies don’t take into account emergence of 
disruptive technologies. The concept of vehicles with autonomous 
driving and online connectivity capabilities, namely, connected 
autonomous vehicles (CAVs) is an emerging technology [3] which 
may contribute to the solution of this problem through adoption. 
This paper aims to shed light on effect of different levels of CAV 
adoption on congestion through scenario planning with fuzzy 
cognitive mapping. Different future scenarios on CAV adoption 
based on research and development being done on CAV 
technology [3] are run through a fuzzy cognitive model of 
congestion developed through detailed literature review. Results 
indicate CAV adoption provides an opportunity for reducing 
congestion. Therefore suggesting, investing in CAV enabling 
upgrades of existing roads, and giving incentives for CAV 
adoption, is a viable option for city planners’ and local 
governments’ project portfolios to reduce congestion. 

I. INTRODUCTION 

Road congestion continues to grow, exasperating issues 
such as increased travel time, negative economic impact, 
increasing the number of accidents, negative environmental 
impact, and decreasing driver’s well being. A 2004 study [4] 
reveals that in the early 2000’s the cost of congestion in the US 
was $7.8 billion annually. Many options are being considered 
to reduce congestion, such as additional lanes, improved traffic 
controls, encouraging alternate means of transportation. Recent 
developments in car technology introducing low levels of 
autonomous cars with the goal to reach fully autonomous cars, 
holds promising potential to reduce congestion. Autonomous 
vehicles can reduce vehicle to vehicle spacing [5] and provide 
safer vehicle operation reducing accidents [6], both of which 
have the potential to reduce congestion. Many car 
manufactures are engaged in autonomous car development [3] 
achieving significant strides. Currently cars are available with 
adaptive cruise control and automated lane changing. Fully 
autonomous cars are projected to be the dominant vehicle 
configuration by 2040 [7]. This paper examines the potential 
impact autonomous cars could have on road congestion using 
Fuzzy Cognitive Mapping. 

A. Impact of Road Congestion  
In 2014, the average American spent 42 hours in traffic 

congestion delays which equates to $132B/year in lost labor 
and fuel costs. Commercial trucking congestion adds $28B in 
labor and fuel costs for a total of $160B/year. In 1982, the 
yearly auto commuter congestion delay was 18 hrs and the total 
cost including commercial trucks in 2014 dollars was 
$42B/year. There has been a steady increase in congestion. 
With the growing urbanization trend, congestion and associated 
costs are expected to increase to $192B/yr by 2020 (in 2014 
dollars) [3]. 

The stop and go nature of congestion traffic reduces engine 
operating efficiency, increasing car emissions vs the steady 
flow of cars in non-congested areas. A study carried out in 
Southern California estimates that congestion reduction 
measures could reduce vehicle CO2 emissions by 7 - 24% [8]. 
This is a wide range, but it shows that through congestion 
reduction there can be significant reduction in CO2 emissions. 

The number of traffic accidents increases as congestion 
worsens [9]. This stands to reason as the stop and go nature of 
congestion introduces more activity on the part of the driver to 
brake and accelerate, introducing more potential for error. 
More congestion often causes drivers to change lanes in effort 
to find a faster lane. Lane maneuvers again increases the 
potential for driver error. In addition, accidents cause 
secondary accidents due to flow interruption and ‘rubber 
necking’ further increasing the frequency of accidents [9].   

Finally a person’s well being and productivity decline when 
the commute regularly battles congestion [10]. There are mixed 
reports on whether the congestion has significant impact on 
general wellness and productivity, but there is growing 
evidence that traffic congestion has a negative impact on well 
being. [11]   

These negative impacts due to road congestion make road 
congestion a major issue that drive government, industry, 
academia and general public searching for ways to reduce it.   

B. Trends in Autonomous Vehicles 
The race is on to develop autonomous cars. The race not 

only includes the current dominant car OEMs such as Toyota, 
GM, Ford, Honda etc, but also Silicon Valley companies such 
as Apple, Google and Tesla, and start-ups such as NuTonomy 
[12]. The majority of major vehicle OEMs are heavily engaged 
in autonomous vehicle development currently offering lower 
level of autonomous vehicle features such as adaptive cruise 
control, lane assist and lane changing. Navigant Research 
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analysis rated the top 18 players in the autonomous vehicle 
arena noting that many of these companies are currently testing 
autonomous vehicles public roads. [13]  

 
Fig. 1. Industry Engagement in the Autonomous Vehicle Development [3] 

Even though the race is on to develop and implement 
autonomous vehicles, due to safety reasons and the lifecycle of 
cars, most estimations of autonomous car sales predict it won’t 
be until 2040 before autonomous cars are the dominant seller 
[7]. See figure 2 for adoption prediction of autonomous 
vehicles.  

 
Fig. 2. Adoption Prediction of Autonomous Cars [7] 

C. Scope 
This study focuses on controlled access highways in 

metropolitan areas, highways connecting cities within 60 miles 
and traffic corridors. These are the areas where the high density 
traffic creates significant congestion issues. Secondly this 
environment was chosen as there is some available research 
data on autonomous vehicle impact. 

Autonomous vehicles considered in this study are level 4 
per Society of Automotive Engineering standard 3601. A level 
4 autonomous vehicle requires a driver, but the vehicle controls 
all driving functions, allowing the driver to perform leisure, 
work or other activities. A level 5 autonomous car does not 
require a driver, see appendix A for a description of all 
autonomous car levels. The large number of factors influencing 
the impact of even just a level 4 autonomous vehicles on 
congestion resulted in this study focusing level 4 autonomous 

vehicles to make this a manageable, and more meaningful 
study.    

II. METHODOLOGY 

Literature research was carried out to gather information on 
existing and future autonomous vehicle solutions, and on car 
congestion studies. After identifying the main causes of 
congestion as well as collect expert opinion on the subject, 
knowledge obtained is used to represent causalities in a 
cognitive map. The authors of this paper conducted literature 
review in order to provide expert opinion input. 

The flowchart of the methodology is given in Figure 3. 
Causal cognitive maps were chosen as the primary method to 
develop and explore multiple scenarios related to the adoption 
of autonomous vehicles. The cognitive mapping technique 
applied is Fuzzy Cognitive Mapping (FCM), which provides 
the structure to identify, model and clarify the system behavior. 
FCM method was introduced by Bart Kosko [14] in 1986, and 
since then, has gained considerable interest due to their 
potential to represent structured knowledge and develop model 
scenarios for complex systems in various fields.  

 

Fig. 3. Flowchart of the Methodology 

Once the FCM scenario is developed, a participatory 
modeling tool for FCM named Mental Modeler [15] was be 
used to simulate and evaluate the system dynamics in order to 
determine how the introduction of autonomous vehicles will 
impact traffic congestion. 

A. Fuzzy Cognitive Mapping & Scenario Planning 
Cognitive maps were first introduced in the 1970s by 

Robert Axelrod to represent social scientific knowledge [14]. 
FCM has its origins in concept and cognitive mapping and 
provides a way to systematically collect and represent 
knowledge in fuzzy-graph structures. 

With FCM, mental models can be created by representing 
causal relations between elements of a system or environment, 
and applying fuzzy logic to those causal relationships to 
express the hazy degrees of causality in the cognitive map. As a 
result, FCM offers a powerful tool to capture and interpret the 
complexity and knowledge of an environment or a system as 
well as understand its conceptual components. 

The early identification of future trends and the anticipation 
of market changes are crucial factors for business to achieve 
success under uncertainty. In this scenario, the use of 
techniques to explore multiple future alternatives and address 
business challenges has become extremely important.  



Scenario planning techniques have raised as one of the most 
effective approaches to help companies become more flexible 
and innovative, and make better decisions while dealing with 
business challenges [16]. Since 1970s, a number of scenario 
development techniques and methodologies have been 
proposed and studied [17]. A framework for building FCM-
based scenarios proposed by Jetter & Schweinfort [18], which 
is comprised of 6 steps integrating two different approaches for 
Scenario Planning and FCM modeling, has been used as a 
guideline for this project. For each step, Figure 3 shows the 
tasks undertaken. 

 
Fig. 4. Figure 4 - Framework for Building FCM-based scenarios 

B. Factors Contributing to Congestion  
To shed light on how CAVs might mitigate congestion we 

need to understand the underlying causes of its occurrence, as a 
whole. According to a 2003 study by Federal Highway 
Administration [19], causes of traffic congestion are listed 
under two categories as recurring and nonrecurring. Recurring 
causes are given as insufficient capacity, unrestrained demand, 
ineffective management of capacity whereas non recurring 
causes are given as incidents, work zones, emergencies, and 
weather conditions for conventional traffic congestion.  

A further study in 2004 [20] depicts the relationship 
between mobility or congestion (outcome) measures and 
operations or efficiency (output) measures as given in Figure 5. 

 

Fig. 5. General Taxonomy of Factors Causing Congestion 

We primarily focus on how CAV adoption affects recurring 
causes of congestion as they are the reason for the chronic 
congestion.   

C. Recurring Congestion 
These are the factors that cause congestion on an ongoing 

basis. The continuous nature of these factors is the reason for 
the chronic congestion on freeways. 

 

 

1) Capacity 
Since the capacity of freeways are limited at any given time 

and location, the only way that CAVs have effect on capacity is 
through improving management of capacity. This includes 
route and signaling optimization, better decisions made by 
informed driver (human or machine) and flow pattern of 
vehicles in traffic [21]. In these areas, 5 factors are identified 
that CAV technology is expected to improve that would 
directly affect capacity are: Signal timing optimization, route 
optimization, efficiency of lane changes, spacing between 
vehicles and average velocity of vehicles. The connectivity 
features would especially be useful through signal timing and 
route optimizations. CAVs can receive the information of any 
capacity bottlenecks (due to both recurring and non-recurring 
causes) in advance and road signals can be further optimized by 
information flowing through the CAVs creating the demand. 

2) Demand 
The demand on freeways is primarily driven by number of 

cars in traffic and how long they stay on the road [21]. This 
number includes all vehicles in traffic; personal vehicles, 
freight, car sharing, transit and alike. Transit use directly 
affects the number of cars as well as demands itself. The time 
dependent increase in total demand is considered a non-
discriminating factor between different CAV scenarios 
therefore left out of scope of this study. However, public transit 
is a different story. Currently only 5% of US commuters use 
public transit [22]. This picture changes when considering high 
density areas. The top four US counties with highest 
concentration of public transportation are counties in New 
York, where on average in these counties 57% of workers use 
public transportation to travel to work. In Oregon 4.16% of 
commuters use public transportation, with 10.7% commuters in 
Multnomah county use public transportation [22]. The effect of 
CAV adoption on car sharing and public transport are taken 
into account as factors that would change the number of 
vehicles in traffic through reducing personal vehicle ownership. 

D.  Non-recurring Congestion 
These are the factors that cause congestion on the basis of 

discrete occurrences. The occurrence of these factors is limited 
to time and space, therefore cause acute congestion on 
freeways. 

1) Incidents  
Primarily caused by driver errors, occurrence of incidents, 

ie traffic accidents, are also affected by work zones and 
inclement weather conditions. 

2) Inclement Weather  
Although the occurrence of inclement weather is left out of 

scope of this study, its effects on incidents, driver errors, 
effective management of capacity and congestion are 
discriminating factors for future scenarios. 

3) Work Zones  
Freeways require regular maintenance and occasional 

repairs. These activities create work zones which affect 
capacity, driver errors and congestion. Number of cars in traffic 
and effective management of capacity affect the consequences 
of work zones that cause congestion. 



III. FUTURE SCENARIOS 

Taking current traffic conditions (i.e. almost no CAVs in 
traffic) as baseline, variations of 2 different future scenarios are 
considered: 

Scenario 1 - High CAV Adoption 

Scenario 2 - Moderate CAV Adoption 

To provide consistency in scenarios identified, trends of T1: 
Advancing CAV technology [23] and T2: Increasing 
urbanization [1] are cross matched with 3 future uncertainties: 
U1: Consumer acceptance of CAVs, U2: Effect of CAVs on 
car sharing and public transport, U3: Regulations and 
infrastructure to support CAV use. Although it is evident that 
U1 and U2 will follow direction of  T1 and T2, no reliable 
source was found for us to comment on which way U2 will go 
with CAV adoption. Therefore effect of CAVs on car sharing 
and public transport are taken into consideration as separate 
scenarios as shown in Table 1 

TABLE I.  SCENARIOS 

 
Within each of the primary scenarios, sub-scenarios are run 

to evaluate the influence of increasing and decreasing use of 
public transit and car ride sharing. Different scenarios 
considered are as follows: 

Baseline: The world as we live in today. Traffic demand 
dominated by conventional vehicles running on fossil fuels. 
Urbanization and congestion are on the rise. Connected drivers 
exist with a human interface; however smart roadways are 
limited to interactive signaling, without any direct interface 
with driving vehicles. Car sharing and electric vehicles are on 
the rise with a future open to multiple possibilities. 

Scenario 1 High CAV Adoption: A world dominated by 
high adoption of advanced technology. Safe, reliable technical 
solutions combined mass market with price reductions make 
electrical drive and CAVs more appealing and widely 
acceptable. With increasing economic growth and urbanization, 
demand in a higher quality of life increases rapidly. As most of 
the vehicles in traffic consist of CAVs, even conventional cars 
are much more connected. Local and national governments 
have the vision and resources to respond rapidly to overcome 
the regulatory challenges as a priority. Transportation budgets 
are mostly spend on connectivity upgrades of existing roads 
rather than increasing capacity by traditional means, which 
with advancements in technology becomes cheaper to do. 
Roadways are optimized more and more towards CAV use. 

Variation 1: Consumers are able and willing to choose 
tailored transportation choices among an array of on-demand 
services. Personal car ownership declines. 

Variation 2: With increasing economic growth, CAVs 
become personalized commodities. Cars remain a way of 
expressing personal identity, even expression of social status 
with CAVs suited to needs of their owners. Car sharing and 
public transportation dwindle. 

Scenario 2 Moderate CAV Adoption: Although the 
technical advancements in EV and CAV development continue, 
they are mostly market driven and commercial use of fully 
autonomous CAVs is the primary concern. Public have 
concerns about fully autonomous cars and adoption is limited. 
Urbanization is almost on par with suburban sprawl making 
arterial roadways even more critical. There are lanes allocated 
to fully autonomous commercial cars with smarter 
infrastructure. People prefer to keep their own cars while car 
sharing and overhaul are dominated by fully autonomous 
CAVs. Although connectivity is now mainstream, there aren’t 
as  many autonomous cars in traffic as there are conventional 
cars in personal use. CAVs remain out of reach for most of the 
public causing a backlash against advanced CAVs as a threat to 
low-income jobs and given privileges in allocated lanes. 

Local and national governments are torn between allocating 
resources to technological upgrades of existing roadways 
towards CAV compatibility vs. increasing capacity. Progress 
regarding regulatory challenge is lagging.  

Variation 1: There’s steady demand for personal vehicles. 
Car sharing continues steady without a disruptive spike. 

Variation 2: Fed up with challenges of commuting long 
distances and urbanization, most people prefer to use car 
sharing and public transport for their commutes.  

IV. ANALYSIS 

Through extensive literature review, a model of freeway 
congestion is constructed as a fuzzy cognitive map (FCM) as 
seen in Figure 6. The model consists of 15 elements (a.k.a 
nodes) and 32 connections (a.k.a. vectors). 

 

Fig. 6. Freeway Congestion FCM 

Although “Effect of inclement weather” has no connection 
to receive input from “Adoption of CAVs” it is left in the 
model for the sake of completeness. All vectors connecting the 
elements have equal strength, differing only as positive or 
negative. The values for any vector is given as 1 for direct 
correlation or -1 for a negative correlation between connected 
elements in the direction of the connecting vector, see appendix 
B for all vector inputs. 

The only node excited (given initial input) for different 
scenarios is the “Adoption of CAVs” at the top left corner of 
the model. The model uses a sigmoid squashing function. A 



few logical check runs conducted on the model identified an 
input of 0.5 to be the “neutral point” for the input node 
(Adoption of CAVs). This means that 0.5 value as the input 
will be considered as the baseline for representing the current 
state as no CAV adoption. Keeping the maximum value of the 
input same as the strength of connecting vectors, 1.0 is 
considered as the representation for Scenario 1 and 0.7 is 
considered as the representation for Scenario 2. 

For the variation of scenarios (a through i for Scenario 1 
and Scenario 2) the value of vectors connecting “Adoption of 
CAVs” to “Use of public transport” and “Adoption of CAVs” 
to “Use of car sharing” are rotated between 1, 0 and -1 for all 
possible combinations. The analysis yielded 18 different values 
for “Congestion” as shown in Table 2. 

TABLE II.  VALUES OF CONGESTION AS A RESULT OF SCENARIO RUNS 

 
As negative values mean decrease in congestion, results 

indicate that even moderate CAV adoption reduces congestion, 
but not as much as a high adoption scenario. Comparing results 
on column i to the rest on Table 2, it can be concluded that a 
negative correlation between CAV adoption and public 
transport & car sharing is influential, however a positive 
correlation is not. As either or both of public transport and car 
sharing decrease, the reduction in congestion also decreases. In 
some cases (Scenario 2e), decrease in public transport and car 
sharing as a result of CAV adoption evens out the congestion 
reduction effect of CAV adoption (Scenarios 2a, 2b, 2c, 2d, 2g, 
2i).  

V. DISCUSSION 

The initial mental modeler scenario was run to test the case 
of increasing the CAV adoption, while not changing other 
components. To simplify the analysis, the model was 
constructed with moderate number of components. 
Components included were thought to be the more significant 
factors in the CAV and congestion relationship. For example, 
one component that was not included was the potential increase 
in miles travelled if CAV usage is increased. Some predict that 
if CAV’s are used, and people can do work, relax or perform 
other leisure activities while driving. In turn this may result in 
people living further from business centers and increasing the 
commute distance. This would effectively add more cars 
travelling on a road, increasing demand and as a result increase 
congestion. There are many more examples of factors that 
could contribute to CAV adoption and congestion, but to not 
overly burden the initial analysis with undue uncertainty, the 
model was constructed with a moderate number that were 
considered dominant components and elements, to give some 
direction of CAV impact on congestion. With a moderate 
number of components in the model, the simple case of 
increasing CAV adoption reflected that congestion was reduced. 
Since simple binary (either +1 or -1) relationship between 
components was used, the number of components related to a 
phenomenon influenced the results. For example, in the mental 
modeler model, the adoption of CAV’s are linked to a number 

of components such as reducing vehicle following distances, 
more efficient lane changes, higher vehicle speeds, and route 
optimization. All these components reflect a plausible impact 
on congestion with CAV adoption, but when using binary 
component relationships, each of these components add weight 
to the increase of CAV’s. The reason for including the multiple 
components linked to CAV adoption is important to 
communicate all the factors the CAV’s impact.  

When the mental modeler was run  activating only the 
adoption of CAV’s at 0.7 and 1.0, both inputs resulted in a 
reduction in congestion to -0.02 and -0.04 respectively, with a 
higher negative congestion value representing a higher 
reduction in congestion. Using mental modeler, the degree to 
which the increase in CAV’s impacts congestion cannot be 
determined, but the model output indicates that continued 
increase in CAV’s adoption resulted in a continued reduction in 
congestion, which aligns with what would be expected. 

A. Limitations and Risks 
As with any simulation, the input data is key. Nice colorful 

outputs can sometime lull users into thinking the results are 
plausible, when in fact reality is far from what is being 
modeled. Users and interpreters of mental model results need to 
keep the validity of input data in mind. 

A means to model varying component relationships in 
different operating conditions is a limitation. Perhaps manually 
identifying these circumstances and applying different 
weightings accordingly is a means to get around step shifts in 
operating conditions. 

VI. IMPLICATIONS 

In order to see how the mental modeler responds to a more 
complex set of components activated in a scenario, different 
levels of public transportation and car sharing are activated. In 
addition to activating these components, the relationship of 
these components was also reversed with respect to CAV 
adoption from an increase to a decrease relationship. The 
flipping of the relationship from increasing to decreasing is a 
realistic reflection of CAV impact. The increased vehicle cost 
due to CAV’s may drive people to use more economical public 
transportation. Or perhaps the added convenience of automated 
cars may make CAV cars more attractive and move people 
away from public transportation and into personal CAV’s. 
Executing the mental modeler scenarios by varying the 
relationship of public transport and car sharing to 
decrease/increase/no effect, resulted in mostly predictable 
outcomes. When either public transportation or car sharing was 
set as decreased, or set to no effect, congestion worsened. This 
is logical as public transportation and car sharing is more 
efficient than a personal vehicle with respect to congestion, 
thereby reducing the use of either should increase congestion. 
What was not expected was that if both public transportation 
and car sharing increase as a result of CAV adoption increase, 
the expectation is that congestion would be further reduced 
from the scenario where the adoption of CAV’s has no impact 
on the use of public transportation or car sharing. The mental 
modeler output result in this scenario did not have an impact on 
congestion. A possible explanation for this is that the 
congestion values do not have much spread from one scenario 



to the next and these are rounding errors, or similarly the 
impact is negligible.         

VII. CONCLUSION 

FCM using Mental Modeler provided a relatively simple 
tool to visualize and predict impact of factors on complex 
future developments. Following are the CAV and congestion 
conclusions based on the FCM results: 

CAV adoption has the potential to reduce road congestion. 

Even moderate adoption of CAV’s reduces road congestion, 
with higher adoption rates further increasing the reduction of 
road congestion. 

CAV’s might offer an effective means to reduce road 
congestion versus traditional methods of building new roads, 
expanding existing ones. Cost efficiency of it warrants further 
study.   

VIII. FUTURE RESEARCH 

Through experimentation on the model, the binary model 
(having only 1 and -1 as vector values) is found to be 
dependent on the number of nodes converging on demand and 
capacity. Assigning fuzzy values to vectors may address this 
problem. This would require data to support the weightings. 
Some data is available, for example there is spacing data 
comparing a conventional car to an autonomous car, but there 
would be many component relationships that do not have data. 
Another tool might be expert input into the model to assign 
weights to connections between elements. Another method to 
improve the FCM would be to add more elements, again 
preferably through expert input. By adding more elements and 
assigning fuzzy values for interdependencies, the methodology 
can be expanded to discriminate between different levels of 
autonomous vehicles. More scenarios can be therefore added to 
provide a richer variety of possibilities. This would lead to an 
even wider perspective to understand the effects of CAV 
adoption. This may pave the way to a more comprehensive 
study to shed light on effect of CAV adoption on more than 
just congestion. Also for congestion, at a certain demand, the 
capacity starts reducing, moving the relationships of the 
components into a totally different relationship. In the over 
capacity environment, the benefits of CAV’s is diminished and 
other factors such as mass transit that directly reduce demand 
play a more significant role. It is not clear how these threshold 
points could be reflected using FCM.  

A case study for verification of the model may be 
conducted by adoption of this method into a selected country 
case where traffic jam problem is very critical. 

This analysis deserves a more detailed revisit to compare 
cost of increasing capacity by traditional means (e.g. building 
new roads, expanding existing ones etc.) vs. technological 
upgrades to increase CAV adoption and effect of CAV 
adoption on congestion. Hierarchical decision making models 
such as HDM [24], AHP [25], and FAHP can help prioritizing 
the multi-perspective problems in this area (as projects to be 
selected to be solved) or facilitate the decision making and 
alternative selection among different solutions.  
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