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EXECUTIVE SUMMARY 

In recent years, a set of new travel modes – including car sharing, bike sharing, ride-hailing, and 
autonomous vehicles – are emerging as both policy and travel options throughout the U.S. These 
emerging modes are only just beginning to be considered in travel modeling applications, and 
our understanding of their likely impacts on travel behavior is limited. Given the innate 
uncertainties in the evolution of these emerging modes, modeling applications need to consider 
these questions when evaluating effects of policy scenarios. Strategic planning models facilitate 
the consideration of these uncertainties and enable rapid evaluation of technology and policy 
scenarios by focusing on their first-order effects. Regional Strategic Planning Models (RSPM) 
are examples of such planning tools, initially developed by the Oregon Department of 
Transportation (ODOT) and later modified for adoption by other states and authorities. The goal 
of this paper is to first enhance and then apply RSPM to consider the effects of emerging modes. 

Using data from a nationwide U.S. survey with stated choice experiments that include both 
conventional and emerging mode options, we develop stated preference utility models to 
understand the changes in travel behavior. We then implement our estimated models for RSPM 
to enable it to simulate scenarios with different market penetration of emerging modes. We 
consider both how existing strategies may be impacted by emerging modes, as well as potential 
strategies that seek to harness these new travel options to meet performance goals. 

Incorporating emerging modes in an existing strategic planning tool allows us to understand and 
evaluate scenarios in which these modes may become the mainstream, besides contributing to the 
emerging body of research that aims to better understand these modes. New technologies and 
travel options present both policy opportunities and challenges for planners and decision-
makers. Strategic models are a promising arena for initial applications that include these new 
alternatives. 
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2.0 LITERATURE REVIEW
 

2.1 STRATEGIC PLANNING TOOLS 

The Regional Strategic Planning Model (RSPM) is a performance-based planning tool first 
developed by the Oregon Department of Transportation (ODOT) as GreenSTEP, a primary tool 
for analyzing state-wide greenhouse gas emission scenarios. GreenSTEP has been adapted by the 
FHWA as the Emissions Reduction Policy Analysis Tool (ERPAT) to “assist state transportation 
agencies with analyzing greenhouse gas reduction scenarios and alternatives for use in the 
transportation planning process, the development of state climate action plans, scenario planning 
exercises, and to measure the reduction potential of various transportation strategies to meet state 
greenhouse gas reduction goals and targets” (FHWA, 2015). GreenSTEP was also adapted as the 
underlying basis of the SHRP2 C16 Smart Growth Area Planning software (SmartGAP), a tool 
for evaluating the impacts of various regional smart growth strategies on travel demand 
(Outwater et al., 2014). In 2010, GreenSTEP won a national award from the American 
Association of State Highway Transportation Officials (AASHTO). The RSPM tool is a version 
of GreenSTEP re-envisioned for use at the metropolitan level. Current work is underway in a 
partnership between FHWA and ODOT to create a common framework for the GreenSTEP 
family of models that are open, modular, scalable and accessible. 

Compared with other sketch planning tools, the RSPM tool operates at the county or 
metropolitan planning organization level and with model coefficients estimated from data with 
national coverage, such as the National Household Travel Survey (NHTS). It can work as a 
policy evaluation tool for areas without travel demand models or emission modeling experience, 
or as a quick policy screening tool for areas that do use more complex models. It is capable of 
evaluating effects of land use policies, demographics, vehicle fleet characteristics, and a large set 
of policies in transportation supply and pricing. 

As the popularity of the RSPM tool grows and application cases expand, there is recognition that 
a deeper understanding is needed to determine how mode choices and mode share may be 
impacted by policy and investment decisions and how these mode choices further influence 
performance outcomes of the transportation system. ODOT is sponsoring a first-phase research 
project led by this research team to incorporate broad stroke multimodal travel choices, including 
driving, transit and non-motorized mode, in the RSPM tool. 

2.2 EMERGING TRAVEL MODES 

2.2.1 Car and Bicycle Share Systems 

Car sharing, as considered in this research, refers to systems that allow a traveler to check out an 
available car from a public parking space or other designated location, drive to their destination, 
and leave the car in any allowable parking space nearby. This operating model is referred to as 
“free-floating” car sharing, as opposed to those requiring a user to return the car to the same 
location where they picked it up or to some other fixed station location. Typically, the services 
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charge per minute and require the user to have a valid driver’s license, download a smartphone 
app and perhaps become a member for some nominal fee. Examples in the U.S. are car2go and 
ReachNow. At the time of this research, we identified seven U.S. cities with car2go and three 
with ReachNow (Table 1.1). 

Shaheen, Chan and Micheaux (2015) provide a recent review of car sharing in the Americas. 
Current research on these emerging travel modes has largely focused on documenting the 
characteristics of the shared mode and its users. For example, Burkhardt and Millard-Ball (2006) 
surveyed the user characteristics of fixed-station car sharing programs across North America. 
Wielinski et al. (2015) looked into the user characteristics of free-floating car sharing in 
Montreal and found that women were more likely to become users, and that trip distances and 
durations were much shorter than traditional car sharing. 

Table 1.1: Cost estimates of floating car-sharing services 
Service City Cost ($/mi) Notes (peak/off-peak, surge/normal, 

etc.) 
car2go Portland/Seattle Smart Fortwo1: 0.35/minute, 

$15/hr,$59/day 
GLA/CLA2: $0.45/minute, 
$19/hr, $79/day 

Per trip driver protection fee: $1 

car2go Austin Smart Fortwo: 0.41/minute, 
$15/hr,$59/day 
GLA/CLA: $0.47/minute, 
$19/hr, $79/day 

Per trip driver protection fee: $1+ taxes. 

car2go Columbus Smart Fortwo: $0.41/minute, 
$13/1-hour package, 
$29/3-hour package, 
$49/6-hour package, 
$69/1-day package, $99/2-day 
package 

Per trip driver protection fee: $1 + taxes. 

car2go Denver GLA/CLA: $19/1-hour package, 
$39/3-hour package, 
$59/6-hour package, 
$89/1-day package, $169/2-day 
package 

Per trip driver protection fee: $1 + taxes. 

car2go New York City Smart Fortwo: $0.41/minute, Per trip driver protection fee: $1 + taxes. 

car2go Washington Smart Fortwo: $0.41/minute 

GLA/CLA: $19/1-hour package, 

Per trip driver protection fee: $1 + taxes. 

ReachNow Seattle/Portland Per minute 
$0.41/minute when driving 

ReachNow Brooklyn Per minute 
$0.41/minute when driving 

1 Smart Fortwo refers to a two-seat vehicle 
2 GLA/CLA refers to a more conventional five-seat Mercedes-Benz vehicle 

Public bike-share systems (BSS) refer here to those allowing members or walk-up users to check 
out a bike at one place and return it to another place near their destination. Traditionally, these 
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systems have relied on fixed-station locations where the bicycles are docked and undocked to 
check in and out, but advances in GPS technology have permitted “dockless” BSS that allow 
operation without fixed stations (or with a mix of stations and dockless operation). As of mid­
2017, over 150 bike-share systems were either operating or due to launch in the U.S. (McNeil et 
al., 2018), and that number has likely grown even larger as dockless providers enter new and 
existing markets. Our own scan at the outset of this project found that 39 of the top 50 U.S. cities 
had public bike-share systems. 

Similar to the car-sharing literature, existing research has focused mainly on operational and user 
characteristics of bike share. Fishman, Washington and Haworth (2013) and Fishman (2016) 
provide recent reviews. Noted are numerous studies supporting the notion that bike-share users 
are more likely to be higher income, more educated and to be employed than the general 
population (Fishman et al., 2013). Another common finding is that bike share is used most 
commonly as a substitute for public transit or walking, though in some locations 20% or more of 
bike-share trips substitute for car travel (Fishman, 2016). 

Unlike free-floating car share, bike-share systems have traditionally operated largely on 
membership models, where a certain amount of riding is included at no additional charge. This 
makes direct cost comparisons with other mode options difficult. We reviewed a number of 
systems that priced rides by the minute or by the trip to inform our survey design, and the results 
are presented in Table 1.2.  

Table 1.2: Cost estimates of public bicycle sharing 
Source Service City Cost Notes (peak/off­

peak, 
surge/normal, 
etc.) 

https://www.biketownpdx.com/ Biketown Portland, 
OR 

$0.08/min After one-time 
$5 signup fee 

https://www.capitalbikeshare.com/ Capital 
Bikeshare 

Washington 
DC 

$2/trip Up to 30 mins 

https://www.citibikenyc.com/ CitiBike New York N/A Pass options 
only 

https://www.divvybikes.com/pricing Divvy Chicago $3/trip Up to 30 mins 
https://www.bluebikes.com/ BLUEbikes Boston $2.50/trip 
https://bikeshare.metro.net/ Metro Bike 

Share 
Los 
Angeles 

$3.50/trip Up to 30 mins 

https://www.ofo.com/us/en Ofo Bike 
Share 

Seattle 
(&others) 

$1/hr 
($0.0167/min) 

https://www.limebike.com/help LimeBike Seattle 
(&others) 

$1/half hr 
($0.0333/min) 

http://seattlerefined.com/lifestyle/limebike-vs­
spin-which-one-is-the-better-bike-share 

Spin Seattle 
(&others) 

$1/half hr 
($0.0333/min) 

https://houston.bcycle.com/top-nav­
pages/rates-membership/rates2 

Houston 
Bcycle 

Houston $3 /30 mins 
($0.033 /min) 
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2.2.2 Ride-Sharing Services 

2.2.2.1 Definitions and evolution 

Neoh et al. (2017) define ride-sharing as two or more persons who are not household members 
travel in the same private vehicle. Ride-sharing groups are at least two participants who have 
joint trips in one vehicle. Carpooling and vanpooling are typical forms of ride-sharing. 
Carpooling participants share a private automobile, and vanpooling participants share a ride in a 
van. Ride-sharing is not limited to these two forms. There are also other forms, such as casual 
carpooling. Ride-sharing is not intended to gain financial profit, which is quite different from 
existing taxis and ride-hailing services. The payment of ride-sharing only covers part of driving 
costs. 

Ride-sharing is classified based on its characteristics. Chan and Shaheen (2012) propose a ride-
sharing classification scheme based on how ride-sharing appears today and the relationship 
between ride-sharing participants. According to their classification scheme, there are three types 
of ride-sharing: acquaintance-based ride-sharing, organization-based ride-sharing and ad-hoc 
ride-sharing. The participants of acquaintance-based ride-sharing are typically family members, 
friends and coworkers. The participants of organized-based ride-sharing are members of a ride-
sharing service provider. The ad-hoc” ride-sharing is casual carpooling, which does not require a 
relationship between participants. Furuhata et al. (2013) classify ride-sharing into organized ride-
sharing and unorganized ride-sharing. In their classification, unorganized ride-sharing includes 
acquaintance-based ride-sharing and ad-hoc ride-sharing. Organized ride-sharing is the same as 
organized-based ride-sharing. For organized ride-sharing, there are two types of service provider: 
service operators and matching agencies. Matching agencies do not own their own vehicles and 
drivers, while they only match drivers and passengers. Service operators use vehicles and drivers 
and provide service to passengers, such as vanpooling and airport shuttle. 

A comprehensive overview of the evolution of ride-sharing is essential to understand ride-
sharing. The earliest form of ride-sharing, “car clubs” or “car sharing,” began in the 1940s. Such 
ride-sharing is supported by the government to conserve fuel during World War II. Based on an 
overview of ride-sharing’s history, Chan and Shaheen (2012) classify ride-sharing into five key 
phases. The first phase is called car sharing clubs (1942-45). The objective of car-sharing clubs 
is to conserve rubber during World War II. The matching between riders and drivers is through a 
bulletin board at work. Phase two lasted from the late 1960s to 1980. In the late 1960s, ride-
sharing reappeared. Due to the energy crisis and the Arab oil embargo during the 1970s, ride-
sharing developed significantly. In this period, vanpooling, HOV lanes and government-
sponsored commuter ride-sharing demonstration projects, as well as other strategies, contributed 
to the rapid growth of ride-sharing. Phase three was from 1980 to 1997. The objective of ride-
sharing became improving congestion and air quality. The availability of telephone and internet 
facilitated the matching between drivers and passengers. During this phase, the competitiveness 
of ride-sharing decreased because of the low price of gasoline. Phase four was between 1999 and 
2004. The objective of ride-sharing during this period focused on traffic congestion mitigation. 
The “critical mass” was still a big issue for most ride-sharing systems, thus the most efforts of 
the ride-sharing system were spent on encouraging ride-sharing among commuters. The internet 
played a more important role in ride matching. Some online ride-sharing “platforms” appeared 
during this period. Before 1999, the website pages mainly provided contact information. The 
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next phase was from 2004 to the present, the period when the internet, mobile phones, social 
networking and ride-sharing were integrated. Most of the ride matching process was completed 
on websites through a ride-sharing software platform. Drivers and passengers get real-time 
detailed information, which facilitates ride-sharing. Such dynamic or real-time ride-sharing 
systems automatically match drivers and passengers in very short time (Agatz et al., 2011). 

2.2.2.2 Classification 

Furuhata et al. (2013) use two taxonomic criteria, primary search criteria and target market, to 
classify ride-sharing matching agencies. The primary search criteria refer to the information used 
for matching drivers and passengers. The target markets refer to the market segmentation based 
on demand types of ride-sharing participants. Based on the taxonomic criteria, they classify 39 
matching agencies investigated into six classes: dynamic real-time ride-sharing, carpooling, 
long-distance ride-match, one-shot ride-match, bulletin-board, and flexible carpooling. 

Dynamic real-time ride-sharing is the most recent class. With the proliferation of the internet and 
smart phone, this type of ride-sharing becomes increasingly important. It matches drivers and 
passengers, and automatically specifies pick-up and drop-off locations in a very short time or 
even en route. At the same time, matching agencies propose a cost for all participants. 

The second type of ride-sharing is carpooling. Carpooling mainly serves commuters who have 
close origin-destination (OD) pair, and start and end times of their work. Typically, the vehicle 
used for ride-sharing is a private vehicle of one participant. 

The third type is long-distance ride-match. Typically, participants of this type of ride-sharing 
have more flexibility for schedules than those of the above two types of ride-sharing. Some 
matching agencies provide existing travel lists for users, then users can select a preferred 
departure time among the travel lists. 

One-shot ride-match combines the characteristics of carpooling and long-distance ride-sharing. 
Matching agencies provide several ride-matching methods for users according to trip types. 
These matching methods are similar to those used for long-distance, ride-matching and 
carpooling ride-sharing. Besides OD pair and time, matching agencies also provide lists, 
keywords, and route as search criteria. 

Bulletin-board ride-sharing matches drivers and passengers via notice board. Ride-sharing offers 
and requests are listed by matching agencies. The matching between drivers and passengers are 
based on keywords/list. Typically, drivers and passengers decide the ride-sharing conditions 
together. 

Flexible carpooling refers to ride-sharing that is formed through coordination on the spot. 
Flexible carpooling does not need match agencies. The pick-up/drop-off location and time are 
predetermined and known by potential users. A representative example is people sharing a 
vehicle to use HOV lanes. Typically, such ride-sharing is based on a first come, first serve 
strategy. 
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2.2.2.3 Benefits and costs 

Benefits include reducing vehicle trips and, consequently, decreasing traffic congestion and 
pollution emission and providing an alternative mode choice for people who do not own a 
vehicle or cannot drive. Ride-sharing provides time savings if the trip uses HOV lanes. 

Ride-sharing includes carpooling and vanpooling. Generally, the vehicles used for carpooling are 
private automobiles, while the vehicles used for vanpooling are rented vans. Participants of ride-
sharing share operating costs. The incremental costs of ride-sharing are relatively low because it 
uses empty vehicle seats. Because ride-sharing does not need a paid driver and backhauls, the 
costs per vehicle-mile tend to be lower than transit. Due to its characteristics, ride-sharing is a 
cost-efficient mode. Table 1.3 shows the cost of driving alone and ride-sharing. 

Table 1.3: Estimated monthly commuting costs 
Round-trip miles Drive alone Three-rider carpool 10-rider vanpool 
30 $193 $64 $31 
40 $257 $86 $37 
50 $321 $107 $43 
60 $386 $129 $50 
70 $450 $150 $56 
80 $514 $171 $63 

Source: Ride-sharing, Carpooling, and Vanpooling TDM Encyclopedia, Victoria Transport 
Policy Institute, 2017 

Wambalaba et al. (2004) summarized average operating costs for vanpooling, and they found the 
operating costs range from $1,000 to $1,250 per month. Giuliano et al. (1995) investigated one 
ride-match project in Los Angeles. They found that the setup and marketing of this project needs 
$150,000 (U.S. dollars in 1995), and the operating cost for each user was $3. Other potential 
costs include, but are not limited to, schedule constraints for matching riders, privacy exposure, 
and additional travel distance and time for picking up riders. 

Some researchers investigate the elasticity of vanpooling ridership with respect to fees. The 
elasticity is between -2.6% to -14.8% (Concas et al., 2005). This means if there is a $1 increase 
(or decrease) in vanpool fares, there will be a 2.6% to 14.8% increase (or decrease) in the 
probability of choosing vanpool. York and Fabricatore (2003) found that a 10% increase in 
vanpool fares will lead to a 15% decrease in ridership. 

In the long run, ride-sharing may incur urban sprawl because people can afford long-distance 
commutes with ride-sharing. Besides, ride-sharing is supposed to compete with public transit, 
decreasing transit ridership. 

2.2.2.4 User characteristics/preferences 

Some studies investigate the characteristics of ride-sharing participants. Results indicate that 
socio-demographic factors do not strongly influence ride-sharing participation (Canning et al., 
2010).  However, income and education status are positively related to ride-sharing participation 
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(Ferguson, 1995). These are attributed to individual car ownership. Younger people are more 
likely to take ride-sharing as a travel mode than older people (Gärling et al., 2000). After 
controlling for socio-economic factors, immigrants are more likely to adopt ride-sharing than 
non-immigrants in the USA (Cline et al., 2009). Men are more likely to take ride-sharing than 
women (Ferguson, 1995), while some recent studies do not agree on this (DeLoach & Tiemann, 
2012). Neoh et al. (2017) conduct meta-analysis of a large body of literature, and find that 
women are more likely to carpool than men. 

2.2.2.5 Factors Affecting Ride-sharing 

When public transportation is not available, carpooling is important and attractive (Eriksson et 
al., 2008). Existing literature does not have consistent conclusions about whether longer-distance 
trips encourage ride-sharing (Neoh et al., 2017). Some studies claim that ride-sharing trips are 
more likely to have longer distances than SOV trips (Ferguson, 1997), while other studies argue 
that detour for pick-up and drop-off lead to an increase in trip distance (Shoup, 1997). 

Ride-sharing projects are supposed to be quite effective in relatively low-density areas with low 
level of transit service. Organizations, commercial companies, local and regional government, 
and employers are all willing to implement ride-sharing projects. The wider area the ride-sharing 
serves, the larger the pool of ride-sharing participants will be. 

The psychological factors are supposed to be more important than socio-demographic factors 
(Gardner & Abraham, 2007). If commuters perceive ride-sharing as convenient, they are more 
willing to take ride-sharing as a travel mode (Gardner & Abraham, 2007). In general, privacy 
and comfort are supposed to be the determinants of transport choices. People who value privacy 
are less likely to take ride-sharing with others (Correia & Viegas, 2011). Besides, people need to 
feel in control of their ride-sharing trip; otherwise they are not willing to participate ride-sharing 
(Ozanne & Mollenkopf, 1999).  The desire to socialize contributes to the people’s decisions to 
participate in ride-sharing (Morency, 2007). Participants of ride-sharing take races and 
ethnicities (these are related to cultural background) into consideration, indicating similarities in 
values are helpful to form ride-sharing (Charles & Kline, 2006). 

HOV facilities, financial subsidies, parking management, and marketing are all likely to improve 
the effectiveness of ride-sharing programs. If parking pricing is implemented, ride-sharing 
programs can bring about 5%-15% and up to 20% or more reduction in daily vehicle commute 
trips to worksites (Ewing, 1993). 

For encouraging ride-sharing, punishment policies, such as extra parking charges for SOVs, are 
found to be more influential than reward policies, such as reserved parking (Hwang & Giuliano, 
1990; Jacobson & King, 2009). However, the punishment policies are more practical for 
implementation than rewards policies. 

The workplace is supposed to be the proper place to form ride-sharing programs. Collura (1994) 
proposes three advantages of the workplace: employers and employees are willing to relieve 
parking demand; potential participants are available; and employers can organize ride-sharing. 
Because large employers have large numbers of employees, they are more easily able to find 
potential ride-sharing participants (Teal, 1987). Furthermore, these coworkers have similar 
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schedules (Buliung et al., 2010), which is considered an important prerequisite for ride-sharing. 
Among situational factors, Neoh et al. (2017) find the employer has the largest positive effect on 
increasing the likelihood of carpooling, while travel costs, fixed work schedule and living in an 
urban area only have a moderate effect on encouraging ride-sharing. 

To improve the attractiveness of ride-sharing, some workplaces pay ride-sharing participants’ 
travel expenses if ride-sharing drivers leave before the predetermined time. Results of studies 
indicate that this strategy contributes to an increase in ride-sharing (Giuliano et al., 1993; 
Menczer, 2007). 

Some empirical studies identify effective policies for encouraging ride-sharing. Transportation 
policies that make commuters realize the cost of SOV driving are effective to attract them to 
participate in ride-sharing (Meyer, 1999). Cash incentives are more attractive in encouraging 
ride-sharing than parking discounts (Canning et al., 2010). Because HOV lanes only save a small 
amount of travel time, they are not effective to attract ride-sharing participants (Kwon & 
Varaiya, 2008). Neoh et al. (2017) find that reserved parking and HOV lanes encourage the 
propensity of ride-sharing. 

These findings are helpful for policymakers to allocate efforts efficiently by concentrating on 
factors that maximize effects. 

2.2.2.6 Challenge and future directions 

Based on the analysis of previous and present ride-sharing programs, Chan & Shaheen (2012) 
posit that technology, causal carpooling and public policy are likely to affect ride-sharing. 
Technology will be the main impetus in the future. Advancement in technologies will improve 
the interoperability among numerous ride-sharing databases. This will expand the pool of 
potential ride-sharing participants and consequently improve the effectiveness of ride-sharing 
programs. Besides, technology will achieve the seamless connection between ride-sharing and 
other transportation modes, such as car sharing, transit. Casual ride-sharing is likely to be the 
major type of ride-sharing, because it does not need prearrangement. Supportive public policies, 
especially TDM policies, are critical for the effectiveness of ride-sharing programs. 

2.2.3 Ride-hailing 

2.2.3.1 Definitions and evolution 

Ride-hailing refers to app-based, on-demand ride services. Besides ride-hailing, there are other 
commonly used names, including transportation network companies (TNCs), on-demand rides, 
parataxis, and ridesourcing.  Ride-hailing trips are typically real-time and demand-responsive 
trips. Ride-hailing companies, such as Lyft and Uber, develop smart phone apps whereby 
passengers can request a ride in real time. The locations and destinations of passengers are 
communicated to nearby drivers who typically do not have commercial licenses. As long as a 
driver accepts the ride request, the passenger can view the real-time location of the vehicle and 
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estimated arrival time. After the driver picks up the passenger, the app provides GPS-enabled 
navigation for driving to the destination. The payment is charged to the passenger’s credit card. 
The driver keeps a major portion of the fare and the ride-hailing companies keep the rest. The 
app provides a rating system for both drivers and passengers after the ride is completed. 

The ride-hailing originates from ride-sharing and it has traits of traditional taxi services 
(Shaheen, Chan & Rayle, 2017). Similar to ride-sharing, ride-hailing allows unrelated passengers 
to share a ride. However, drivers of ride-hailing do not have a joint trip with passengers, and 
their motivation is making a profit. In some ways, ride-hailing is similar to taxi, which offers a 
ride for a fare. Different from taxi, ride-hailing services dynamically match passengers and 
drivers with a smart phone and dynamic matching algorithm. In many cities, ride-hailing services 
are not subject to taxi regulations which determine supply, fares and other service standards. 
Further, the evolvement of transportation modes makes the distinctions between these modes 
more blurred. Ride-hailing companies have provided services, such as Uber Pool and Lyft Line, 
which allow unrelated passenger to share a ride. These services resemble ride-sharing. Besides, 
taxi companies have provided an app-based service known as e-hail. 

Different from such emerging modes as bike sharing and carsharing, the academic literature on 
ridesourcing is relatively limited because of its short history and lack of open data (Henao, 
2017). 

2.2.3.2 The debates over ride-hailing 

There are numerous debates about ride-hailing services. Opponents criticize that ride-hailing 
services compete with transit, cause public safety issues and increase extra traffic volume. 
However, advocators state that ride-hailing services provide more mobility. For city 
governments, there is an urgent need for appropriate regulatory and public policy responses to 
ride-hailing services. There have been clashes between ride-hailing companies and city halls 
(Flegenheimer & Fitzsimmons, 2015). 

2.2.3.3 Ride-hailing trip characteristics 

A comprehensive understanding of ride-hailing trips is crucial for transportation planning and 
regulation. Although open data on ride-hailing services are limited, some studies examine the 
characteristics of ride-hailing trips through conducting surveys or acquiring data via a Freedom 
of Information Act request. 

Henao (2017) creates a unique dataset through becoming a driver for Uber and Lyft. The dataset 
includes travel attributes and passenger information. He estimates the ride-hailing time and 
distance efficiency. For time efficiency, time with the rider accounts for 39.2% of overall time. 
For distance efficiency, distance with the rider accounts for 59.2% of overall distance. Ride-
hailing trips take approximately six minutes for boarding after the driver accepts a request, and 
the median distance and travel time for passengers is about 11.5 minutes and 3.6 miles. The 
average speed is 28.8 miles per hour. 
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Two media reports analyze Uber usage data acquired via a Freedom of Information Act request 
(Bialik et al, 2015; Fischer-Baum & Bialik, 2015). They compare general travel cost (using basic 
assumptions) of public transit, Uber, and owning a car, and find that the combination of Uber 
with high use (around 65% to 85%) and public transportation can be significantly cheaper than 
car ownership. The combination of high use of public transit and some Uber rides is much more 
affordable for lots of people than Uber alone or owning a vehicle.  Henao (2017) estimates the 
earnings of ride-hailing drivers. The gross earning is $15.69/hr. After accounting for driving 
expenses, the average net earnings equal $7.94/hr. This provides information about costs of ride-
hailing from the perspective of drivers. 

Henao (2017) reviews literature on ride-hailing and argues that the users of ride-hailing are 
different from the overall population in characteristics of travel behavior, socio-economics, and 
demographics. Users tend to be younger, and have higher income and education level than the 
general population (Bialik et al., 2015; Fischer-Baum & Bialik, 2015; Dawes, 2016; Shirgaokar, 
2017). They prefer living in denser areas with convenient transit accessibility. For travel 
behavior, they have lower car ownership and higher level of bike ownership and transit pass than 
the overall population. The non-auto modes, including bike, walking and transit, account for 
larger shares than the general population. However, these findings are at an aggregate level, and 
there is limited research investigating the impacts of ride-hailing services on travel behavior at 
individual level. Silver and Fischer-Baum (2015) analyze pick-up rates at the census tract level 
and they find lower incomes experienced fewer pick-ups. 

Shirgaokar (2017) conducts an exploratory study to examine the gender-specific barriers to using 
ride-hailing services with a mixed method of in-person interviews and gender-separated focus 
groups. Results indicate that there are mainly three barriers to using ride-hailing services: 
mistrust with online financial transactions, trust and risk averseness, and ambiguity about ride-
hailing services. 

Dawes (2016) conducts an online survey about attitudes toward ride-hailing services and 
differentiates respondents by users and non-users. There are 394 completed questionnaires from 
15 metropolitan statistical areas in the U.S. For trip purposes. The results of the survey indicate 
that riders mostly use ride-hailing services for typical purposes, such as avoiding driving because 
of drinking and from/to the airport. Ride-hailing services provide a supplement to regular trips, 
such as commuting to work or school, instead of an alternative mode. Some respondents state 
that they will use ride-hailing services less because the ride-hailing companies do not treat 
drivers as employee. Besides, there are a small percentage of respondents who do not use ride-
hailing services because of ethical opposition. 

11
 



 
  

  
    

 
 

 
    

 
   

 
 

 
   

 
  

 
    

 
    

  
     

 
   

 
  

  
   

 
  

 

 
  

 
  

  
   

 
  

 
   

 
  

 
     

 
   

 
  

 
   

 
  

 
     

  
     

  
     

   
   

 
  

  
   

 
  

  
   

 
  

  
   

 
  

  
   

 
  

  
 

                                                 
    

 
 

 
      

Table 1.4: Cost estimates of ride hailing services1 

Source Service City Cost 
($/mi) 

Notes (peak/off-peak, 
surge/normal, etc.) 

www.lyft.com/cities/portland-or Lyft Portland, OR 1.21 + 0.20/min + $3.65 
other fees per trip 

https://www.lyft.com/cities/new-york-city-ny Lyft New York 
City, NY 

1.58 +0.32/min + $2.29 
other fees per trip 

https://www.lyft.com/cities/los-angeles-ca Lyft Los Angeles, 
CA 

0.96 +0.15/min + $2.1 other 
fees per trip 

https://www.lyft.com/cities/atlanta-ga Lyft Atlanta, GA 0.81 +0.12/min + $3.25 
other fees per trip 

https://www.lyft.com/cities/denver-co Lyft Denver, CO 1.00 +0.13/min + $3.25 
other fees per trip 

https://www.lyft.com/cities/st-louis-mo Lyft St. Louis, MO 1.26 0.20/min + $4.05 other 
fees per trip 

https://www.lyft.com/cities/cincinnati-oh Lyft Cincinnati, 
OH 

0.86 0.15/min + $3.30 other 
fees per trip 

https://www.lyft.com/cities/las-vegas-nv Lyft Las Vegas, 
NV 

0.96 0.15/min + $3.75 other 
fees per trip 

https://www.lyft.com/cities/virginia-beach­
hampton-roads-va 

Lyft Virginia 
Beach, VA 

0.84 0.15/min + $3.55 other 
fees per trip 

https://www.lyft.com/cities/milwaukee-wi Lyft Milwaukee, 
WI 

1.16 0.20/min + $3.00 other 
fees per trip 

https://www.lyft.com/cities/salt-lake-city-ut Lyft Salt Lake 
City, UT 

0.95 0.11/min + $2.7 other 
fees per trip 

http://uberestimate.com/prices/Portland/ Uber Portland, OR 1.21 0.20/min + $3.15 other 
fees per trip 

http://uberestimate.com/prices/New-York-City/ Uber New York 
City, NY 

1.75 0.35/min + $2.55 other 
fees per trip 

http://uberestimate.com/prices/Los-Angeles/ Uber Los Angeles, 
CA 

0.96 0.15 + $2.10 other fees 
per trip 

http://uberestimate.com/prices/Atlanta/ Uber Atlanta, GA 0.81 0.12/min + $3.25 other 
fees per trip 

http://uberestimate.com/prices/Denver/ Uber Denver, CO 1.10 0.16/min + $2.95 other 
fees per trip 

http://uberestimate.com/prices/St-Louis/ Uber St. Louis, MO 1.26 0.20/min + $4.05 other 
fees per trip 

http://uberestimate.com/prices/Cincinnati/ Uber Cincinnati, 
OH 

0.86 0.15/min + $3.30 other 
fees per trip 

http://uberestimate.com/prices/Las-Vegas/ Uber Las Vegas, 
NV 

0.96 0.15/min + $3.75 other 
fees per trip 

http://uberestimate.com/prices/Virginia-Beach/ Uber Virginia 
Beach, VA 

0.84 0.15/min + $3.55 other 
fees per trip 

http://uberestimate.com/prices/Milwaukee/ Uber Milwaukee, 
WI 

1.16 0.20/min + $3.00 other 
fees per trip 

http://uberestimate.com/prices/Salt-Lake-City/ Uber Salt Lake 
City, UT 

0.95 0.11/min + $2.70 other 
fees per trip 

1 With UberPool, both passenger and driver know the exact fare only after the trip, which can come as a surprise to 
the rider. Regular UberPool users even reported that the final amount tends to be more expensive than an UberX 
ride. Uber notes that this is a rare possibility and that UberPool rides will usually be 20%-70% less than UberX 
rides. The algorithm for matching riders and drivers also differs between these ride-sharing services. When booking 
a Lyft Line ride, the rider must wait for about a minute or two while the app searches for another booking that might 
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2.2.3.4 Impacts 

Ride-hailing services are supposed to lead to comprehensive impacts on urban transportation 
system. In this report, the impacts of ride-hailing services are classified into three categories: 
induced travel, vehicle ownership and driving frequency, and relationship between ride-hailing 
and transit. 

There is a small impact of ride-hailing on induced travel. Shaheen et al. (2017) conduct a survey 
on ride-hailing in San Francisco. They ask the question: “How would you have made this trip if 
Uber/Lyft/Sidecar were not available?” Result shows that 92% of users still would have made 
the trip, indicating 8% trips are induced travel. There are approximately one-third of users who 
would have taken transit for the trips. There are 3% of respondents who have ever used ride-
hailing instead of driving after drinking alcohol. However, the survey only covers ride-hailing 
users and does not provide characteristics of potential ride-hailing users or people who do not 
ever use ride-hailing services. Henao (2017) creates a unique dataset through becoming a driver 
for Uber and Lyft. He finds that there are 12.2% of passengers who would not have traveled if 
ride-hailing services were not available. If the results of his study can apply to the entire country, 
ride-hailing services increase approximately 5.5 billion extra miles per year. He also examines 
the impacts of ride-hailing services on travel behavior based on the modality styles of passengers 
and trip purposes. For typical drivers, they mostly use ride-hailing for to/from airport, social 
trips, when out of town, drinking/avoid drinking and parking. For typical non-drivers, they 
usually use ride-hailing services for work and school trips when transit services are not available. 

Ride-hailing potentially affects vehicle miles and vehicle ownership. Given that ride-hailing is 
relatively new and vehicle ownership is a long-term decision, there is little strong evidence about 
the impact of ride-hailing on vehicle ownership. Shaheen et al. (2017) find that 40% of 
respondents drive less after they use ride-hailing in their survey. But this survey is not 
representative since they only collect respondents in “hot spots” in San Francisco. Besides, ride-
hailing services even reduce parking demand. Henao (2017) finds that parking makes passengers 
use ride-hailing services instead of driving. 

Ride-hailing services are expected to complement transit instead of compete with it. Shaheen et 
al. (2017) find there are 4% of ride-hailing trips made to access transit stations. Empirically, 
results indicate that Uber pick-up rates are high in areas with high transit accessibility (Bialik et 
al., 2015; Fischer-Baum & Bialik, 2015). They posit that Uber is attractive for customers who 
want to save time or have productive time (work or relax in the vehicle), and it will also attract 
more customers who want to save money if Uber decreases travel costs. Rayle et al. (2016) 
conduct an intercept survey of ride-hailing users in San Francisco. The participants of this survey 

be going in a similar direction. If no matches are found, the rider will still pay the reduced fare even if they ride 
alone (link).. Express Pool passengers will be asked to wait a minute or two longer than usual to be matched with a 
driver. The idea is that during this additional time, Uber’s algorithm is blasting through hundreds of different 
drivers, routes, pickup and dropoff locations, and additional riders looking for the optimal match. After the match, 
riders will be directed to walk a few extra blocks to their pickup location, where, if Uber’s algorithm worked the 
way its supposed to, they’ll hopefully meet one or two additional riders who’ve also been matched with the same 
driver. [...] At the end of the ride, passengers will be dropped off within walking distance to their final destination. 
And their reward for all this extra waiting and walking? Dirt-cheap fares, up to 50 percent cheaper than UberPool 
and 75 percent less expensive than UberX (link). 
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think ride-hailing services both substitute for and complement transit, walking and biking. 
Murphy (2016) investigated the relationship between shared modes, including carsharing, bike 
sharing and ride-hailing services with transit. Results indicate that shared modes complement 
transit, and that the more frequently people use shared modes, the more likely they use transit 
and reduce transportation costs and car ownership. 

Competing with taxis, ride-hailing has some advantages. Ride-hailing services have shorter wait 
times than typical taxi services (Rayle et al., 2016; Shaheen et al., 2017). Bialik et al. (2015) use 
data from Uber and they find that it serves a larger area than taxis in New York. Fischer-Baum 
and Bialik (2015) state that Uber takes rides away from taxis in New York. 

2.2.4 Autonomous Vehicles 

Autonomous vehicle refers to a type of motorized vehicle that uses computerization to operate on 
public roadways without requiring a driver or operator. While challenges to implementation 
remain, AVs may become widely available as early as 2022-2025 (Fagnant & Kockelman, 
2015). Compared with other recent technological changes such as hybrid and electric vehicles, 
AVs have the potential to spark transportation behavior, system, and market changes on a much 
larger scale. In addition to potential safety and operations improvements from eliminating the 
limitations of human drivers, researchers have suggested that AVs are likely to accelerate 
existing trends in vehicle and ride-sharing (Fagnant & Kockelman, 2015). AVs also open the 
door to a complete re-thinking of vehicle interiors as mobile workspaces or entertainment centers 
(Fagnant & Kockelman, 2015). Each of these potential changes may significantly affect car 
ownership, travel choices, and even location and land-use decisions. 

2.2.4.1 Usage of AVs 

Some studies focus on forecasting the adoption of AVs. Zmud et al. (2016) conducted an online 
Stated Preference (SP) survey and face-to-face interview in the Austin, TX, region, and applied a 
car technology acceptance model to examine adoption and use of self-driving vehicles. There 
were 52% of respondents who indicated they would use self-driving cars. Bansal and Kockelman 
(2017) developed a simulation-based fleet evolution framework to forecast long-term adoption of 
connected autonomous vehicle (CAV) technologies in the United States. They estimated 
Americans’ preference for CAV technologies and their decisions about vehicle transaction with a 
U.S.-wide survey, then they used these estimations to forecast long-term adoption of CAV 
technologies in different scenarios. The adoption rates of different levels of automation 
technologies largely depended on willingness-to-pay (WTP) increment rate and automation 
technologies price reduction rate. The share of level 4 AV (the highest level of AV) will reach up 
to 87.2% in scenario with a 10% reduction rate of AV price and a 10% rise in WTP values. This 
study assumes the reduction rate of AV price and growth rate of WTP values is constant over 
time, but these rates will change over time. 

Some studies examine the usage of shared autonomous vehicles (SAVs). Schweizer and Meggs 
(2013) used a direct demand stated preference method to estimate the mode share of personal 
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rapid transit (PRT). PRT is a new public transport mode, which is operated on separated 
guideways with small automated vehicles. Their model indicates the mode share of car and 
motorcycle would become less than 15% in the majority of 10 surveyed cities, and PRT would 
be the dominant mode after citywide PRT service was provided. Levine et al. (2013) explored 
how automated driverless community transit and urban-design improvement in pedestrian and 
bicycling facilities might address the last-mile issue. They conducted a stated preference survey 
in four neighborhoods in metropolitan Chicago. Results indicated that the automated driverless 
community transit would increase Chicago Transportation Authority share from 50% to 67% and 
reduce automobile share from 36% to 22%. They find complementary policies, such as 
increasing parking prices, would be conducive to increasing transit share. 

2.2.4.2 WTP/cost 

Travel cost is a critical determinant of the use of AVs. Operating costs of AVs are still somewhat 
uncertain (Table 1.5), but Litman (2014) noted that they seem likely to fall somewhere between 
non-AV car sharing ($0.60-1.00 per mile) and conventional taxis ($2.00-$3.00 per mile). A 
privately owned vehicle driven 10,000 miles per year has a per-mile cost of about 60 cents per 
mile (Litman, 2014). 
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Table 1.5: Cost estimates of shared autonomous vehicles (SAVs) and ride sharing autonomous vehicles 
(RSAV) 

Source AV 
Cost 
($/mi) 

Driving 
($/mi) 

AV/Driving Type (context) 

Burns et al. 
(2013) 

0.15 0.59-0.75 SAV (small to medium-sized town); 0.59 is 15,000 mi/yr & 0.75 is 
10,000 mi/yr (Ann Arbor, MI case study) 

Fagnant & 
Kockelman 
(2014) 

1.00 0.51-0.77 SAV (fare including normal profit); typical annual ownership and 
operating costs range from $6,000 to $13,000 depending on vehicle 
model and mileage (AAA, 2012), 0.51 is 20,000 mi/yr & 0.77 is for 
10,000 mi/yr 

Litman (2014) 1.00­
2.00 

0.2 SAV; $4,000 annually in fixed expenses plus $0.20 per mile in 
operating costs. 

Johnson (2015) 0.44 0.66 SAV (fare including normal profit); traditional vehicle operating cost 
per mile 

Johnson (2015) 0.16 0.66 RSAV (fare including normal profit) 
Stephens et al. 
(2016) 

0.20­
0.30 

0.65 RSAV 

Johnson & 
Walker (2016) 

0.30 0.65 RSAV 

Bösch et al. 
(2017) 

0.632 0.77 SAV (urban) 

Bösch et al. 
(2017) 

0.441 0.77 RSAV (urban) 

Bösch et al. 
(2017) 

0.471 0.77 SAV (suburban/exurban) 

Bösch et al. 
(2017) 

0.291 0.77 RSAV (suburban/exurban) 

Some studies found the majority of respondents did not want to pay extra for AV technology 
(J.D. Power, 2015; Schoettle & Sivak, 2014). J.D. Power (2015) found only 24% of respondents 
have the intent to pay $3,000 for an autonomous driving model in their next vehicle. Bansal and 
Kockelman (2017) developed a simulation-based fleet evolution framework to forecast long-term 
adoption of CAV technologies based in the USA. Their forecast largely depended on WTP 
increment rate and automation technologies price reduction rate. They argued that the changes in 
price and WTP would affect the adoption of AVs. 

2.2.4.3 Time 

Travel time and waiting time are critical determinants of the use of SAVs (Krueger, Rashidi, & 
Rose, 2016). Different from the existing travel modes, AVs are supposed to enable productive 
use of travel. Singleton (2018) argued that the AVs would reduce value-of-time (VOT) and such 
reduction would be smaller than anticipated because AV users felt more like car passengers than 
train riders, thus activity participation would be limited. He posited that reduced stresses of 
driving and commuting burdens would contribute to the reduction in VOT. Krueger et al. (2016) 
estimated VOT with a mixed logit model. According to the final model, the value of in-vehicle 

2 Assuming 1 CHF = 1 USD, private car cost estimated at $0.81/mi in same settings 
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time is 0.78 Australian Dollar (AUD)3/minute for SAV without dynamic ride-sharing (DRS), and 
1.06 AUD/minute for SAV with DRS. The value of waiting time is 0.05 AUD/minute SAV 
without DRS, and 0.10 AUD/minute for SAV with DRS. Because the marginal WTP estimates 
of SAV with DRS are larger than those of SAV without DRS, they argued that they are two 
distinct modes. 

2.2.4.4	 The Role of Socio-demographic Characteristics, Attitude, and Trip 
Attributes 

The relationship between sociodemographic variables and the adoption and use of AVs is 
uncertain, because the existing studies found conflicting results. Younger respondents were more 
likely to accept and use AVs (J.D. Power, 2017). Krueger et al. (2016) found that respondents 
aged between 24 and 29 were more likely to adopt SAV with DRS. Sommer (2013) found 
younger individuals had greater preference for full self-driving vehicles than older. On the other 
hand, Kyriakidis et al. (2015) found insignificant relationship between age and opinion about 
AVS. 

From the theoretical perspective, individuals who are unable or unwilling to drive vehicles or 
individuals who have no access to private vehicles are potential users (Anderson et al., 2014). 
For example, SAVs are supposed to be an age-appropriate travel mode for elderly travelers 
because they do not have to drive themselves and do not have to own private vehicles. Krueger et 
al. (2016) found that individuals between 65 and 84 had no preference for SAV modes, and 
Haustein’s (2012) empirical studies found that the travel behaviors of elderly travelers are 
heterogeneous. 

Kyriakidis et al. (2015) found that there was significant association between willingness to pay 
for self-driving technology and income. Similarly, Howard and Dai (2014) also found income 
was associated with acceptance of self-driving technology. Zmud et al. (2016) found individuals 
with less than $25,000 household income tended to be unlikely to use (56%), and individuals 
with $25,000- $50,000 household income tended to be more likely to use AVs (54%).  

Zmud et al. (2016) found male travelers had higher propensity to be extremely likely to use AVs 
than female travelers. They also found no association between educational attainment and intent 
to use. Current car ownership was not associated with intent to use AVs, but individuals who 
owned a vehicle with some self-driving features would be more likely to use AVs. 

Perceived safety and trust were found to be influential factors. The data privacy, software 
hacking, and issues of control affected whether individuals trust self-driving or not (Howard & 
Dai, 2014; Kyriakidis et al., 2015), but the trust decreased though AV technologies became 
closer to reality (J.D. Power, 2017). Zmud et al. (2016) found data privacy concern deterred 
intention to use AVs. 

3 1 Australian Dollar = 0.72 USD 
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Perceived safety depended on the performance of AVs in mixed traffic and driving performance 
relative to human drivers (Schoettle & Sivak, 2014). J.D. Power (2017) found individuals would  
accept AVs only when they got firsthand experience and total understanding. 

Among respondents of surveys conducted in Austin, TX, the reasons for being unlikely to use 
AVs for regular use included lack of trust in the technology (40%), safety (24%), cost (20%) and 
insurance/liability (1%) (Zmud et al., 2016). Zmud et al. (2016) also found positive attitudes 
towards AVs was associated with higher level of intent to use AVs. They found individuals who 
exhibited high intention to use AVs were those who think a self-driving vehicle would decrease 
accident risk, using AVs would be fun and using AVs would be easy. 

Several studies explored how attitudinal factors affect the adoption of emerging modes 
(Burkhardt & Millard-Ball, 2006; Schaefers, 2013). They found innovativeness, pro-
environmental considerations, thriftiness, and convenience were important motivations for 
carsharing users, which were also potential motivations for SAVs. 

The attributes of a reference trip affect respondents’ selection of modes in choice scenarios. 
Krueger et al. (2016) found SAVs were less likely to be selected when the purpose of the 
reference is a medical or dental appointment. The option SAV without DRS was more likely to 
be selected when respondents traveled by car as the driver on the reference trip; the option SAV 
with DRS is more likely to be selected when respondents traveled by car as a passenger on the 
reference trip. Respondents who traveled by public transit were more likely to select SAV 
without DRS. 

Some studies identified modality styles through clustering travelers’ frequencies of use of travel 
modes. Krueger et al. (2016) found respondents with multimodal patterns had higher propensity 
to select SAV options. For example, individuals who were carsharing users are more likely to 
choose the option SAV with DRS. Some studies also corroborated that carsharing users were 
more inclined to exhibit multimodal patterns (Kopp, Gerike & Axhausen, 2015; Schaefers, 
2013). 

Levine et al. (2013) found complementary policies, such as increasing parking price, would be 
conducive to improve the effect of automated driverless community transit on mode choice. 

Of most interest to the present study are individual travel behavior impacts of AVs. Of course, 
some people might choose to own an AV despite the much higher expected purchase cost, but 
they are not the focus here. Researchers have identified a number of likely impacts on travel 
choices (Fagnant & Kockelman, 2015). These include: 

•	 increased demand due to reduced travel effort 
•	 increased demand due to reduced time, fuel, and parking costs 
•	 increased non-driver mobility 
•	 mode shift to shared vehicle and shared ride services due to decreased 

coordination and operating costs 
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Litman (2014) suggested that certain attributes of AVs might moderate demand for AV travel – 
especially for shared vehicles – due to differences in privacy, control, status, and, potentially, 
comfort. 

There have been a few studies that investigate this issue, but the majority of studies are based on 
logic or assumptions instead of on verified evidence supported by observations or experience. 
For example, Zmud et al. (2016) conducted qualitative and face-to-face interviews with people 
who were likely to use AVs to capture the impacts of AVs on travel behavior. They found that 
the majority of respondents who indicated willingness to use self-driving vehicles reported that 
using self-driving would not affect residential location choice (80%), annual VMT (66%) and 
auto ownership (55%). There is little empirical evidence on the impact of AVs on travel 
behavior. Besides, the public does not completely understand the opportunities and challenges of 
AVs, thus analysis based on surveys and assumptions might not totally represent the impact of 
AVs. 

Existing studies provide direction for potential impacts, though there is no empirical evidence. 
Related to stages of AVs, Milakis et al. (2017) classified the impacts of AVs as first-order, 
second-order and third-order impacts. The first-order impacts refer to impacts on traffic, travel 
cost, and travel choice. The second-order impacts include impacts on vehicle ownership and 
sharing, location choices and land use, and transport infrastructure. The third-order impacts refer 
to impacts on energy consumption, air pollution, safety, social equity, economy, and public 
health. They found the impacts on fuel efficiency, emissions, road capacity, and accident risk 
would be beneficial, and the magnitude of these impacts depends on the adoption and use level 
of AVs. However, they argued that AVs would lead to more and longer trips and thus caused 
additional travel demand. They posited that other third-order impacts on safety, economy, public 
health and social equity were not clear yet. Fraedrich et al. (2018) conducted a comprehensive 
literature review, and performed quantitative online survey and qualitative interviews with 
representatives of urban transport planning authorities in Germany. The results indicated that 
AVs might be not compatible with objectives of transportation planning, such as promoting 
active and public transportation and reducing driving. They also argued the impacts of AVs 
largely depends on how AVs would be used. 

2.3 RELATED STUDIES ON EMERGING MODES 

2.3.1 Overview 

Studies about emerging modes are conducted in the large cities located in Europe, the United 
States, Australia and China. The direction of findings are consistent among studies conducted in 
different countries, while estimations or magnitudes are varied, possibly due to local 
heterogeneous attributes. The focus of studies also varies by study area to some degree. Those 
studies conducted in China focus on bike sharing. Studies conducted in Europe and the United 
States focus on car sharing, ride-hailing and AVs.  
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The Stated Preference survey is commonly used in studies examining emerging modes, because 
most studies on emerging modes explore the hypothetical or speculative nature of emerging 
modes and scenarios that do not exist yet. The SP surveys are based on revealed preference trip. 
The SP surveys usually include two parts. The first part collects sociodemographic 
characteristics, travel patterns, and mobility characteristics, as well as other necessary 
information. The second part of the survey includes one or a few stated choice experiments. 
Every stated choice experiment generally consists of two important steps. The first step of the 
experiment asks respondents to recall a recent trip. This trip is called a reference trip. 
Respondents provide detailed trips attributes, such as purpose, time, distance, mode and cost as 
well as other necessary attributes. The second step of the experiment provides choice tasks for 
respondents. In each choice task, there are several mobility options, and respondents are asked to 
select one of these mobility options for the reference trip. The sample size of surveys depends on 
the survey design and purposes of the research. 

2.3.2 Modeling Approaches 

There are a variety of modeling approaches used in existing studies about emerging modes. 
Discrete choice modeling approaches are widely used in studies examining mode choices. The 
discrete choice models are grounded on random utility theory, and the forms of discrete choice 
models are based on the data and purpose of the studies. The binomial logit (BL) model is used 
to examine mode choice between two alternatives. Cartenì et al. (2016) estimated a BL model to 
examine choice between private car and carsharing service and the likelihood to choose EVs for 
a carsharing service. When the number of alternatives is more than two, a multinomial logit 
(MNL) model is used. De Luca & Di Pace (2015) estimated multinomial logit, hierarchical logit 
(HL), cross-nested logit (CNL), and mixed multinomial logit (MMNL) models based on different 
assumptions about joint probability distribution for random residual. In the MNL model, the 
random residuals are assumed to be identically distributed (iid). The MMNL model is quite 
flexible, because the decision-maker’s taste is allowed to randomly distribute, and the MMNL 
model does not require independence of irrelevant alternatives and restrict substitution patterns. 

Some studies used approaches to explore how travelers switch between the usually chosen 
transport mode and hypothetical or speculative mode options. De Luca & Di Pace (2015) 
compared three modeling approaches, including a conditional switching model, unconditional 
switching model, and holding model. These approaches were specified with different modeling 
solutions, including homoscedastic, heteroscedastic, and cross-correlated closed-form solution, 
based on the behavior paradigm of the utility theory. Similarly, Zacharias and Li (2016) 
estimated a conditional logistic regression to examine respondents’ mode preference with an 
increase in travel distance and a progressive rise in subway ticket fare. 

Besides regression approaches, some models are developed to forecast the usage of emerging 
modes. Bansal and Kockelman (2017) developed a simulation-based fleet evolution framework 
to forecast long-term adoption of connected autonomous vehicle (CAV) technologies in 
America. The adoption rates of different levels of automation technologies largely depended on 
WTP increment rate and automation technologies price reduction rate. The share of level 4 AV 
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(the highest level of AV) will reach up to 87.2% under a scenario with a 10% reduction rate in 
AV price and a 10% rise in WTP values. Because AV and SAV are not available yet on the 
market, Zmud et al. (2016) used a car technology acceptance model to investigate the adoption 
and use of self-driving vehicles. The car technology acceptance model provides a theoretical 
framework for acceptance and use of self-driving vehicles. 

2.3.3 Travel Behavior Impact 

The emerging modes provide more options for travelers and exert impacts on travel behavior. 
There is no study that examines the syngeneic effect of emerging modes on travel behavior, but 
the comprehensive literature on emerging modes provides insights on travel behavior impacts. 
Though the direction and magnitude of overall travel behavior impacts are not easy to forecast, 
some specific impacts are relatively certain. First, emerging modes provide mobility for people 
who would not make the trip if the emerging modes are not available. For example, if one has 
access to a carsharing program, he can drive a car even though he does not own a vehicle. AVs 
do not even require individuals’ ability to drive a vehicle. Second, the costs of emerging modes 
are relatively lower than existing modes that provide similar travel services. For instance, the 
costs of ride-hailing services are much lower than conventional taxis. Some studies investigate 
ride-hailing services in San Francisco. 

The emerging modes are supposed to affect vehicle trips, but the overall magnitude and direction 
are uncertain. Ride-sharing is supposed to reduce vehicle trips, because two or more travelers 
share a ride in one vehicle. Ride-hailing is supposed to lead to induced travel. Shaheen et al. 
(2017) found that 8% of ride-hailing trips were induced travel. Given the relatively low mode 
share of ride-hailing, the impact of ride-hailing services on induced travel is not large. However, 
the magnitude of induced travel is large when the time and distance efficiency of ride-hailing are 
taken into consideration. For ride-hailing services, time with rider accounts for 39.2% of overall 
driving time, and distance with rider accounts for 59.2% of overall driving distance (Henao, 
2017). AVs are supposed to lead to more and longer trips and thus caused additional travel 
demand and negative environmental effects (Fraedrich et al., 2018). 

The interaction between emerging modes and existing modes are also uncertain. Because ride-
sharing does not need a paid driver and backhauls, the cost per vehicle tends to be lower than 
transit. Thus, ride-sharing is expected to compete with public transit and reduce transit ridership. 
Ride-hailing services are found to both complement with and compete with transit. 

Ride-hailing services are expected to complement transit instead of compete with it. Shaheen et 
al. (2017) find there are 4% of ride-hailing trips made to access transit stations. Rayle et al. 
(2016) conduct an intercept survey of ride-hailing users in San Francisco. The participants of this 
survey think ride-hailing services both substitute for and complement transit. Empirically, results 
indicate that Uber pick-up rates are high in areas with high transit accessibility (Bialik et al., 
2015; Fischer-Baum & Bialik, 2015). There is much more uncertainty for the impact of AVs on 
travel behavior, because the empirical evidences of AVs usage are not available yet. Fraedrich et 
al. (2018) conducted a comprehensive literature review, and performed quantitative online 
survey and qualitative interviews with representatives of urban transport planning authorities in 
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Germany. The results indicated that AVs might be not be compatible with objectives of 
transportation planning, such as promoting active and public transportation and reducing driving. 
They also argued the impacts of AVs largely depend on how AVs would be used. AVs even 
provide a new transit option: personal rapid transit (PRT), which is a new public transport mode 
that is operated on separated guideways with small automated vehicles. Some studies regard the 
shared autonomous vehicles (SAVs) as part of the public transit system. 

The emerging modes generate new opportunities and challenges for transportation planning, and 
it has become more and more important to explore how to efficiently incorporate emerging 
modes into existing transportation systems. The adoption of emerging modes is expected to 
largely increase in the future. Empirical studies indicate that users of emerging modes tend to be 
younger than the overall population (Bialik et al., 2015; Dawes, 2016; Gärling et al., 2000; 
Krueger et al., 2016). In the future, it can be predicted that the mode share of emerging modes 
will continue growing because young people have a high propensity to adopt emerging modes. 
The different usage of emerging modes seems to bring about various implications; thus planners 
should have a clear idea with regard to the impacts of emerging modes to properly deal with the 
opportunities and challenges in the future. 
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3.0 METHODOLOGY
 

3.1 STATED PREFERENCE APPROACH 

Travel behavior research can be divided into two types: revealed and stated preference. Revealed 
preference (RP) research uses actual (i.e., revealed) behavior to examine the attractiveness of 
different types of transportation facilities. Data are collected through surveys and/or passive 
means, such as global positioning system (GPS) units. With stated preference (SP) research, the 
researcher asks a person what travel behavior they would prefer, potentially, in a hypothetical 
setting. In other words, their preference is stated and not revealed through actual behavior. 

Some of the limitations of RP research can be addressed through SP techniques. This allows 
researchers to understand people’s preferences for options they may not have been exposed to, or 
to understand the preferences of individuals who do not currently use certain modes. The 
simplest type of SP research asks people to rate or rank a mode or indicate whether having such a 
mode would encourage them to use it. Some of the studies looking into emerging travel modes 
use these simple SP techniques (for example, Ciari and Axhuasen, 2012; Eiró and Martínez, 
2014; Akar and Clifton, 2009). 

Most of the methods are based on some form of SP survey data. Frequently, this involves 
describing to participants the characteristics of different travel modes, and asking the participants 
either to select which mode they would choose or else to rate all modes in a particular travel 
situation. To achieve the most valid results, the researcher tries to place the decision-maker in a 
realistic mindset to compare a number of alternatives, each described in terms of their attributes. 
This approach is particularly useful when the researcher wishes to examine options that the 
respondents may not have seen before, such as autonomous vehicles, or alternatives that are 
relatively novel and not yet as widely available or used as more traditional options, such as car 
share, ride hail, and bike share.  

In a stated choice (SC) experiment, participants are presented with a scenario and asked to 
choose among two or more choice alternatives. Each alternative has a set of attributes of interest 
that are bundled into a “card.” Each card reflects a different combination of attributes and may 
include both text and imagery to describe the context and convey alternative characteristics such 
as costs, travel time, etc. Respondents are asked to choose their preference between a pair or set 
of cards, each with a unique combination of attributes and levels. The comparison of cards is 
called a task, and in any given experiment respondents can be asked to engage in a number of 
tasks. For different types of trips, SC surveys can test individuals’ tradeoffs between attributes 
across different attributes using the same mode (costs, travel time) as well the tradeoffs between 
attributes across different modes (e.g., car sharing vs. bike sharing). 

SC experiments may be entirely hypothetical, or they may include information from revealed 
behavior provided by participants. Participant-specific information may be used to tailor the 
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experiment in hopes of injecting a greater dose of realism into the choice task. This revealed 
information may enter the choice task directly (e.g., posing a choice between a participant’s 
current travel mode and hypothetical alternatives), indirectly (e.g., using location or trip details 
to adjust options or attribute levels for added realism), or both.  

For the purpose of this project, since not all the emerging modes are available to most 
participants in the data we plan to use, especially for the autonomous vehicle mode, we chose to 
use SP techniques and SC experiments to estimate participants’ willingness to accept tradeoffs 
between attributes as well as across different modes. For increased realism, we used revealed 
information about participants’ current travel and options to tailor the choice tasks, as explained 
in detail in the SC survey design description. 

3.1.1 Stated Choice Survey Design 

The stated choice experiment was designed to understand the various tradeoffs that respondents 
make when choosing a mode for a particular trip under a given set of conditions. Modes included 
participants’ current travel mode (which included both conventional and emerging modes) as 
well as emerging alternative modes: autonomous vehicle (AV), ride hailing, floating car share, 
and bike share. Trip types were elicited from actual travel and included both work (commuting) 
and non-work travel such as shopping, social activities, personal business, etc. Alternative mode 
attributes of the trip included: travel time (broken down into in-vehicle, walk access/egress, and 
waiting time), out-of-pocket cost, and, for certain modes, whether or not the ride was shared with 
another party. 

The SC experiment was designed and pre-tested with collaborators of this project before actual 
participants were recruited. Because of our desire to test a number of emerging mode alternatives 
and to tailor the choice tasks on an individual basis, a full factorial design (all possible 
combinations of choices and attributes) was not possible. Instead, we opted for a fractional 
factorial design executed by randomizing alternatives and attribute levels subject to certain 
bounds established by design and by revealed information. The survey questionnaire was be 
designed to incorporate the SC experiments as well as a number of questions about the 
respondent, their attitudes and preferences, and their patterns of existing travel behavior. 

3.1.1.1 Choice tasks 

Each respondent was asked to complete two SC experiments, each consisting of five choice 
tasks. The trip context for each experiment was established by asking respondents to recall a 
recent trip from their home to another location. Participants who worked outside their home were 
first prompted to recall their most recent trip from home to work, while others were first asked to 
recall any recent trip. Everyone was then asked to recall a trip to a different destination for the 
second experiment. 

Within each experiment, each task asked respondents to compare their current mode and its 
attributes against a pair of emerging mode alternatives. At the beginning of each experiment, a 
brief description of each emerging mode was provided to familiarize them. It was further asked 
that respondents consider that all other conditions (e.g., number traveling with them) were the 
same as their recent trip and also that the emerging modes were “widely available and well­
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proven at the time [they] would be making the choice.” This was done to focus the choice 
decision on differences in attributes (that we could control) and mitigate the effects of 
uncontrolled influences (e.g., perceived reliability or availability of different technologies). 

For each choice task, one self-driving (AV) and one non-AV alternative were chosen at random, 
subject to availability constraints (Figure 2.1). Self-driving modes consisted of shared vehicle 
(traveler does not own the vehicle but has exclusive use of it for the trip) and shared ride options. 
Other modes included floating car share, public bike share, and ride-hail services (again, both 
shared vehicle and shared ride). Self-driving modes were always available, since they do not 
require anything from participants beyond payment and were not expected to be used for current 
travel by participants. Car share was available only to licensed drivers. Bike share was available 
to those physically able to bike for trips of not more than five miles. If one of the emerging 
modes was the same as that used on the actual trip, it was not presented as an additional 
alternative. 

Figure 2.1: Emerging mode alternatives 

Attributes of the revealed (actual) mode were fixed to the respondent-supplied values. Attribute 
levels of the emerging mode alternatives were set at random based on a combination of revealed 
trip characteristics, respondent location, and defined attribute ranges based on our review of 
estimated costs (self-driving modes) or currently offered services (other modes). Realistically, 
auto-based modes will all be subject to the same traffic congestion and speed limits; therefore, 
we set in-vehicle time of these modes to match revealed drive time, where available. When not 
available (e.g., respondent used transit or other non-auto mode), we used an estimate of drive 
time specific to the respondents’ trip distance and trip purpose (work or non-work) derived from 
NHTS (2009) data and controlling for fixed effects across different cities. Full estimation results 
of our travel time model are provided as an appendix. The city-specific intercepts (i.e., the part of 
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travel time not related to distance) were used as an estimate of the walk access to car share time 
in different locations (e.g., due to differences in competition for parking by city). Rather than try 
to estimate the driving time impact of shared ride services (i.e., when additional passengers 
might be picked up along the way), we chose to reflect this additional uncertainty in terms of 
higher waiting time levels. Similarly, rather than distinguish between station-based (docked) and 
dockless bike share explicitly, we elected to capture the difference in terms of walking time to 
access a bike. 

In survey testing, multiple respondents felt the lowest estimates of self-driving costs ($0.075­
$0.15 per mile) seemed unrealistically low, perhaps reflecting that most estimates have assumed 
marginal cost pricing when in reality perfect competition is unlikely. In response, we shifted the 
costs of AV options slightly upward for the final survey by eliminating the lowest level. Table 
2.1 provides the SC experiment attribute levels from which a random choice was made for each 
choice task mode “card.” 

Table 2.1: Attribute levels for SC experiments 
Self-driving alternatives Non-self-driving alternatives 

Attribute Self-driving Self-driving 
(shared ride) 

Ride-hail Ride-hail 
(shared ride) 

Car Share Bike Share 

In-vehicle 
travel time 
(mins) 

revealed driving time or NHTS estimate revealed 
distance at 
assumed 10 
mi/hr 

Out of 
pocket cost 
($) 

[0.30, 0.60, 
1.00, 1.50, 
2.00] /mile 

[0.5, 0.65, 
0.8] * Self-
driving cost 

[0.80, 1.20, 1.50] 
/mi + [0.10, 0.20, 

0.30] /min + 
[2.00, 2.50, 3.00, 

3.50, 4.00]1 

[0.5, 0.65, 0.8] 
* Ride-hail cost 

[0.35, 0.40, 
0.45, 0.50] 
/min + 1.00 

[1.00, 2.00, 
3.00] /trip 

Walk time 
(mins) 

0 NHTS city-
specific 
model 
estimate 

[0, 5, 10] 

Wait time 
(mins) 

[2, 5, 10] [2, 10, 15] [0, 5, 10] [0, 10, 15] 0 

Note: time values presented were rounded to nearest integer; money rounded to nearest $0.05 

3.1.1.2 Additional survey questions 

In addition to survey items already described to support the SC experiment, we also asked 
additional questions about socio-demographics, current travel patterns, and attitudes toward 
travel and technology. Attitudinal questions were derived from several sources: previous work 
by project collaborators, a subset of the Media and Technology Usage and Attitudes Scale 
(MTUAS) (Rosen et al., 2013), and a recent poll on attitudes toward self-driving technology 
(Pew, 2017). The complete survey questionnaire is provided as an appendix. 

While we did not ask specifically about respondents’ comfort with either ride-hail drivers or 
AVs, the experimental design allows us to infer that information from subsequent choice 
modeling since, controlling for other attributes, the only difference between ride-hail and AV 
options in our experiment is the presence of a driver. 
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3.1.2 Survey Implementation 

3.1.2.1 Sampling 

We defined our sampling frame as all adults with internet access in the largest 50 U.S. cities. We 
considered that these are the areas where emerging modes are already available (car share, bike 
share, ride-hail) or likely to be available sooner (AV). Those without internet access or in smaller 
markets were viewed as less likely to be early adopters of emerging modes, and perhaps less 
likely to meaningfully consider them as viable options in choice experiments. 

We used two methods for the recruitment of participants: Amazon Mechanical Turk (MTurk) 
and InfoUSA email lists. MTurk is a program through which participants can choose to complete 
an online task (such as our web survey) for a fixed amount of compensation. In either case, 
participants were invited at random and opted in after learning about the research project and 
survey. MTurk participants were screened by an initial zip code question to ensure they lived 
within a target city, while InfoUSA invitees were pre-screened by ZIP Code. MTurk participants 
were offered $2 to complete the survey. Email participants were offered entry into a drawing for 
an Amazon gift card ($50 or $250). Unfortunately, our email campaign was not successful in 
recruiting participants (<1% response rate), and so the results are almost entirely based on the 
MTurk sample. We can only speculate that the lack of response to our email campaign was due 
to ever-more complex email filtering tools and perhaps general fatigue for email offers and 
solicitations. Although past research has indicated that email recruitment can be nearly as 
effective as postal mail campaigns, our experience suggests this may no longer be the case. 

3.1.2.2 Web survey instrument 

We implemented the survey using a combination of Qualtrics survey software and a custom 
Python web service we developed to handle the SC experiment logic. Initial revealed information 
provided by respondents was sent via Qualtrics to the Python web service before each 
experiment to evaluate our alternative availability conditions and randomly select alternatives 
and attribute levels for each of the five choice tasks per experiment. Before launching the live 
survey, we tested our web service’s ability to handle a “worst case” situation of thousands of 
respondents taking the survey at the same time. No technical issues were noted during 
deployment. 

We considered several variations of choice task presentation, including graphical depictions of 
emerging mode options. In the end, we chose to use a simple text-based “card” style for two 
reasons: 1) to ensure focus on the attributes of various modes than reactions to a certain depiction 
of, for instance, a self-driving vehicle, and 2) to ensure that the card display would appear 
equivalently across web browsers and mobile phone platforms. An example choice task 
presentation is shown in Figure 2.2. A respondent would have already been provided with 
instructions and a brief description of the emerging mode options. Alternatives (including the 
current revealed option) were presented in random order for each task. 
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Figure 2.2: Sample choice task from (a) web and (b) mobile survey. Current option was walking, in this case. 
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4.0 SURVEY DATA
 

There are 1,117 survey participants. Figure 3.1 shows the number of survey participants by 
urbanized areas (UZAs). The geographic distribution generally corresponds to the population 
size of UZAs, indicating the survey is largely representative, even though for this study we were 
not specifically aiming for a representative sample. 

4.1 SOCIO-DEMOGRAPHIC CHARACTERISTICS 

Figure 3.1: Number of survey respondents by UZA 
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Figure 3.2 shows the household income distribution. There are the most participants in the 
household income bracket of $45,000-$59,999, followed by $60,000-$74,999 and $75,000­
$99,999. The median household income of the survey respondents falls in the bracket of 
$45,000-$59,999, which is in line with the 2017 median household income in the U.S. reported 
by the Census Bureau. 

Figure 3.2: Number of survey respondents by household income 
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Figure 3.3 shows that there are more participants owning their home than those renting, and 
these two living situations make up the majority of participants. 

Figure 3.3: Status of owning/renting home 
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Figure 3.4 presents the number of participants by their household size. The mean and median of 
household size is 2.88 and 3.00, respectively. 

Figure 3.4: Distribution of household size of participants 
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As Figure 3.5 shows, the majority of the participants are under the age of 40. The participants are 
younger than the overall population. There are also more male than female participants. 

Figure 3.5: Age distribution of survey respondents by gender 
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Figure 3.6 shows the race distribution of the participants. The majority of participants are White, 
followed by Black, Native American, Asian, and Hispanic or Latino origin. These five 
race/ethnic categories account for more than 90% of participants. Note that the respondents are 
allowed to choose multiple races in the survey. 

Figure 3.6: Race/Ethnic characteristics of survey respondents 
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Figure 3.7 presents the education level of the participants. More than half of the participants have 
a bachelor’s degree or higher level of education. This is in accord with the characteristics of 
emerging modes users, who tend to have higher education levels than the overall population. 

Figure 3.7: Education level of participants 
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Figure 3.8 shows participants’ hours worked per week by number of jobs. The majority of 
participants work for more than 35 hours per week, and some of these participants have two jobs. 
There is also a substantial proportion of the participants who work for less than 35 hours per 
week. 

Figure 3.8: Hours worked per week by number of jobs 
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As Figure 3.9 shows, students, either full-time or part-time, account for a large proportion of the 
participants. Students may be more willing to use emerging modes and take surveys online. 

Figure 3.9: Student status of survey respondents 
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Figure 3.10 presents the availability of travel modes and technologies of the participants. Stable 
internet, debit card, credit card, and smart phone are available to the majority of the participants. 
These technologies are necessary for utilizing emerging modes, especially ride-hailing services. 
The number of participants who have an active ride-hailing account is relatively small (much 
smaller than those who have internet, debit card, credit card, and smart phone). A car is available 
to most participants, as the revealed preference data show that driving is still the dominant travel 
mode for most people. The number of participants who have a parking pass is smaller than those 
who possess a transit pass. The number of participants who are members of a car-sharing 
program is tiny, which is similar to those who have a bike-share membership. The number of 
participants who have a working bicycle is much larger than those who are members of a bike-
sharing program. This is expected because car sharing and bike sharing are not yet as widely 
available in America as other options. 

Figure 3.10: Mode and technology availability of participants 
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Figure 3.11 presents who pays for a parking pass. The majority of participants do not indicate 
who pays for their parking pass, as most probably do not own a parking pass. Among those who 
provide the information, the majority of the parking passes are paid by their employers, either in 
full or partly. 

Figure 3.11: Number of participants by who pays for parking pass 
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Figure 3.12 shows who pays for transit (self, employer, or each paying a part) among those 
having a pass. The majority of the participants do not indicate who pays for their transit pass. 
Among those who provided the information, the majority of the transit passes are paid for by the 
participants themselves and only a small proportion of their transit passes are paid for by their 
employers. 

Figure 3.12: Number of participants by who pays for transit pass 
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Figure 3.13 shows the survey participants who self-report good health, with participants claiming 
Excellent, Very Good, Good, or Fair Health making up more than 95%. The health condition 
question is included in the survey because it may influence the respondents’ capability of 
utilizing certain modes, in particular, biking. 

Figure 3.13: Self-report health condition 

4.2 DESCRIPTIVE STATISTICS OF REVEALED PREFERENCE (RP) 
DATA 

In the survey, respondents are asked to recall two recent trips, and, correspondingly, two 
hypothetical scenarios for stated preference (SP) experiments are pivoted from the attributes of 
these two reference trips. The summary statistics of the first recalled (revealed reference) trips 
are shown in Table 3.1. Figure 3.14 shows the frequency by modes and trip purposes for the first 
recalled trip. For the first trip, participants were asked to recall their most recent trip from home 
to work, if they reported a workplace outside the home.  
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Table 3.1: Descriptive statistics of the first RP trip 
min max Median mean std.dev 

cost 0.0 150 0 4.83 13.33 
dist 0.1 150 10 12.33 11.89 
totmins 3.0 174 31 39.03 27.04 
walk 0.0 120 3 8.02 14.17 
wait 0.0 73 3 5.65 7.91 
ivmins 3.0 125 20 25.36 16.24 
ivspeed 0.6 78 28 29.65 17.41 

Figure 3.14: Frequency by mode and purpose of the first recalled trip 

The summary statistics of the second recalled (revealed reference) trips are shown in Table 3.2, 
while Figure 3.15 shows the frequency by mode and purpose. The second recalled trips are all 
home-based non-work (HBNW) trips. 

Table 3.2: Descriptive statistics of the second RP trip 
min max median mean std.dev 

cost 0.00 250 0 5.43 16.01 
dist 0.15 200 6 11.02 15.53 
totmins 2.00 177 22 31.10 27.50 
walk 0.00 120 1 4.83 10.75 
wait 0.00 50 0 4.35 7.25 
ivmins 2.00 160 15 21.92 20.41 
ivspeed 0.60 75 27 29.70 17.42 
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Figure 3.15: Frequency by mode of the second recalled trip 

Table 3.3 shows the mode share of RP trips by trip purpose. The driving mode is the dominant 
mode for both HBW and HBNW trips. The emerging modes, such as ride-hailing, bike sharing, 
and car sharing, are used by some respondents for their recalled trips, but their mode share is 
very small. 

Table 3.3: Mode share of RP trips by trip purpose 

Trip 
Purpose Mode n % 

HBNW Drove a personal car 642 0.664 
HBNW Got a ride from a friend or family member 118 0.122 
HBNW Used public transit (bus, rail, etc.) 75 0.078 
HBNW Used a ride hailing service (Uber / Lyft, etc.) 60 0.062 
HBNW Bicycled - personal bike 20 0.021 
HBNW Used a shared ride hailing service (Uber Pool, Lyft Line, etc.) 12 0.012 
HBNW Used a taxi 12 0.012 
HBNW Bicycled - bike share 7 0.007 
HBNW Used car share (Zipcar, Car2Go, etc.) 7 0.007 
HBNW Walked 7 0.007 
HBNW Used a carpool/vanpool service 6 0.006 
HBNW motorcycle 1 0.001 
HBW Drove a personal car 468 0.717 
HBW Used public transit (bus, rail, etc.) 108 0.165 
HBW Got a ride from a friend or family member 22 0.034 
HBW Used a ride hailing service (Uber / Lyft, etc.) 16 0.025 
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Trip 
Purpose Mode n % 

HBW Bicycled - personal bike 15 0.023 
HBW Used a taxi 7 0.011 
HBW Used a carpool/vanpool service 6 0.009 
HBW Used car share (Zipcar, Car2Go, etc.) 5 0.008 
HBW Used a shared ride hailing service (Uber Pool, Lyft Line, etc.) 3 0.005 
HBW Bicycled - bike share 1 0.002 
HBW motorcycle 1 0.002 
HBW Walked 1 0.002 

Figure 3.16 and Figure 3.17 show calculated average in-vehicle travel speed by mode for the first 
and second recalled trip, respectively. As expected, driving a personal car is the fastest mode, 
followed by riding as a passenger. The speed of ride-hailing services is much slower than driving 
a personal car. This is possibly because most ride-hailing trips are taken on urban roadways for 
shorter trips. The shared ride-hailing service requires time for collecting passengers, thus its 
average speed is even slower than that of the ride-hailing service. The speed of public transit, 
which includes both rail and bus, is similar to that of the ride-hailing service. 

Figure 3.16: Calculated average in-vehicle speed (miles/hour) of the first recalled trip by mode 
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Figure 3.17: Calculated average in-vehicle speed (miles/hour) of the second recalled trip by mode 

4.3 DESCRIPTIVE STATISTICS OF STATED PREFERENCE (SP) 
CHOICE EXPERIMENTS 

Each of the 1,117 respondents was presented with two sets of five stated choice experiments. 
Consequently, 8,093 choices were captured after eliminating incomplete data and outliers, from 
which travelers’ preference for attributes of travel options including emerging modes were 
inferred. Within each experiment, respondents were asked to compare the chosen mode of the 
recalled trip and its attributes against emerging mode alternatives, including one self-driving 
(AV) mode and one non-AV alternative. Where the chosen mode overlapped with the emerging 
mode alternatives, that option was removed as a potential alternative. Overall six modes were 
available to choose from in the SP experiments: 

• Biking using shared bike 
• Driving using car sharing vehicle 
• Ride-hail service 
• Ride-hail service shared with unknown passenger 
• Self-driving car 
• Self-driving car shared with unknown passenger 

Four attributes including out-of-pocket cost and time (walking, waiting, and in-vehicle time 
when appropriate) of each mode are randomly sampled from pre-specified levels. 
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Attribute levels of the emerging mode alternatives were set at random based on a combination of 
revealed trip characteristics, respondent location, and defined attribute ranges based on our 
review of estimated costs (self-driving modes) or currently offered services (other modes). 
Additional details of the experiment choice sets and attribute levels are provided in Section 2.1.1. 

Each respondent was asked to indicate the mode they used for their recalled trips. The modes of 
the recalled trips included (Table 3.3): 

• Bicycled - bike share 
• Bicycled - personal bike 
• Drove a personal car 
• Got a ride from a friend or family member 
• Used a carpool/vanpool service 
• Used a ride hailing service (Uber/Lyft, etc.) 
• Used a shared ride hailing service 
• Used a taxi 
• Used car share (Zipcar, Car2Go, etc.) 
• Used public transit (bus, rail, etc.) 
• Walked 

If respondents used more than one transportation mode, the mode that respondents used for the 
longest distance on the trip was recorded as the main mode of the trip. 

Figure 3.18 shows the share of SP mode by mode actually used for the recalled trips by trip 
purpose, and Table 3.4 shows the mode share of the SP choice experiments by trip purpose. Even 
though there were 73.6% of drivers and 65.1% of car passengers sticking to these modes, there 
would be substantial percentages of travelers shifting to use the emerging modes if they are 
available with the characteristics presented in the experiments. The proportions of drivers and car 
passengers who chose to use the same modes were higher than those of other modes. It seems 
drivers and car passengers have the highest inertia and are most likely to stick to their current 
modes. 
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Figure 3.18: Share of SP mode by mode used for the recalled trips by trip purpose 

Table 3.4: Mode share of SP choice experiments by trip purpose 
HBNW HBW 

Mode n % n % 
Drove a personal car 2535 52.6 1674 51.4 
Self-driving car 558 11.6 436 13.4 
Self-driving car shared with unknown passenger 495 10.3 417 12.8 
Got a ride from a friend or family member 449 9.3 278 8.5 
Used public transit (bus, rail, etc.) 173 3.6 102 3.1 
Car share vehicle 124 2.6 82 2.5 
Ride-hail service shared with unknown passenger 120 2.5 63 1.9 
Used a ride hailing service (Uber/Lyft, etc.) 94 1.9 61 1.9 
Bicycled - personal bike 67 1.4 58 1.8 
Ride-hail service 58 1.2 33 1 
Bike share bike 50 1 15 0.5 
Used a shared ride hailing service (Uber Pool, Lyft 
Line, etc.) 

25 0.5 9 
0.3 

Used a taxi 23 0.5 5 0.2 
Walked 20 0.4 7 0.2 
Bicycled - bike share 9 0.2 8 0.2 
Used car share (Zipcar, Car2Go, etc.) 12 0.2 2 0.1 
Motorcycle 5 0.1 3 0.1 
Used a carpool/vanpool service 6 0.1 3 0.1 
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Overall, 20.2% of drivers chose self-driving modes, including self-driving car and self-driving 
car shared with an unknown passenger, and 28.5% of car passengers chose self-driving modes. 
Respondents who used ride-hailing service were most likely to select self-driving modes. 
Overall, 31.1% and 33.3% of ride-hailing service users chose self-driving car and self-driving car 
shared with an unknown passenger, respectively. There were certain proportions of all other 
modes users chose to use self-driving modes. For example, 40% of respondents who walked for 
their reference trip selected self-driving modes in the SP experiments. This implies that self-
driving modes would exert thorough impacts on traffic systems. 

Compared to auto modes, only 20% of ride-hailing users and 40% of shared ride-hailing users 
chose to use their current modes. This indicates users of ride-hailing and shared ride-hailing 
services are more easily attracted to shift to other modes than auto modes users. Respondents 
who used car share (28.6%) for their reference trips were most likely to select ride-hailing 
modes, followed by carpool/vanpool users (22.9%), and taxi users (13.3%). In general, the 
proportion of respondents who chose ride-hailing modes in the SP experiments is lower than 
self-driving modes. This implies that self-driving modes will be more popular than ride-hailing 
modes even though self-driving modes are not available yet. 

There were 70% of respondents who used a personal bike for their reference trips and chose to 
still use a personal bike in the SP experiment, while there were only 40% of respondents who 
used bike share for their reference trips and chose to still use bike share in the SP experiment. 
This implies that bicycle ownership contributes to adoption of bike modes (personal bike and 
bike share). The proportions of users who stuck to original modes were low for car sharing users 
(28%) and carpool/vanpool users (15%), which means these modes users were likely to shift to 
other modes. 
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5.0 MODELING THE STATED PREFERENCE CHOICE 
EXPERIMENTS 

In this chapter, we develop models using the data from the stated preference choice experiments, 
along with information of the revealed preference recalled trips and socio-demographic 
characteristics of the survey respondents. The purpose of developing these models are two-
folded: 

1.	 Models allow researchers to understand the tradeoffs that survey respondents are making 
across different attributes (e.g., costs vs. time) when they choose among travel modes; 

2.	 Models enable us to predict mode choices for individuals under different scenarios, which 
can be further aggregated into share for each available mode. 

We use the random utility maximization framework as the theoretical foundation to model how 
an individual (survey respondent) chooses a choice among discrete modes (McFadden, 1981). 
The model suggests that individuals choose modes to maximize utility. In other words, 
individuals choose a mode where the utility associated with the mode exceeds the utility of all 
the other alternative modes. Utility of an individual 𝑖𝑖 choosing mode 𝑚𝑚 among the choice set of 
three modes can be represented by 

𝑼𝑼𝒊𝒊𝒊𝒊 = 𝑽𝑽𝒊𝒊𝒊𝒊 + 𝝐𝝐𝒊𝒊𝒊𝒊 and 𝑽𝑽𝒊𝒊𝒊𝒊 = 𝜶𝜶𝑿𝑿𝒊𝒊 + 𝜷𝜷𝑰𝑰𝒊𝒊𝑿𝑿′𝒊𝒊,	 (4-1) 
where 

•	 𝑈𝑈𝑖𝑖𝑖𝑖 is the utility of individual 𝑖𝑖 choosing mode 𝑚𝑚, 
•	 𝑉𝑉𝑖𝑖𝑖𝑖 is the deterministic components of 𝑈𝑈𝑖𝑖𝑖𝑖, 
•	 𝜖𝜖𝑖𝑖𝑖𝑖 is the unobserved errors, 
•	 𝛼𝛼 and 𝛽𝛽 the coefficients to be estimated, 
•	 𝑋𝑋𝑖𝑖 and 𝑋𝑋′𝑖𝑖 are attributes of mode 𝑚𝑚, and 
•	 𝐼𝐼𝑖𝑖 is socio-demographic characteristics of individual 𝑖𝑖. 

Following the specification of a multinomial logit model (MNL) (Ben-Akiva and Lerman, 1987), 
we assume that the deterministic components 𝑉𝑉𝑖𝑖𝑖𝑖 of the utility are linear-in-parameters with the 
attributes of modes. 

In this paper, we only use indicator (dummy) variables for 𝐼𝐼𝑖𝑖, for example, HBW trip purpose 
variable indicating whether individual 𝑖𝑖 is making a HBW trip (1) or not (0). The interaction 

′ term 𝐼𝐼𝑖𝑖𝑋𝑋𝑖𝑖, along with the estimated coefficient 𝛽𝛽, captures the difference in utilities for mode 
′ attribute 𝑋𝑋𝑖𝑖 between individuals making these two different types of trips. For example, we can 

capture the relative (dis-)utilities of employed individuals derived from out-of-pocket cost using 
the interaction term of employed and cost. If the coefficient of the interaction term is positive 
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and significant, then employed individuals are more likely than the unemployed to choose modes 
with higher cost, everything else being the same. 

Based on the utility maximization theory, the probability of an individual 𝑖𝑖 choosing a specific 
mode 𝑘𝑘 is represented by 

𝐏𝐏𝐏𝐏(𝒀𝒀𝒊𝒊 = 𝒌𝒌) = 𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏(𝑽𝑽𝒊𝒊𝒌𝒌 + 𝝐𝝐𝒊𝒊𝒌𝒌 > 𝑽𝑽𝒊𝒊𝒊𝒊 + 𝝐𝝐𝒊𝒊𝒊𝒊), 𝐟𝐟𝐏𝐏𝐏𝐏 𝒌𝒌, 𝒊𝒊 ∈ 𝟏𝟏, 𝟐𝟐, 𝟑𝟑, 𝐚𝐚𝐚𝐚𝐚𝐚𝒌𝒌 ≠ 𝒊𝒊. 
(4-2) 

Assuming that the error term 𝜖𝜖𝑖𝑖𝑖𝑖 follows an independent and identically distributed type I 
extreme value distribution, the probability of individual 𝑖𝑖 choosing 𝑚𝑚 is: 

𝐞𝐞𝐞𝐞𝐞𝐞(𝑽𝑽𝒊𝒊𝒌𝒌)𝐏𝐏𝐏𝐏(𝒀𝒀𝒊𝒊 = 𝒌𝒌) = 𝟑𝟑 . (4-3) ∑𝒊𝒊=𝟏𝟏 𝐞𝐞𝐞𝐞𝐞𝐞(𝑽𝑽𝒊𝒊𝒊𝒊) 
The parameters of 𝛼𝛼 and 𝛽𝛽 in are estimated by maximizing the log likelihood function of the 
MNL: 

𝑯𝑯 𝑴𝑴𝑳𝑳𝑳𝑳 = ∑𝒊𝒊=𝟏𝟏 ∑𝒌𝒌=𝟏𝟏 𝒅𝒅𝒊𝒊𝒌𝒌 𝐥𝐥𝐚𝐚(𝐏𝐏𝐏𝐏(𝒚𝒚𝒊𝒊 = 𝒌𝒌)), 
(4-4) 

where LL is the log likelihood function. 𝑑𝑑𝑖𝑖𝑖𝑖 equals 1 if individual 𝑖𝑖 chooses mode 𝑘𝑘, and it 
equals 0 otherwise. 

5.1 THE BASE MODEL 

The base model only includes mode attributes in the model specification. 𝛽𝛽𝐼𝐼𝑖𝑖𝑋𝑋′𝑖𝑖 in Equation 4-1 
is not included in the base model specification. It is assumed that there is no heterogeneity 
among individuals in their preference when making mode choice decisions. This may be an 
unrealistic assumption, but the advantage of the base model is that it is the simplest to apply in 
predictions because it does not require socio-demographic characteristics or attitudinal 
information of individuals. 

The variables in the model specification of the base model include out-of-pocket cost and travel 
time components (in-vehicle travel time, waiting time, and walking time), as well as a series of 
dummy variables for indicating attributes of a mode. The dummy variables include 

• ride-hail, whether a mode is a rail-hailing service 
• ride-share, whether a mode requires sharing a ride with an unknown passenger 
• car-share, whether a mode uses car sharing 
• bike-share, whether a mode uses bike sharing 
• biking, whether a mode is biking, either using a personal bike or a bike sharing bike 

Table 4.1 presents the model specification and estimate coefficients of the base model. All the 
coefficients are significant with an expected sign. Since in an MNL model the absolute size of 
each coefficient is not meaningful by itself, we derive and analyze the relative magnitude or ratio 
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of the coefficients. Ratio of a coefficient to the cost coefficient are interpreted as the willingness 
to pay. The ratios of the time coefficients to the cost coefficient is a special type of willingness to 
pay - value of time (VOT), that is, the amount of money a traveler is willing to pay to save a unit 
of travel time. 

Table  4.1:  Model specification of the base model  
Base Model 
Coeff (t-stat) 

ivmins -0.01 (0.00)*** 

wait -0.06 (0.00)*** 

walk -0.01 (0.00)*** 

cost -0.07 (0.00)*** 

ridehail -1.10 (0.06)*** 

rideshare -0.77 (0.04)*** 

carshare -1.73 (0.07)*** 

biking 
biking:bikeshare 

0.64 (0.19)*** 

-2.46 (0.21)*** 

AIC 12101.67 
Log Likelihood -6041.83 
Num. obs. 8079 
***p < 0.001, **p < 0.01, *p < 0.05 

Table 4.2 shows the VOT and willingness to pay derived from the base model. In-vehicle travel 
time (ivtt) has a value of time of $10.81/hour, while waiting time and walking time have a value 
of time of $47.57/hour and $9.23/hour, respectively. All are in a reasonable range, even though 
the VOT for walking time is generally expected to be higher than that for ivtt. 

The willingness to accept (pay) for using ride hailing, ride-sharing, bike sharing, and car sharing 
are high in the range of $11-35. That is, comparing ride hailing services and another mode with 
the same travel time components, the ride hailing service needs to lower the out-of-pocket cost 
by $15.71 for it to provide the same utility as the other mode. According to the modeling results, 
for biking mode, the bike sharing program needs to provide a cost savings of $35 for it to be 
competitive as a personal bike, which seems extreme. It should be noted that given the 
experiment’s design, dummy coefficients for emerging modes likely also capture general inertia 
effects with regard to switching from a current mode.  
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Table 4.2: Value of time and willingness to pay derived from the base model 

Type WTP Unit 
ivtt 
waiting time 

10.81 
47.57 

$/hour 
$/hour 

walking time 9.23 $/hour 
ride hailing 15.71 $ 
ride share 11.02 $ 
bike sharing 35.17 $ 
car sharing 24.70 $ 

5.2  THE FULL MODEL  

In the full model, 𝛽𝛽𝐼𝐼𝑖𝑖𝑋𝑋′𝑖𝑖 in Equation 4-1 is included in the model specification to reflect 
heterogeneity among individuals in their preference when making mode choice decisions. Table 
4.3 presents the model specification and estimated coefficients of the full model. We tested a 
number of different socio-demographic dummy variables interacting with mode-specific 
attributes, but only kept those with at least some significant coefficients for the interaction terms. 
The coefficients for the interaction term read as the relative difference in utility from the mode-
specific attribute for the population subgroup identified by the socio-demographic dummy 
variable. For example, the coefficient for is for the interaction between employed 
and cost, which is positive and significant (p < 0.01) at 0.18. The overall population has a cost 
coefficient of -0.29, while the cost coefficient for the employed is -0.11 (=-0.29 + 0.18). Table 
4.4 shows the VOT and willingness to pay for the overall population, while Table 4.5 presents 
those for the employed. Note that VOT and willingness to pay for variables whose coefficients 
are not statistically significant are not calculated. 

Table  4.3:  Model specification of the full  model  
 

Full Model 
Coeff (t-stat) 

ivmins 0.04 (0.02) 
wait -0.04 (0.01)**

walk 0.00 (0.02) 
cost -0.29 (0.03)*** 

ridehail -0.38 (0.28) 
rideshare -0.61 (0.19)**

carshare -2.05 (0.55)*** 

biking -0.34 (0.65) 
biking:bikeshare 
ivmins:purpHBW 
wait:purpHBW 
walk:purpHBW 
cost:purpHBW 

-2.41 (0.24)*** 

0.01 (0.01) 
0.01 (0.01) 
-0.01 (0.00)*

-0.01 (0.00)*
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 Full Model Coeff. (t-stat)
ridehail:purpHBW    0.04 (0.12)  
rideshare:purpHBW    0.22 (0.09)*  
carshare:purpHBW    0.30 (0.15)*  
biking:purpHBW    0.31 (0.22)  

  ivmins:studentStudent  0.01 (0.01)*  
wait:studentStudent   0.03 (0.01)***  

  walk:studentStudent  0.02 (0.00)***  
 cost:studentStudent   0.10 (0.01)***  

  ridehail:studentStudent  0.02 (0.12)  
 rideshare:studentStudent   0.09 (0.09)  

  carshare:studentStudent  0.03 (0.15)  
  biking:studentStudent  0.57 (0.22)**  

ivmins:genderFemale   -0.02 (0.01)*  
wait:genderFemale   -0.00 (0.01)  
walk:genderFemale   -0.02 (0.00)***  
cost:genderFemale   -0.02 (0.01)***  
ridehail:genderFemale   0.48 (0.12)***  
rideshare:genderFemale   -0.13 (0.09)  
carshare:genderFemale   0.28 (0.15)  

 biking:genderFemale   -0.17 (0.23)  
 ivmins:low_income   0.00 (0.01)  

 wait:low_income   0.00 (0.01)  
 walk:low_income   -0.01 (0.01)  

  cost:low_income  -0.08 (0.01)***  
 ridehail:low_income   0.66 (0.13)***  

 rideshare:low_income   0.06 (0.10)  
carshare:low_income   0.21 (0.18)  

 biking:low_income   -0.01 (0.25)  
 ivmins:minority   -0.01 (0.01)  

 wait:minority   -0.01 (0.01)  
 walk:minority   -0.01 (0.01)*  

 cost:minority   0.00 (0.00)  
 ridehail:minority   0.03 (0.12)  

 rideshare:minority   0.29 (0.09)**  
 carshare:minority   -0.03 (0.16)  

 biking:minority   0.01 (0.24)  
 ivmins:employed   -0.05 (0.02)*  

 wait:employed   -0.04 (0.01)*  
 walk:employed   -0.02 (0.01)  

 cost:employed   0.18 (0.03)***  
 ridehail:employed   -1.07 (0.27)***  

 rideshare:employed   -0.29 (0.18)  
 carshare:employed   0.18 (0.54)  
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 Full Model Coeff. (t-stat)
biking:employed  0.66 (0.61)   
AIC   11090.48 
Log Likelihood  -5488.24  
Num. obs.  7980 
***p < 0.001,  **p < 0.01,  *p < 0.05   

 
   

   
   

   
   

 
 

   

   
   

   
   

 

   

   
  

   
  

   
  

 

 
  

 
 

  

Table 4.4: Value of time and willingness to pay derived from the full model 

Type 
waiting time 

WTP 
8.55 

Unit 
$/hour 

ride share 2.08 $ 
bike sharing 8.25 $ 
car sharing 7.00 $ 

Table 4.5: Value of time and willingness to pay derived from the full model for employed individuals 

Type WTP Unit 
ivtt 
waiting time 

27.96 
41.82 

$/hour 
$/hour 

ride hailing 9.71 $ 
ride share 5.53 $ 
bike sharing 21.90 $ 
car sharing 18.59 $ 

5.3  INCORPORATION INTO RSPM TOOLS  

The emerging modes are being incorporated into the VETravelDemand module for RSPM. The 
code is released as an open-source repository on GitHub: 
https://github.com/cities/VETravelDemand. The VETravelDemandMM module is an R package 
that implements a module for RSPM to simulate multimodal travel demand for individual 
households. The original motivations of developing the new package includes better policy 
sensitivities for non-driving modes and taking advantage of newer and better data sources 
available since the implementation of the RSPM/GreenSTEP model. This project adds the 
capacity for the module to simulate mode shift with the emerging modes. 

5.4  FUTURE RESEARCH  

There are two modeling tasks left for future research. The first is to incorporate attitudinal 
information in the MNL models. The survey questionnaire includes various attitudinal 
information towards travel, various modes, and technology. According to the literature, these 
attitudinal variables are powerful in explaining the mode choice behavior. We do not include 
mode specification with attitudinal variables in this chapter because attitudinal variables are 
difficult to use in prediction applications. The second is to test possible better model structure. 
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Since each respondent in the survey completed multiple choice experiments, theoretically the 
experiments completed by the same respondent are likely to share some characteristics that may 
be unobserved by the researcher. A better model structure that addresses this is the mixed logit 
model (MXL). The downside of MXL models is that they are computationally more expensive. 
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