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Abstract

Archaeologists hypothesize that mid-late Holocene environmental variability played a role in several
significant western Arctic cultural developments including population fluctuations, the evolution of
Arctic maritime adaptations, and Arctic-wide migrations. Further evaluation of these hypotheses
requires higher resolution archaeological and paleoecological datasets than are currently available. In
response, we undertook an interdisciplinary study at Cape Krusenstern, a large coastal site complex in
northwest Alaska, which was occupied over the last ca. 5000-6000 years. Our goals were to refine local
cultural and paleoenvironmental chronologies and to explore the question of how local environmental
change may have influenced local settlement history. The resulting revised chronology and depositional
units confirm and refine prior interpretation of the local archaeological settlement history. New
geomorphological data on coastal environmental change and post-depositional modification of the Cape
Krusenstern beach ridge system also provide information about patterns of archaeological site
preservation, indicating periods of potentially poorer site preservation around 3990 cal BP; this informs
interpretation of forager settlement data. Furthermore, our findings suggest that climate-driven
changes in the coastal environment at Cape Krusenstern may not be as determinative in terms of
landscape evolution as previously thought. Future work should focus on further investigating the
relationship between beach ridge development and regional climatic patterns on a regional scale, as this
has implications for use of beach ridges as a mid-late Holocene climate proxy. Continued efforts to build
paleoenvironmental reconstructions of higher temporal and spatial resolution for the region will help
address remaining questions about the relationship between local coastal environmental changes and
regional patterns, and the impacts of these environmental shifts on local residents.

Keywords: Human-environment interactions, Coastal paleoenvironments, Geomorphology, Maritime
foragers, Chronology, Arctic
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1.0 Introduction

High latitude environments present challenges to human adaptive strategies. This is particularly
the case during periods of increased environmental variability or unpredictability when low biodiversity
and a tendency towards boom and bust cycles of resource abundance are exaggerated (Rowley-Conwy,
1999). Over the course of human history foragers expanded into and retracted from high latitudes,
partially in response to environmental changes that outpaced human adaptive strategies. Humans
occupied northern Asia between 40,000 and 28,000 cal BP, but abandoned the coldest regions during
the Last Glacial Maximum around 24,000 to 21,000 cal BP when ice sheets were at their maximum (Clark
et al. 2009; Hoffecker and Elias, 2003; Graf, 2009; but see Kuzmin and Keates, 2018). Archaeologists
point to the role of environmental change in waves of mid-late Holocene human migration across the
Arctic (McGhee, 2000; 2009; Morrison, 2009; but see Friesen and Arnold, 2008) and as a factor in the
dramatic shifts in technology and socio-political organization during the same time period (Giddings and
Anderson 1986; Gerlach and Mason 1992; Mason and Gerlach 1995a, b; Mason and Barber 2003). The
variable mid-late Holocene environment of the western Arctic likely played a significant role in the
development and expansion of Arctic maritime cultures over the last 4500 or more years (e.g. Mason
and Gerlach 1995a,b; Mason 1998; Mason and Jordan 2002; Mason and Barber 2003; Dixon 2003),
particularly when coupled with other social and political forces of change. This paper integrates
paleoenvironmental, archaeological, and geomorphological data in order to advance our understanding
of the relationship between cultural and environmental change during the mid-late Holocene in
northwest Alaska.

In northwest Alaska, previous archaeological and paleoenvironmental research at the Cape
Krusenstern (CAKR) site complex (Figures 1 and 2) (Anderson, 1962; Giddings, 1966; Moore, 1966;
Giddings and Anderson, 1986; Mason and Ludwig, 1990; Mason and Jordan, 1993; McClenahan and
Gibson, 1990; McClenahan, 1993;) established a framework for studying the relationship between
coastal environmental change and the emergence of Arctic maritime cultures over the last 4500 years.
Further understanding of human-environment interactions, however, hinges on the development of
archaeological and paleoenvironmental chronologies with higher spatial and temporal resolution. Arctic
paleoenvironmental proxies of suitable resolution for comparison with the archaeological record are still
rare (see Kaufman et al. 2016 for a recent synthesis).

Better understanding the environmental context for significant cultural events and resolving
issues of temporal resolution between geomorphological and cultural data will help archaeologists
identify driving factors in cultural change. We undertook renewed research at the CAKR site complex
with the purpose of 1) developing higher resolution archaeological and paleoenvironmental
chronologies, 2) re-evaluating the local settlement history, and 3) refining the local paleoenvironmental
reconstruction and landscape history. The goal of this paper is to synthesize new geomorphological and
archaeological data with prior results (Anderson and Freeburg, 2013; 2014), to refine local cultural and
paleoenvironmental chronologies, and to consider the question of how local environmental change may
have influenced local and regional settlement history. It is not our intent to develop a revised synthesis
of regional beach ridge chronologies or the Chukchi Sea paleo-storm record. Such a synthesis requires
additional data and integration with research on other regional beach ridge systems (e.g. Kotzebue
(Rinck and Mason 2015), Cape Espenberg (Alix et al. 2018)). Here we focus specifically on our research
at Cape Krusenstern, updating and refining previous research results on this system.
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2.0 Cultural and Environmental Context
2.1 Geologic Background

The CAKR site complex is located on a series of beach ridges that began forming soon after
regional sea level stabilized around 5000-6000 years ago (Mason and Jordan, 1993; 2002). The CAKR
beach ridge system is one of many in the region that developed during this time period, although CAKR
is one of the largest and oldest systems. The area currently occupied by CAKR was open-ocean prior to
the initial deposition and stabilization above sea-level of sandy gravel beaches that anchored the
subsequent accretion of more than 100 ridge-and-swale sets. The erosion and reworking of near-shore
shelf sediments and mainland bluffs provided material for transport and deposition as spits, barrier
islands, and eventually the broader landform of the cape. The primary direction of sediment transport
along the CAKR coast during the mid-late Holocene was north to south to east, resulting in the
distinctive pattern of northwest to southeast to east-trending spits that amalgamated over time to form
the CAKR beach ridge complex. The down-drift ends of these spits are conspicuous between the
southeast corner of Krusenstern Lagoon and the lower Tukrok River (Figure 2), which drains the lagoon
through a tidally-influenced wetland to the ocean. The process of beach ridge/spit amalgamation or
welding has been dynamic throughout the history of the Cape, punctuated by periods of marked erosion
along segments of the shoreface, and resulting in slight reorientations of the shoreline, which have
demarked spatially coherent sets of beach ridges that comprise the complex. The seaward progradation
of beach ridges was relatively rapid between 5000 and 3000 cal BP, marked by wide, low-elevation
ridges separated by swales of roughly the same width. This morphology indicates a relatively quiescent
marine climate, due either to a low frequency and/or magnitude of coastal storms, limited fetch due to
extensive sea ice, or limited sediment supply. The point of origin of these ridges is now below sea level
seaward of the mainland coast at the northwest corner of the CAKR complex. Shifts in storm intensity
and direction, or interruptions of sediment supply, caused reworking and reorientation of the shoreline
(Moore, 1960; 1966; Hopkins, 1977; Mason and Ludwig, 1990; Mason et al., 1995). Secular (e.g. short-
term, days to weeks) shifts in wind direction, storminess, and storm surges can have a significant impact
on short and long term local processes of coastal sedimentation and erosion, more so than eustasy or
seismic events in this region (Hume and Shalk, 1967; Mason and Jordan, 1993; Mason et al., 1995;
Jordan and Mason, 1999; Mason and Jordan 2002). As such, the ridge system is thought to be a record
of both average conditions reflected in ridge topography and geomorphology as well as brief, large
magnitude events that led to rapid erosion and realignment of subsequent ridges.

A shift in depositional regime is conspicuous after about 2100 cal BP and is marked by more
closely-spaced, higher-elevation ridges with more variable along- and across-ridge topography. These
post-2100 cal BP ridges can be broken into at least three deposition/erosion phases, but are readily
distinguished from the older ridge sets by their hydrological setting: ridges that formed before about
2100 cal BP are commonly broken by lakes that have filled and flooded inter-ridge swales, or by lakes
that have expanded across ridge sets via ice-push processes during spring and wave action during
summer. This gross difference between depositional processes could be due to an abundance of
sediment available for longshore transport and deposition at CAKR (increased coastal erosion and/or
sediment delivery to the coast via streams updrift), a more energetic coastal storm climate and/or
extensive fetch (at least episodically), or a further reduction in the rate of sea level rise (cf. Goodwin,
2005). During the past ca. 1000 years, sediment deposition has mostly occurred along the west and
southwest reaches of the CAKR shoreline, south of the narrow barrier beach that separates the shore of
Krusenstern Lagoon from the ocean, to Sealing Point, and southwest for about 6km to the east-trending
inflection in the coast. This has resulted in the addition of ridge-and-swale sets parallel to the modern
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shore, and most obviously, in the transport of sediment east toward Sisualik; over this time period the
mouth of the Tukrok River has been diverted about 7km to the east (Figures 1 and 2).

The progradational beach formation processes at CAKR formed a “horizontal stratigraphy”
(Giddings, 1967)(Figure 3) that was particularly important for establishing the local and regional
chronology of mid-late Holocene Arctic forager lifeways before radiocarbon dating was widely applied in
archaeology. Giddings (1966, 1967) and others (Hopkins, 1977; Giddings and Anderson, 1986) built on
Moore’s research (Moore, 1960; 1966) on regional geological processes to understand the
geomorphological sequence at CAKR. Giddings defined beach ridge segments based on
geomorphological and archaeological evidence (Giddings 1966; Giddings and Anderson 1986); these
ridge segments were later refined by Mason and Ludwig (1990) and combined with similar data from
other ridge systems around the region into a regional storminess record (Mason and Jordan 1993;
Mason et al. 1995; Jordan and Mason 1999). Conspicuous reorientations in the beach ridge system
coincide with significant shifts in human settlement and subsistence patterns; this led researchers to
hypothesize causal relationships between environmental and social changes in this region (see further
discussion in section 2.2 and 2.3).

2.2 Archaeological Background

The earliest sites at CAKR are a record of the earliest known Arctic coastal lifeways, although
older coastal sites could be underwater. The site complex was continuously occupied for the last 4500-
5000 years (Giddings and Anderson, 1986; Anderson and Freeburg, 2013, 2014). Renewed research at
CAKR began in 2006, with the purpose of further exploring the role coastal environmental change may
have played in human settlement patterns during the mid-late Holocene period. Through a program of
systematic archaeological survey, testing, and radiocarbon dating we refined the local archaeological
chronology (Anderson and Freeburg, 2013) and settlement history (Anderson and Freeburg, 2014),
which parallel regional reconstructions of past coastal lifeways (Schaaf, 1988; Harritt, 1994; Mason,
1998)(Table 1). The earliest sites at CAKR, dating to between about 2750 and 4500 years ago, are
limited to small campsites thought to be associated with spring sealing activities (Table 1). Over time,
the local population/occupation density increased, with a significant shift towards semi-permanent
coastal occupation beginning around 2000 cal BP and rapid population growth beginning around 1000
cal BP. Occupation of the site complex continued to increase until about 550 cal BP when, locally and
regionally, there appears to have been a population decline or redistribution (Anderson and Freeburg,
2014; Anderson et al., in review).
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Table 1. Summary of northwest Alaskan settlement patterns (adapted from Mason, 2009b).

Archaeological
Culture

Approximate
Age Range
(cal BP)

Geographic Distribution

Settlement Pattern

Denbigh

4500-2750

Kotzebue Sound, Brooks Range

Highly mobile, seasonal
movement between coast and
interior

Choris

2750-2450

Kotzebue Sound, Brooks Range,
Northern Yukon Territory

Highly mobile, but longer
seasonal occupation of coastal
areas indicated by construction
of semi-subterranean houses
on coasts.

Norton (Norton-
Near Ipiutak in
Northwest Alaska)

2500-2000

Southern AK Peninsula to
Western Canada, unknown in
Siberia and Chukotka

Possible reduced residential
mobility. Few northwest
Alaskan sites dated to this time
period; period poorly
understood

Ipiutak

1750-1150

Norton Sound to Point Barrow,
interior of Northwest Alaska
and Brooks Range

Reduced residential mobility
with longer occupation of
coasts on a seasonal basis.
Increase in coastal settlement
size.

Birnirk

1350-750

Eastern and western shores of
Chukchi sea

Reduced residential mobility
with longer occupation of
coasts on a seasonal basis.
Increase in coastal settlement
size. Note that there are only a
few sites attributed to Birnirk
culture in northwest Alaska.

Thule

950-550

Bering Strait to Greenland

Semi-permanent occupation of
coastal areas. Large coastal
settlements.

Late
Thule/Kotzebue
(Arctic Woodland
in interior areas of
Northwest Alaska)

550-250

Coastal and inland areas of
Northwest Alaska

Semi-permanent occupation of
coastal areas. Possible increase
in logistical mobility. Smaller
settlements than preceding
period, occupations shift to
previously unoccupied
locations. Interior settlements
smaller than contemporary
coastal occupations.

2.3 Northwest Alaska Paleoenvironmental Record
Paleoenvironmental proxies indicate that the regional climate, particularly over the last 1500
years (see overviews in Jordan, 2009; Kaufman et al., 2016; Mason 2009a), was highly variable in
northwest Alaska, however, the timing and impacts of the Medieval Climate Anomaly (MCA ca. 1000-
700 BP) and the Little Ice Age (LIA ca. 600-100 BP) are not consistently apparent in proxy records. The
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regional paleoenvironmental dataset is relatively coarse both temporally and spatially and does not
reflect differences in coastal versus interior environments and associated subsistence strategies. Sub-
regional differences in the timing and character of environmental variability are known but not well
understood. A systematic review of multiple Holocene climate proxies for northwest Alaska (Kaufman
et al. 2016) indicates maximum mean annual regional temperatures between 7000 - 5000 BP (e.g.,
midge proxies indicate July temperatures were 0.2° C higher than the most recent millennium) and
decreasing average temperatures after 3000-4000 cal BP. However, high-resolution sea-ice
reconstructions in the same region of the Chukchi Sea “show no strong agreement other than a general
lack of an overall trend during the Holocene” (Kaufman et al. 2016:318).

At a regional level, the cultural changes described above are often attributed at least in part to
shifts in the mid-late Holocene environment (e.g. Anderson, 1984; Giddings and Anderson, 1986; Minc
and Smith, 1989; Mason and Gerlach, 1995a; 1995b; Mason, 1998; Mason and Jordan, 2002; Dixon,
2003; Mason and Barber, 2003; Murray et al., 2003). For example, environmental variability is often
proposed as the driver behind the migration of people into Northwest Alaska around 4500 years ago
and again around 1300-1500 years ago (Mason and Gerlach, 1995a,b ; Tremayne and Winterhalder,
2017). Variability in one part of the region (e.g. eastern Beringia) may have pushed people to seek out
new, better or more stable resources in another part of the region (e.g. western Beringia/northwest
Alaska), or to explore alternative resource procurement strategies and technologies (e.g. Minc and
Smith, 1989; Tremayne and Winterhalder, 2017). The adoption of whaling and the later shift to open
water whale hunting during the last 1500 years is frequently linked to environmental changes that made
whales more available to coastal hunters (e.g. Dixon, 2003; Mason and Barber, 2003). Changes in
settlement patterns and subsistence after 550 cal BP are thought by some to be related to climatically
driven cessation in whaling activities (Giddings and Anderson, 1986; Harritt, 1994), but are also
attributed to the adoption of dog traction (Hall, 1978), or a function of increased social interaction with
a broader socio-political sphere (Mason, 1998). Or, perhaps post-500 cal BP settlement and subsistence
changes could have been a more general response to increased environmental variability in the Late
Holocene.

However, inconsistencies among paleoenvironmental proxies and interpretation of climate
conditions from proxies leads to opposing archaeological narratives. For instance, some (Taylor, 1963;
Bockstoce, 1973; McGhee, 2000) have suggested that Thule cultural development expansion was linked
to a warmer climate and less sea ice that allowed for increased returns on marine mammal foraging. In
contrast, Mason and Barber (2003) argue that cold and stormy conditions increased marine productivity
and caused the Thule expansion. Refined dating for Thule occupation of the western Canadian Arctic
(Friesen and Arnold, 2008) calls into question the relationship between the Thule migration and climatic
events in general. The lack of finer-scale paleoenvironmental data is particularly challenging for
archaeologists studying seasonally or logistically mobile groups such as those of pre-Euro-American
contact northwest Alaska; multiple proxies must be considered to understand human adaptation to
localized environmental differences (e.g. use of coastal versus interior environments).

To explore this at CAKR, we focus on local proxy data from the beach ridge complex as the
highest resolution, most geographically proximate record of environmental conditions. The need for
higher resolution environmental data guided geomorphological field work at CAKR; sampling was
designed to look more specifically at changes in storm intensity, sediment supply, and relative sea level
in order to refine the existing framework established by prior geomorphological and paleoecological
research on Kotzebue Sound beach ridge systems (e.g. Mason and Jordan, 1993; 1997; 2002; Mason et
al., 1995; 1997).
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3.0 Methods and Field Activities

3.1 Archaeological

Four years of fieldwork were conducted at CAKR, beginning in 2006 and from 2008-2010. Field
methods included pedestrian survey and sample collection as well as precise mapping of archaeological
and environmental features across the beach ridge complex. We systematically and intensively
surveyed areas of the beach ridge system and conducted sub-surface testing in areas of where the
ground surface was covered with vegetation. We also selectively sampled surface depressions and
vegetation anomalies (patches of dense vegetation different from surrounding vegetation) we
considered potentially indicative of archaeological deposits. Larger excavations, up to 3 by 3 min size,
focused on archaeological features for sample collection purposes. We relocated previously recorded
sites and collected new samples for dating and other analyses from these locations, and sampled sites
on cultural and non-cultural features on different depositional units (see Anderson and Freeburg 2013;
Freeburg and Anderson 2012 for additional survey details).

We surveyed approximately 1,205 hectares (36%) of the 3,300 hectare beach ridge complex and
identified a total of 1,377 archaeological features, including both new and previously recorded features.
We obtained a total of 239 new radiocarbon dates from archaeological contexts; 151 dates were
published previously (Anderson and Freeburg, 2013, 2014) and 88 new dates are presented here for the
first time (Supplemental Table 1). Conventional radiocarbon dates were calibrated using IntCal13 and
Marinel3 (Reimer et al., 2013) calibration curves in OxCal 4.3.2 (Ramsey, 2009).

3.2 Geomorphological

Geomorphological research, conducted in 2008 and 2009, was focused on refining our
knowledge of the physical evolution of the CAKR beach ridge complex. Fieldwork focused on mapping
boundaries between distinct ridge sets and obtaining non-cultural organic samples to refine a
chronostratigraphy of the complex that is independent of, yet augments, the cultural chronology. Prior
geomorphological study of the ridge system relied solely on archaeological dates to provide limiting ages
for the ridges themselves (e.g. Mason and Jordan 1993). Specific survey and reconnaissance areas were
prioritized based on analysis of aerial photographs, the literature relevant to the geomorphological
history of the complex, and gaps or uncertainties identified in the dating of the complex. Areas of focus
included the eastern quadrant of the CAKR beach ridge complex where the ridges terminate in ponds or
marshes defined by Krusenstern Lagoon and the Tukrok wetlands, as well as the north and west margin
of the complex at Krusenstern Lagoon (Figure 2).

A total of 43 non-cultural sites were examined during geomorphological survey of the beach
ridge complex; contexts included beach ridge crests, swales between beach ridges, marshes, peat lands,
and natural erosion exposures. Forty-three organic samples (driftwood fragments, peat, silty peat,
organic silt) were collected with trowel from shovel test pit walls, from cores obtained with an Oakfield
or Gouge corer, and from natural exposures. Twenty-five of these samples were submitted for
radiocarbon analyses. Eight additional non-cultural organic samples were collected during the course of
archaeological shovel testing; these were wood fragments of conifer (some identifiable as Picea) that
probably were deposited as pieces of driftwood on the upper shoreface or in overwash deposits in
swales behind the seaward-most beach (Table 2). Conventional radiocarbon dates were calibrated using
IntCall3 and Marinel3 (Reimer et al., 2013) calibration curves in OxCal 4.3.2 (Ramsey, 2009).
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Table 2. Geomorphological Ages. See Figure 4 and Supplemental Table 2 for Sample Location. Conventional radiocarbon dates were

calibrated using IntCal13 and Marinel3 (Reimer et al., 2013) calibration curves in OxCal 4.3.2 (Ramsey, 2009).

Material Sample Context Depth of
Beach Conventional Two o Dated Sample
Lab# Field Number Calibrated Age
Segments Age (BP) (cm Below
(cal BP)
Surface)
Beta Peat Sample collected from inter-ridge 3-4cm
254651 08-CK-4-4 | 102.5+0 Modern swale peat exposed on lake
cutbank ca. 300m e of 09-CK-2
Peat Core collected on potentially 8-9cm
Beta second oldest ridge/swale set in
-CK-10- | 101.9+ M
255139 08-CK-10-9 01.9+0 odern complex, NW corner of
Krusenstern Lagoon
Beta Peat Core in peat on potentially second 54-55 cm
08-CK-10-55 500140 631 to 495 oldest ridge/swale set in complex,
255142
NW corner of Krusenstern Lagoon
Beta Peat Core in peat on potentially second 23-24cm
08-CK-10-24 520450 647 to 498 oldest ridge/swale set in complex,
255140
NW corner of Krusenstern Lagoon
Beta Peat Core in peat on potentially second 28-29cm
08-CK-10-29 570140 652 to 522 oldest ridge/swale set in complex,
255141
NW corner of Krusenstern Lagoon
Beta Peat Collected from inter-ridge swale 17-18 cm
254652 08-CK-4-18 1060+40 1059 to 922 peat exposed on lake cutbank ca.
300m east of 09-CK-2
Beta Peat Peat core collected at SW corner 37-38 cm
08-CK-11 1730+40 1730 to 1545 of largest lake connected to
256625
Krusenstern Lagoon
Core sample collected at relict 19-20cm
Beta Organic silt lake-end ridge at E end of large
09-CK-14-20 1820430 1860 to 1630 rectangular lake open to
317990
Krusenstern Lagoon, NW sector of
complex
Beta Peat Collected from inter-ridge swale 9-11cm
08-CK-13 1800+50 1865 to 1605 peat exposed on shore of
256626
Krusenstern Lagoon
Beta 09-CK-14-30 2150+30 2305 to 2010 Organic silt Core collected at relict lake-end 29-30 cm
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317991 ridge east end of large
rectangular lake open to
Krusenstern Lagoon, NW sector of
complex
Beta Peat Peat in swale at north side of Old 20-21cm
08-CK-22 3250140 3566 to 3389 Whaling ridge, at SE end of large
256627
elongate lake
Beta Peat Inter-ridge swale peat exposed on 21-22cm
08-CK-4-22 3280440 3607 to 3402 lake cutbank ca. 300m east of 09-
256852
CK-2
Beta 09-CK-3 4060440 4802 to 4475 Driftwood Shovel test.at Krusenstern Lagoon 78-79cm
277795 fragment camp, 1st ridge from lagoon
Peat Sample collected from inter-ridge 48-49cm
Beta swale peat exposed on second
-CK-8- +
255668 08-CK-8-49 Ila 2310440 2431 to 2158 lake system S of E end of
Krusenstern Lagoon
Peat Sample collected from inter-ridge 60-61cm
Beta swale peat exposed on second
-CK-8- +
255669 08-CK-8-61 Ila 2680140 2857 to 2746 lake system S of E end of
Krusenstern Lagoon
Beta Peat Core collected from peat in swale 27-28cm
256629 08-CK-24 I 2200440 2330to0 2120 ca. 300m SE of 08-CK-24, five
ridges N of Old Whaling ridge
0594052  CAKR09-0214 I 2460£25 2705 t0 2379 Wood — Shoveltest In beach ridge them
charcoal
Organicsilt  Shovel test on second ridge S of 64-65 cm
Beta ‘amalgamated lake' at head of
-CK- +
317989 09-Ck-7 . 2940£30 3206 t0 2993 ridge bifurcation, varved
sediment
Beta Peat Core collected in peat in swale at 18-19cm
08-CK-23 v 630140 665 to 549 S end of N-S elongate lake
256628 .
dammed by ridges 4-5
0S-94135  CAKR09-0354 v 2400425 2677 to 2350
Beta Peat Core collected in peat in swale 28-29 cm
08-CK-26 v 2390440 2696 to 2338 one ridge S of S shore of irregular
256853
lake
Beta 09-CK-16 Vv 170430 291 to Modern Silty peat Shovel test in shallow swale in 9-10 cm
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317992

composite ridge

Beta 09-CK-1 v 850430 898 to 690 Peat Shovel test in peat at head of 18-19 cm

317987 swale

Beta Silty peat Shovel test in prominent swale 15-16 cm
-CK- +

317988 09-CK-2 v 960£30 93010 795 (third from shore), basal peat

0S-94113  CAKR08-0259 \Y; 1630425 1603 to 1416 Wood Shovel test in beach ridge 38 cm

0S-94134  CAKR09-0267 \Y; 1860425 1868 to 1724 Wood Shovel test in beach ridge 43 cm

0S-94053  CAKR09-0264 \Y; 1920+30 1948 to 1746 Wood Shovel test in beach ridge 45cm

Beta Peat Shovel test at west end of narrow 19-22 cm
-CK- +

317993 09-Ck-17 v 1920440 1968 to 1736 swale lake, Fibric peat

0S-94153  CAKR09-0285 \Y 1950430 1970 to 1825 Wood Shovel test in beach ridge 48-51cm

05-94054  CAKR10-0024  Vib 355435 497 t0 315 Wood  Shovel test in beach ridge. Just 42cm

below sod layer.

0S-94384  CAKR10-0352 Vib 900430 911 to 741 Wood Shovel test in beach ridge. 42-46 cm

Beta * Peat Peat and silty peat exposed along 37-38 cm
-CK-15- +

255143 08-CK-15-37 n/a 990+40 96510795 low bluff 75m S of 09-CK-14

Beta " Peat Peat core at NW shore of largest 126 -127
-CK-14- +

255144 08-Ck-14-127 n/a >850£30 6784 to 6507 of three lakes E of Tukrok River cm

*Dates obtained SE of beach ridge complex in Tukrok Wetlands, not directly associated with a beach ridge set.
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4.0 Results
4.1 Cape Krusenstern Depositional Units

Since the onset of beach ridge deposition after 6000 cal BP, at least six distinct sets of beach
ridges have been deposited (Moore and Giddings, 1961; Moore, 1966; Zimmerman, 1981; Mason and
Ludwig, 1990). The differentiations between which are recognized by reorientations of set alignments,
minor differences in the elevation of sets, and in some cases, erosional truncations. Both geological and
archaeological conventions for noting the relative ages of these horizontal units are presented here.
Our updated scheme uses the geological convention, in which the oldest unit is indicated as “I”, with
successively younger units being noted as Il, lll, IV, etc. (Figure 4 and 5); in this scheme future units can
be added as new ridge sets develop along the coast. This is in contradiction to the past archaeological
designation convention at CAKR, in which the oldest unit was designated with the highest number
(VI)(see Figure 3).

The results of radiocarbon analyses of organic samples obtained from non-cultural contexts at
CAKR are summarized in Table 2. The maximum-limiting ages are generally consistent with previous
studies (Mason and Ludwig, 1990; Mason et al., 1995). Some minimum-limiting ages are inconsistent
with those obtained from archaeological contexts (i.e. Unit li, Ill, and V). This could be due to
inadvertent dating of old wood from archaeological contexts or inadequate geologic sampling. Based on
geomorphological data and dating of non-cultural organic samples obtained during this research, we
define six primary depositional units at CAKR. See section 5.3 for additional discussion.

Unit I. This unit is characterized by the development of linear and narrow rectangular lakes that have
filled and expanded from swales between ridges, drowning many ridges (especially in the western half
of the unit), by ice-wedge development and melting, and permafrost degradation. Beach ridges are
slightly lower-lying than those in younger units (Figure 6), the water table is relatively high, and swales
are wet and thickly-vegetated where they have not been flooded (Figure 5, Inset 1 and 2). Soils are well-
developed on better-drained ridges of this unit, commonly exhibiting evidence of podsolization,
indicating a long period of surface stability. The eastern limit of Unit | terminates in wetlands of the
upper Tukrok River floodplain, which becomes a broad shallow lake during high water. The plan-view
morphology of this unit (Figure 6), and that of the termini of its ridges, is demonstrative process of
barrier spit formation that is still apparent 30 km downdrift (to the east of CAKR) at Sisaulik (Figures 1
and 4). Sub-unit la is defined on the basis of slight reorientations of adjacent ridges apparent on remote
sensing imagery. Ages on driftwood buried in an early ridge (Beta 277795), and on buried peat from an
early back barrier lagoon setting suggest that widespread ridge formation occurred after 5000 to 5500
cal BP, contemporaneous with the relative stabilization of sea level. The oldest geological date obtained
during this project (Beta 255144, ca. 6600 cal BP) was from a buried marsh peat horizon, 127 cm below
the current marsh surface in the Tukrok Wetlands (Figure 2), indicates that sea level had reached this
elevation by that time, and that overwash deposits behind incipient barrier bars or islands were
supporting colonization of marsh vegetation. Radiocarbon ages from beach ridge geologic contexts
indicate that this unit began forming between 3400 and 5000 cal BP (Table 2, Beta 256627, 256852,
277795). Anomalously young ages on geological samples from swales between Unit | beach ridges, and
from exposures or cores along Krusenstern Lagoon in the NW sector of the complex, likely record
fluctuations of the lagoon level and the associated development and burial of vegetation/peat horizons
in response.
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Unit Il. Unit Il is primarily distinguished from Unit | by the existence and geologically-more-recent
expansion of a series of large circular lakes into and across its low-lying ridges (Figure 5, Inset 3). Ridges
in this unit are more discontinuous than those of Unit | and subsequent ones. They are typically low-
elevation (Figure 6), with some exceptions in the eastern half of the unit, and also exhibit some
cryogenic modification in the form of cross-ridge ice wedge cracks. Swales between ridges are relatively
wide and wet, and linear lakes are expanding along swales and across some ridges in the east. A
fragment of this unit, separated from the majority of the unit by past erosion of the shoreline, is
mapped in the northwest extreme of the CAKR complex. The plan-view of this unit (Figure 6) also
illustrates the barrier spit morphology preserved in Unit | and observed today at nearby Sisualik.
Radiocarbon ages from geologic contexts indicate that this unit formed between 2400 and 2800 cal BP
(Table 2 and 5; see Section 4.2 discussion).

Unit lll. An erosional unconformity that truncates Units | and Il, most conspicuously in the western half
of the complex, separates Unit lll from Units | and Il (Figure 4). The seaward margins of the ridges that
comprised Units | and Il were eroded at this time, and the resulting shoreline, and subsequent ridges,
were formed at an angle that was offset from the previous one. The eastern half of Unit Ill, like portions
of Units I and Il, are low-lying relative to ridges up- and down-drift, and to younger units (Figure 6). The
northern, landward margin of Unit lll is demarked by a line along which the southern limit of the large
circular and rectangular (in the east) lakes of Unit Il transitions to a set of higher and well-drained ridges
occur. The eastern, distal ends of Unit Il ridges have been truncated by recent wave erosion in the
upper Tukrok River basin. Radiocarbon ages from geologic contexts indicate that this unit formed
between 2100 and 3000 cal BP (Table 2), i.e. the age is unresolved from that of Unit II.

Unit IV. This unit marks another reorientation of the local shoreline, and is marked by the erosion of Unit
Il beach ridges, and a slight but topographically significant transition to a new depositional regime
(Figure 4). Ridges of this unit are comparatively well-drained, more closely-spaced, and topographically
higher than earlier units (Figure 5, Inset 4; Figure 6). The northern, landward, boundary of this unit
marks a transition from lower-elevation and wetter ridge-swale sets to higher and more closely-spaced
and better-drained ridges and swales that comprise the subsequent younger units. A fragment of this
unit, separated from the majority of the unit by past erosion of the shoreline, is mapped in the
northwest extreme of the CAKR complex. Radiocarbon ages from geologic contexts indicate that this
unit formed between 2300 and 2700 cal BP (Table 2).

Unit V. The formation and progradation of beach ridges in this unit marks a significant shift in the
depositional regime at CAKR (Figure 4). High-elevation, closely-spaced, and well-drained ridges indicate
an increased sediment supply and more rapid deposition than occurred during the development of older
units (Figure 5, inset 4; Figure 6). The northern, landward boundary of this unit clearly truncates the
seaward ridges of units Ill and IV, and the landward-most ridges of this unit are among the highest in the
entire CAKR complex; only a few of the seaward-most ridges of Unit VI are equivalent in elevation. ).

Like Unit I, anomalously young ages from geological samples on Unit V are the result of sampling sites
that record depositional events/processes that post-date ridge formation. Radiocarbon ages from
geologic contexts indicate that this unit formed between 1700 and 2000 cal BP (Table 2).

Unit VI. Ridges of this unit are morphologically similar to those of Unit V but are distinguished from it by
a reorientation of the coast that cut into its south and west margins (Figure 5, Inset 5). Several ridges
along the west-southwest margin of Unit VI have been lost to erosion, sediments from which have been
transported down-drift to the east, toward Anigaaqg and Sisualik. Unit VI records relatively recent
deposition and erosion; ridges are continuing to be added to the western sector of this unit. Units Vla
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and b are currently differentiated on the basis of topographic differences noted in the field and now
apparent on new, higher resolution spatial data of CAKR (Figures 5 and 6). Ridges in the southern
portion of Unit Vlb display a wavy, undulating topography that is not present in Unit Vla. The majority
of this area was outside the selected archaeological survey area. However, archaeological dates from
the northern boundary of Unit VIb range from approximately 1300 to 340 cal BP (bracketing ages from
0S-78456 and 0S-81645, Supplemental Table 1), and two geologic dates (05-94384, 0S-497315) range
from approximately 911 to 315 cal BP indicating that the VIb landscape may have formed very rapidly
during the last several centuries, perhaps during a period of different or fluctuating depositional
conditions. This could be associated with LIA influence on coastal change, but additional fieldwork and
dates are needed to explore this hypothesis. There are no geologic ages for Unit Vla; archaeological
ages range from 730 cal BP to the modern era; the samples collected closest to the V/VI boundary date
to 514-316 cal BP (Beta 2266692) and 470-152 (Beta 223219). Radiocarbon ages from geologic contexts
indicate that Unit VI formed during the past 1300 years (Table 2).

4.2 Archaeological and Geological Units and Chronology

Dating the evolution of the CAKR beach ridge system is more difficult than originally conceived.
Since the onset of geological and archaeological investigations of CAKR in the 1950s and ‘60s, there has
been general agreement about the delimitations of depositional unit boundaries. As higher-resolution
topographic, geomorphological, and chronological data become available our ability to distinguish
discrete depositional units and sub-units has increased. However, these details have led us to a greater
understanding of the complexities over time and space of shoreline sedimentation in mixed sand and
gravel systems; our goal is to refine some of the broader generalizations made about how and when
these systems formed.

We now know that many, if not all, of the beach ridges at CAKR are composite ridges and are
not always precise time-stratigraphic indicators. They mark the location of a shoreline over time scales
ranging from days to years to decades, and as such they built up vertically by (and are composites of)
periodic or episodic delivery of sediment to their surface and to seaward and landward faces by tides,
waves and storms of varying magnitude (cf. Orford 1987, Orford et al. 1995, Anthony 2009). Their
internal stratigraphy records such fluctuations of wave energy, resulting in stacked deposits of varying
grain size. In some cases, younger beaches can migrate landward during individual or consecutive
storms, burying swales and lower ridges or ridge segments, resulting in a palimpsest. Ridges may also
bifurcate or coalesce along-shore, depending on wave energy and direction and small variations in
sediment supply. Therefore, the boundaries defined between units may mark processes that occurred
over varying periods of time. We came to a similar conclusion about the dating of archaeo-stratigraphic
units (Anderson and Freeburg, 2013, 2014). This is especially true for boundaries that are drawn
between units that are not separated by an obvious erosional truncation or a significant realignment of
ridge sets. For those that are, the duration of the episode of erosion that resulted in a reorientation of
subsequent ridges varies with the duration of the “disturbance.” A secular shift in wind and wave
direction and/or wave intensity may persist for a season or two (e.g. the Bering Sea storms of 1974-75,
Fathauer, 1975), for a few years, or for decades and longer; the erosion and realignment of beaches can
occur across any of these time scales. The episodic starvation of sediment to the CAKR complex due the
breaching of thaw lakes along the coast updrift, for example, could also result in the seaward erosion of
some beach ridge sets for decades or longer (Hopkins, 1977). This finding has significance for regional
paleoenvironmental interpretations and also for studying the relationship between cultural and
environmental change in northwest Alaska.
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As a result of both natural and cultural processes, the relationship between previously defined
beach segments from cultural contexts and the segments defined by new geomorphological work is not
straightforward; while general agreement between geological and archaeological chronologies exists,
there is not a one to one relationship between the data sets (Tables 3 and 4). In this paper, we shift to
using the new unit designations in our discussion of how new geomorphological information and dates
inform our archaeological interpretations.

This archaeological analysis adds 88 dates to the project radiocarbon database (Supplemental
Table 1). Of these dates, two appear to be erroneous because they are significantly older than the
CAKR landform itself (0S-93937, 10760-10566 cal BP and 0S-94374, 6599-5948 cal BP). These dates are
excluded from additional analysis, as is one date that yielded a modern age (Beta 326110), and one date
that was obtained outside of the main beach ridge complex (0S-96755).

Analysis of the archaeological radiocarbon dates in relationship to the new beach units suggests
that Units Il/lla, Ill, and V may be older than the geologic dating indicates (Table 4, Figure 7). It is
possible that we dated old wood from the archaeological deposits, or that additional geologic dates are
needed to further refine the landscape history. The majority of the newly dated samples are from Units
V and VI and yielded ages from the last 2000 years (Supplemental Table 1; Figure 7). The new
archaeological dates push back the maximum limiting ages for Units V and VI (previously Units | and Il
Anderson and Freeburg, 2013) and further highlight the overlapping occupation of these beach
segments over the last 1300 years (Tables 3 and 4, Figure 7).
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Table 3. Approximate relationship between archaeological and geological beach ridge ages (see Anderson and Freeburg, 2013).
Maximum Limiting Archaeological

Archaeological Geological Pre-Project Dates (2013) ) .
. - - Previous Archaeological Culture
Beach Beach Approximate  Conventional Two Sigma Attributions®
Segment Segment Age Ranges Radiocarbon Calibrated Age
Age Range (cal BP) *
Vi ! 42008;13600 3760 £ 35 4240 - 3990 Classic Denbigh
v la, Il, lla 3600 - 13100 3620 + 30 4070 - 3840 CIassilc - Late Denbigh, Early
BP Choris
v lla, Il 3103;1,3500 2930+ 40 3210-2960 Old Whaling, Choris
1 v 250?3;)12000 2630 £ 25 2780-2740 Norton-Near Ipiutak
\ 1900 (17503) - . _
+ -
Il 1000 BP 1980 + 25 1990 - 1880 Ipiutak, Birnirk, Thule
I Via,b 1000 _1 1030 + 25 1600 - 1420 Thule, Kotzebue, Historic lfiupiat
present

1 Giddings and Anderson 1986

2Darwent and Darwent (2005) report two sigma age ranges between 3138 and 2742, but interpret the site occupation to
have been between ca. 2900 and 2700 BP.

$Mason 2009

“Calibrated with OxCal 4.3.2 (Bronk Ramsey 2017) IntCal13 (Reimer et al. 2013) and Marine13 (Reimer et al. 2013).
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Table 4. Revised geologic and archaeological limiting ages for beach ridge units. See Section 4.1 for
interpretation of geologic ages.

Geological Beach New Limiting New Maximum Limiting Primary Archaeological
Segments Geologic Dates Archaeological Dates (Two Culture Attributions?
(cal BP) Sigma Calibrated Age Range (cal
BP) !
I(l1a) 3400-5000 4240-3990 Denbigh
i(I1a) 2400-2800 3380-3210 Late Denbigh, Choris
n 2100-3000 3210-2960 Old Whaling, Choris
IV 2300-2700 2780-2740 Norton-Near lpiutak,
Birnirk
y 1700-2000 2310-2063 Ipiutak, Thule (Late

Western Thule)
Thule (Early Western
Thule-Late
Thule/Kotzebue), Historic
Inupiat
! Calibrated with OxCal 4.3.2 (Bronk Ramsey 2017) IntCal13 (Reimer et al. 2013) and Marine13

(Reimer et al. 2013).
2 There are younger occupations on each ridge. See Figure 7.

Vl(a,b) 1300 to present 1310-1180

5.0 Discussion
5.1 The CAKR Beach Ridge Complexes as a Proxy of Coastal Climate Change

This study highlights the complexities of interpreting regional climatic trends from beach ridge
formation and erosion processes. Previously, the deposition of individual beach ridges, sets of beach
ridges, and the mechanisms and timing of their erosion (and differentiation as definable units), were
interpreted to be related to long-term fluctuations in wind and wave climate, storm frequency and
intensity, and sediment availability (e.g. Jordan and Mason 1999; Mason and Jordan 1993). Secular
changes in sea level also contribute to changes in coastal sedimentation patterns, and while regional
data indicate that sea level has been rising slowly over the past 3000 to 5000 years (Jordan and Mason
1999), the influence of meteorological events, shifts in climate regimes, and interruptions of sediment
availability were considered to be more significant in the long-term evolution of the CAKR beach ridge
complex during the mid-late Holocene than the slow rate of late Holocene sea level rise (cf. Moore,
1960; Hopkins, 1977; Mason and Ludwig, 1990; Jordan and Mason, 1999). However, we also find that
relatively minor shifts in the coastal environment at CAKR can significantly alter coastal depositional
processes. It is well documented elsewhere that significant geomorphological alterations of mixed-sand-
gravel beach ridge systems can be driven by several processes operating in the coastal system, not all of
them driven by climate change (Carter, 1983; Orford, 1987; Anthony, 2009).

Our results suggests that further research on the correlations between Chukchi Sea beach ridge
systems and past climate change is needed to further explore this new evidence from CAKR. Additional
research on the subsurface stratigraphic record of beach ridge formation and erosion is required to
more fully understand the dominant processes of ridge development at CAKR. While there are
limitations to some of these approaches, e.g. geologic trenching, and the use of ground-penetrating
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radar (Urban et al., 2016), improved means of the examining geologic setting and evolution of this
system is warranted.

5.2 Post-depositional Modification of the Cape Krusenstern Beach Ridge Plain: Environmental and
Archaeological Implications

Climate and hydrological dynamics modified the form of beach ridges and ridge sets on the Cape
long after the ridges were originally deposited. These processes have significance both for
understanding more recent coastal environmental processes and for interpreting archaeological data,
much of which was altered or erased by post-depositional erosion and other natural processes. Many
lakes that occur on the northern half of the complex show evidence of fluctuating levels and several of
the linear, semi-rectangular east-west oriented ridge sets at lake edges (see Figure 5, inset 3) exhibit
distinct sets of three to five beach ridges inset into and rising from their east and west shores. Minimal
soil development and vegetation cover on these lake-ridge sets suggests that they are comparatively
young, possibly relating to increased wave action and lake margin erosion/deposition during the LIA.
The growth and expansion of ice wedges and ice wedge polygons also has played a role in the dynamics
of lake formation on the cape; wedges that cross-cut beach ridges often generate deep surface troughs
that fill with water during summer thawing of the active layer. Numerous lakes that would otherwise be
confined to the swales between ridges are now connected across ridges by this process, and in some
cases these lakes have flooded and expanded across multiple low-elevation ridges, especially in the
northwest sector of the beach ridge complex.

The largest and most conspicuous lakes have expanded across many ridges of Unit Il, and record
hydro-geomorphological processes observed in lake systems that have developed in similar
sedimentological settings and scales in lower latitudes (Ashton, personal communication 2012). The
shoreline configuration of lakes and spits prograding into them observed today is similar in detail to
what they were in 1950, the date of the first available aerial photographs of CAKR (see Giddings and
Anderson 1986:16). Thus, there has been little or no substantive change in the size or location of these
spits during the past 60+ years, suggesting that they must have formed during decades to a few hundred
years at most, and prior to the mid-20™ century. Considering the existence of relict but young lake-end
beach ridge sets that must have been deposited during a regime of higher wave-energy and storminess
than present (see above), and proxy data from around Kotzebue Sound that indicate increased
storminess between AD 1400 and 1800 (Mason and Gerlach, 1995a; Graumlich and King, 1997; Mason
and Barber, 2003), we suggest that the most recent and geomorphologically significant period of lake
expansion and segmentation at CAKR occurred sometime between 450 and 150 years ago (16" and 19%"
centuries AD), concurrent with LIA cooling. The expansion of these lakes, due to wave action and/or
thermokarst processes, has destroyed part of Unit la and almost half the surface of Unit Il, and
potentially many archaeological sites dating to this time period. Regional sea-level and mean annual
temperature are slowly rising, so eventually we should expect additional inundation of beach ridges and
swales that are open to the Tukrok wetlands, a gradually lowering permafrost table, and the potential
destruction of the terminal ends of beach ridges and associated sites.

5.3 Integrating Geological and Archaeological Models of Coastal Change

New geological and archaeological data reinforce our previous conclusion (Anderson and
Freeburg, 2013) that ridges are not good stratigraphic markers beyond providing maximum limiting
ages. New data also clarify the Unit V/VI boundary (previously Units | and Il); the Late Western Thule
site is now in Unit V and Early Western Thule is now in Unit VI. These shifts in the stratigraphic
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placement of key sites are significant only in that the changes further illustrate that beach segments are
not precise time markers. The new dates and data do not significantly alter our understanding of local
settlement patterns (detailed in Anderson and Freeburg, 2014) but do provide additional context for
understanding changing settlement patterns and also patterns in local site preservation. Furthermore,
maximum limiting archaeological ages older than geologic ages occurred in several instances (i.e. Unit
[I/1la, Unit lll, and Unit V); in these cases, the ridges could be older than the geologic age indicates. Or,
the archaeological ages could be the result of old wood. Additional geologic sampling and dating would
resolve these discrepancies.

Our geomorphological analysis further supports the hypothesis that initial formation and
occupation of the CAKR complex took place during a period of relatively stable coastal processes
between about 5000 and 3000 years ago. This evidence indicates a relationship between local and
regional development of beach ridge systems that were amenable to human occupation of the coast
and the initial development of maritime adaptations in northwest Alaska; perhaps people focused more
on marine mammal hunting and fishing when it became easier to access these resources than during
previous decades or centuries. Alternatively, the coastal marine environment was particularly
productive during this time period. Both hypotheses could be further explored with additional
paleoenvironmental research. Occupation of CAKR was limited during this time period. This could be
due to a) low regional population during this period, or b) poor site preservation in these areas due to
post-depositional processes of lake and ice wedge development.

Between about 2100 and 1000 years ago, the coastal landscape changed significantly at CAKR,
which could be a result of increased regional storminess and/or a fluctuation in sediment supply to the
system. Despite this shift in environmental conditions, local settlement increased during this period
(Anderson and Freeburg, 2014); we interpret the local settlement pattern as one of increased residential
sedentism and increased density of occupation over time. Locally, there is a shift in landscape
development processes around 1000 cal BP; this shift coincides with local and regional population
decline followed by rapid increase in local and regional population between 1000 and 550 cal BP
(Anderson et al. in review). Erosion at Cape Krusenstern around this time is likely masking or impacting
the evidence of past demographics around 1000 cal BP, and enhancing the decline or dip in the regional
occurrence or visibility of sites at this time. However, Anderson et al.’s (in review) analysis of occupation
patterns of individual sites across the coasts and interiors of the region shows that some sites were
occupied during this period of decline; the patterns in the radiocarbon data cannot be attributed solely
to coastal erosion at this time. Further exploration of regional climate change around 1000 cal BP will
further inform our understanding of this critical period of cultural change, when the earliest named
archaeological culture (Birnirk) known to be ancestral to Ifiupiat and Inuit people first populated the
region.

After 1000 cal BP depositional patterns shift, with deposition happening primarily on the west
and southwest areas of the beach ridge complex and erosion occurring to the east. After 550 cal BP
there appears to be a decrease in local population that mirrors a regional population decline or
redistribution, although the post-550 cal BP decline in radiocarbon dates may also be a product of
sampling or calibration effects (see Anderson and Freeburg 2014; Anderson et al. in review for further
discussion). The formation of LIA cooling-related lake development and ice wedge formation at CAKR
indicates that the LIA had a significant local environmental impact; these changes could have altered
subsistence resource availability and led to settlement redistribution as others have suggested for this
time period (Giddings and Anderson 1986; Harritt 1994). These processes also reduced archaeological
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site preservation, particularly in Unit Il of the CAKR complex, and should be considered when
interpreting local settlement patterns, demography, and settlement density.

6.0 Conclusions and Future Work

Our goals were 1) to refine local cultural and paleoenvironmental chronologies through a
synthesis of new geomorphological and archaeological data, and 2) to explore how local coastal
environmental change may have influenced local and regional settlement history. New
geomorphological data show that beach ridges are composites and the boundaries defined between
units are not necessarily precise time-stratigraphic indicators from a geomorphological or an
archaeological perspective. The revised chronology and depositional units confirm and refine initial
interpretation of the local archaeological chronology. It is also apparent where more dates and data are
needed to further explore some of the questions raised here (e.g. additional sampling in Unit Il).
Furthermore, reconstruction of the local coastal paleoenvironment provides critical information about
patterns of archaeological site preservation and informs interpretation of coastal forager settlement and
demographic patterns. Our results also suggest that relatively minor or short-term shifts in the coastal-
marine environment at CAKR can significantly alter coastal depositional and erosional processes. A
minor reorientation of a set of beach ridges records a perturbation in coastal depositional dynamics but
it does not necessarily reflect pervasive regional- scale climate change, such as shifts in storminess
(sensu Mason and Jordan 1993). Our work suggests that there may have been multiple drivers in the
development of regional beach ridge systems, including but not limited to major periods of storminess.
This possibility should be further explored through continued research on the relationship between
beach ridge geomorphology and regional climate change. Continued efforts to build
paleoenvironmental reconstructions of higher temporal and spatial resolution for the region will help
address remaining questions about the relationship between local coastal environmental changes and
regional patterns, and the impacts of these environmental shifts on local residents.
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Figure 1. Map indicating location of project area in northwest Alaska. Locations discussed in text
indicated (Figure by Adam K. Freeburg).
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Figure 2. Cape Krusenstern beach ridge system with local landmarks indicated (Figure by Adam K.
Freeburg).
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Figure 3. Previously established beach ridge depositional units indicated by roman numerals, with
notation following Giddings and Anderson (1986) (see also Mason and Ludwig 1990; Mason and Jordan
1993; Moore 1960, 1966) (Figure by Adam K. Freeburg).
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Figure 4. Geological depositional units (see Section 4.1 for discussion) and newly dated locations are
indicated by circles (cultural samples) and triangles (geomorphological samples) (Figure by Adam K.
Freeburg).
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Figure 5. (Top) Photos of several areas of the beach ridge complex, illustrating differences in
geomorphology across the beach segments. 1) Unit |, note ice wedge development across ridges, view
N; 2) Unit IA, younger, higher rides of unit being eroded by expansion of large lake system across
northeast sector of complex, view E; 3) Unit I, lla, low-elevation, semi-discontinuous ridges begin
eroded by expansion of same lake system impacting Unit | ridges, view W; 4) Unit IV/V, closely spaced,
well drained, high elevation ridges near middle of complex, view NW; 5) Unit VI, relatively young,
sparsely vegetated ridges along western margin of complex, view N. (Bottom) Arabic numerals indicate
photo inset locations (Figure by Adam K. Freeburg).
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Figure 6. Topographic profile of two transects. Topographic profiles are derived from USGS
interferometric synthetic aperture radar (IfSAR) digital terrain model data. Note the overall change in
elevation over time and the shape of the ridges at different points in time. Ridge 35 was identified by
Giddings (1984) as the “main Ipiutak ridge”. Because it is a fairly continuous ridge, we indicate the
location of Ridge 35 on both profiles to show how a ridge’s and relative height changes throughout the
complex (Figure by Adam K. Freeburg).
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Figure 7. Summed probability distribution (SPD) plots of all archaeological and geological radiocarbon
dates from Cape Krusenstern. The dates are plotted by beach ridge segment. Note the relationship
between the geologic and archaeological dates, and also the extended occupation of even the oldest
beach segments (e.g. Unit I) (Figure by Thomas J. Brown).
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Anderson et al. 2018 Supplemental Table 2: New Archaeological Radiocarbon Dates

Beach Conventional
Accession# CMBS Level Segment Description 613C (%o) RC Age Age Error Longitude Latitude
0S5-93762 Surface 3 Picea -26.95 2440 30 163°38.1582' W 67°6.44616' N
2em BS Unidentified
0S-93939 3 hardwood -26.42 55 25 163°43.98606' W 67°8.17152' N
0S5-93951 10 cmBS Level 1 3 Picea -24.51 2200 30 163°44.0025' W 67°8.18208' N
Salicaceae
14 cmBD Level 1
0S5-93945 4 -26.02 2030 25 163°38.54214' W 67°6.47808' N
Picea
9 cmBD Level 1
0S-93946 4 -25.97 2220 25 163°39.38382' W 67°6.64356' N
0S5-94374 "deep" 4 Betula -25.00 5410 100 163°38.97042' W 67°6.55296' N
Betula
8 cmBD Level 1
0S-93949 4 -26.34 2270 30 163°33.23724' W 67°5.54004' N
Picea
45 cmBD Level 4
0S5-94050 4 -25.45 2010 25 163°41.33202' W 67°7.05876' N
Beta- 10 CM BS . , . ,
326108 5 Phoca, left femur -13.2 1920 30 163°43.1085' W 67°7.49406' N
Beta- 15 CM BS E. barbatus, left
326105 5 innominate -12.7 2230 30 163°44.1411' W 67°8.14746' N
0S5-93943 33cm BD Level 3 5 Picea -25.79 1900 30 163°40.47972' W 67°6.68994' N
cf. Conifer
74 cmBD Level 8
0S5-93942 5 -23.16 1440 30 163°40.72272' W 67°6.70302' N
Sali
20 cmBD Level alix
0S-93944 3N 5 -27.69 1970 25 163°39.6582' W 67°6.5478' N
Picea
40-50 cmBD Level 5
0S5-93938 5 -27.03 1320 40 163°41.04126' W 67°6.7023' N
Salicaceae
10-15 cmBD Level 1
0S-93933 5 -25.53 610 25 163°39.44628' W 67°6.29904' N
0S-94051 10 cmBS 5 Picea -24.65 1480 30 163°37.7715' W 67°6.06504' N
0S5-93950 7 cmBS 5 Picea -24.89 1190 25 163°37.8483' W 67°6.07938'N
0S5-93710 ~57cmBS 5 Picea -25.85 170 25 163°40.66878' W 67°6.4971' N
Beta- 16-42cmBS Phoc§, right 'le/F.Ib ] . ) '
326119 5 proximal epiphysis -14.8 810 30 163°40.67178' W 67°6.49542"' N
Beta- 16-42cmBS R. tarandus, left ] . ] .
326114 5 astragalus -17.8 210 30 163°40.67178' W 67°6.49542' N
0S5-93687 10 cmBS 5 Picea -26.93 115 25 163°40.67178' W 67°6.49542' N
0S-93686 49c¢mBS 5 Picea -23.17 485 25 163°40.67322' W 67°6.49746' N
0S5-93688 12cmBS 5 Picea -24.11 410 25 163°40.7025' W 67°6.50454' N
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0S5-93711 0-18cmBS 5 Picea -25.84 1040 30 163°41.48778' W 67°6.618'N
0S-93935 70 cmBS 5 Picea -25.40 1010 25 163°36.92796' W 67°5.84976' N
Picea
51 cmBD Level 5
0S-94063 5 -23.41 1940 25 163°42.5904' W 67°7.36014' N
0S5-93955 1-60 cmBS 5 Picea -24.50 1620 35 163°44.25102' W 67°8.22414' N
0S5-93957 8 cmBS 5 Betula -26.03 1330 30 163°44.26194' W 67°8.2134' N
0S-93953 10 cmBS 5 Salicaceae -26.06 505 25 163°44.35506' W 67°8.2818' N
0S-96757 8-10 cmbs 5 Betula -26.52 385 20 163°44.27724' W 67°8.25288' N
8 cmBS Salicaceae
0S-93975 (approx) 5 -25.18 325 30 163°44.27724' W 67°8.25288' N
0S-93751 3-6 cmBS 6 Picea -26.00 920 25 163°41.10426' W 67°6.34956' N
0S5-93759 5 cmBS 6 Betula -23.67 370 25 163°41.17224' W 67°6.35556' N
0S-93750 5 cmBS 6 Picea -25.42 390 25 163°41.37066' W 67°6.40074' N
0S-93753 6 cmBS 6 Picea -24.34 275 25 163°41.48118' W 67°6.42552' N
0S5-93764 14 cmBD 6 Betula -27.73 160 25 163°41.48784' W 67°6.44214' N
0S5-93752 30-35cmBS 6 Salicaceae -25.93 220 25 163°41.9286' W 67°6.5592' N
Beta- 30-40 cmBD Level 4 Phoca, left 4th
326117 6 metacarpal -13.1 1410 30 163°41.2569' W 67°6.39492' N
Beta- 30-40 cmBD Level 4 R. tarandus, C-2
326120 6 vertebra -18.1 640 30 163°41.2569' W 67°6.39492' N
Salicaceae
43cm BD Level 5
0S5-94064 6 -26.41 490 30 163°41.2569' W 67°6.39492' N
Salix
20 cmBD Level 2
0S5-93932 6 -24.45 645 30 163°41.3232' W 67°6.41478' N
Salicaceae
53 cmBD Level 5
0S5-93937 6 -24.51 9430 40 163°40.54578' W 67°6.35148' N
0S-93936 25 cmBD Level 2 6 Salicaceae -25.31 570 30 163°40.35894' W 67°6.22806' N
Beta- 47 cmBD Level 4 ,
326118 6 Phoca, rib -13.0 1280 30 163°41.34852' W 67°6.41922'N
47 cmBD Level 4 .
0S-96756 6 Salix -26.1 765 35 163°41.34852' W 67°6.41922'N
Salicaceae
28 cmBD Level 2
0S-93940 6 -25.24 715 25 163°41.34852' W 67°6.41922'N
30 BS Picea
0S5-94049 6 -26.33 240 25 163°41.92962' W 67°6.55926' N
0S5-93954 50-60 cmBS 6 Salix -25.38 745 35 163°39.8655' W 67°6.17904' N
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approximately Salicaceae
0S-93956 15 cmBS 6 -25.04 875 25 163°39.59256' W 67°6.14454' N
Beta- Phoca, right
326106 20 CM BS 6 humerugs -12.8 1020 30 163°44.53536' W 67°7.69482' N
Beta- Phoca, right
326107 30 CM BS 6 calcanefs -13.4 1110 30 163°44.5164' W 67°7.60338' N
Beta- Level 4
326113 6 cf. E. barbatus, rib -13.0 1550 30 163°42.0708' W 67°6.60324' N
Beta-
326109 80 CM BS 6 Phoca, left fibula -13.5 1170 30 163°44.35986' W 67°8.34642' N
45 cmBS Picea
0S-93712 (approx) 6 -26.10 975 25 163°41.28282' W 67°6.46968' N
0S-93689 62 cmBS 6 Picea -25.13 965 25 163°41.2797' W 67°6.46926' N
0S-93713 52 cmBS 6 Picea -23.62 810 25 163°41.12106' W 67°6.4338' N
0S-93714 12 cmBS 6 Picea -25.74 830 30 163°40.98432' W 67°6.40764' N
0S-93716 16-20 cmBS 6 Picea -25.18 910 30 163°40.97196' W 67°6.41034' N
0S-93715 22 cmBS 6 Picea -27.07 1010 25 163°40.8909' W 67°6.38706' N
0S-94112 60 cmBS 6 Picea -24.27 1140 25 163°40.65102' W 67°6.3429' N
0S-93718 65cm BS 6 Conifer -25.42 955 25 163°40.30464' W 67°6.27924' N
0S-93757 40 cmBS 6 Picea -24.05 1020 25 163°40.25124' W 67°6.27552' N
0S-93719 5 cmBS 6 Picea -23.30 630 25 163°40.36236' W 67°6.24468' N
0S-93897 5 cmBS 6 Salicaceae -27.27 585 30 163°40.36236' W 67°6.24468' N
0S-93720 Back fill 6 Salix -26.00 490 25 163°40.36236' W 67°6.24468' N
0S-93755 20 cmBS 6 Picea -24.75 715 25 163°40.99404' W 67°6.35106' N
0S-93754 10 cmBS 6 Salicaceae -26.90 665 25 163°41.23818' W 67°6.39552' N
0S-93758 36 cmBS 6 Salix -27.72 745 25 163°41.25096' W 67°6.39414' N
Salicaceae
33 cmBD Level 4
0S-93879 -25.07 585 25 163°41.21136'W 67°6.40266' N
Beta- Level 5 Phoca, right
326116 6 navicular -12.8 1450 30 163°41.23578' W 67°6.41112'N
Picea
88 cmBD Level 8
05-93880 6 -25.27 740 25 163°41.23578' W 67°6.41112'N
Beta- Level 5
326115 6 R. tarandus, antler -20.1 510 30 163°41.23578' W 67°6.41112'N
Picea
16.5 cmBD Level 1
0S-93763 6 -26.90 290 35 163°41.23578' W 67°6.41112'N
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66cmBD  Level 6 Salix
0S-93934 6 -25.50 755 25 163°33.8889' W 67°5.47686' N
Salix
41 cmBD Level 4
0S-93948 6 -26.96 685 30 163°33.8889' W 67°5.47686' N
Salix
26 cmBD Level 2
0S-93947 6 -28.24 305 25 163°33.8889' W 67°5.47686' N
0S-93952 18 cmBS 6 Picea -23.22 210 25 163°41.61432' W 67°6.4563' N
0S-93761 8 cmBS 6 Salicaceae -25.63 925 35 163°41.23344' W 67°6.41424' N
0S-93717 24cm BS 6 Picea -24.88 100 25 163°41.10468' W 67°6.37848' N
0S-93748 7-18 cmBS 6 Salix -25.60 695 25 163°40.51944' W 67°6.29028' N
0S-93721 <20 cmBS 6 Picea -25.48 675 25 163°40.51446' W 67°6.2865' N
0S-93760 49 cmBS 6 Picea -25.70 1090 25 163°40.28394' W 67°6.2703' N
0S-93749 17 cmBS 6 Betula -25.52 875 25 163°40.2798' W 67°6.25164'N
0S-93756 12cmBS 6 Picea -26.41 950 25 163°40.39818' W 67°6.27306' N
Beta- Level 6 Phoca, left
326111 n/a innominate -13.2 880 30 163°23.0178' W 67°4.39992' N
Beta- Level 3 R. tarandus, right
326112 n/a humerus -17.4 60 30 163°23.0178' W 67°4.39992' N
Beta- Level 3 R. tarandus, left
326110 n/a palatine -19.9 163.5 pMC 0.4 pMC 163°22.99332' W 67°4.39386' N
0S-96755 Level 5 n/a Salix -27.4 175 50 163°22.99332' W 67°4.39386' N
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Supplemental Table 2. GPS Locations for Geomorphological Samples

Beach

Field Number Longitude Latitude
Segments

08-CK-10-9 I 163°42.312' W 67°8.288' N
08-CK-10-55 I 163°42.312'W 67°8.288'N
08-CK-10-24 | 163°42.312' W 67°8.288' N
08-CK-10-29 I 163°42.312'W 67°8.288'N
08-CK-4-18 I 163°31.378' W 67°7.017'N
08-CK-11 I 163°42.631'W 67°8.251'N
09-CK-14-20 | 163°41.568' W 67°7.898'N
08-CK-13 I 163°40.739' W 67°7.650'N
09-CK-14-30 I 163°41.568' W 67°7.898'N
08-CK-22 I 163°41.043' W 67°7.141'N
08-CK-4-22 I 163°31.378' W 67°7.017'N
09-CK-3 I 163°38.917' W 67°7.094' N
08-CK-4-4 I 163°31.378' W 67°7.017'N
08-CK-8-49 lla 163°30.640' W 67°6.138'N
08-CK-8-61 lla 163°30.640' W 67°6.138'N
08-CK-24 1 163°43.592' W 67°8.070' N
CAKR09-0214 I 163°40.258' W 67°6.874'N
09-CK-7 1] 163°40.327' W 67° 6.907'N
08-CK-23 v 163°44.203' W 67°8.237'N
CAKR09-0354 v 163°39.865' W 67°6.693'N
08-CK-26 v 163°36.883' W 67°6.213'N
09-CK-16 Y 163°39.911' W 67°6.542' N
09-CK-1 v 163°44.267' W 67°8.099'N
09-CK-2 \Y 163°42.077' W 67°6.673'N
CAKRO08-0259 v 163°36.328' W 67°5.783'N
CAKR09-0267 \Y 163°39.424' W 67°6.487'N
CAKR09-0264 v 163°39.232' W 67°6.511'N
09-CK-17 \Y 163°41.204' W 67°6.931'N
CAKR09-0285 v 163°39.604' W 67° 6.535'N
CAKR10-0024 Vib 163°41.798' W 67°6.578' N
CAKR10-0352 Vib 163°40.377'W 67°6.325'N
08-CK-15-37 n/a* 163° 26.874' W 67°5.815'N
08-CK-14-127 n/a* 163°26.801' W 67°5.855'N

*Dates obtained SE of beach ridge complex in Tukrok Wetlands, not directly associated
with a beach ridge set
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