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Abstract

Video frame interpolation typically involves two steps:

motion estimation and pixel synthesis. Such a two-step ap-

proach heavily depends on the quality of motion estima-

tion. This paper presents a robust video frame interpo-

lation method that combines these two steps into a single

process. Specifically, our method considers pixel synthe-

sis for the interpolated frame as local convolution over two

input frames. The convolution kernel captures both the lo-

cal motion between the input frames and the coefficients for

pixel synthesis. Our method employs a deep fully convolu-

tional neural network to estimate a spatially-adaptive con-

volution kernel for each pixel. This deep neural network

can be directly trained end to end using widely available

video data without any difficult-to-obtain ground-truth data

like optical flow. Our experiments show that the formula-

tion of video interpolation as a single convolution process

allows our method to gracefully handle challenges like oc-

clusion, blur, and abrupt brightness change and enables

high-quality video frame interpolation.

1. Introduction

Frame interpolation is a classic computer vision prob-

lem and is important for applications like novel view inter-

polation and frame rate conversion [36]. Traditional frame

interpolation methods have two steps: motion estimation,

usually optical flow, and pixel synthesis [1]. Optical flow

is often difficult to estimate in the regions suffering from

occlusion, blur, and abrupt brightness change. Flow-based

pixel synthesis cannot reliably handle the occlusion prob-

lem. Failure of any of these two steps will lead to noticeable

artifacts in interpolated video frames.

This paper presents a robust video frame interpolation

method that achieves frame interpolation using a deep con-

volutional neural network without explicitly dividing it into

separate steps. Our method considers pixel interpolation

as convolution over corresponding image patches in the

two input video frames, and estimates the spatially-adaptive

convolutional kernel using a deep fully convolutional neural

∗The first two authors contributed equally to this paper.
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Figure 1: Pixel interpolation by convolution. For each out-

put pixel (x, y), our method estimates a convolution kernel

K and uses it to convolve with patches P1 and P2 centered

at (x, y) in the input frames to produce its color Î(x, y).

network. Specifically, for a pixel (x, y) in the interpolated

frame, this deep neural network takes two receptive field

patches R1 and R2 centered at that pixel as input and esti-

mates a convolution kernel K . This convolution kernel is

used to convolve with the input patches P1 and P2 to syn-

thesize the output pixel, as illustrated in Figure 1.

An important aspect of our method is the formulation of

pixel interpolation as convolution over pixel patches instead

of relying on optical flow. This convolution formulation

unifies motion estimation and pixel synthesis into a single

procedure. It enables us to design a deep fully convolu-

tional neural network for video frame interpolation without

dividing interpolation into separate steps. This formulation

is also more flexible than those based on optical flow and

can better handle challenging scenarios for frame interpo-

lation. Furthermore, our neural network is able to estimate

edge-aware convolution kernels that lead to sharp results.

The main contribution of this paper is a robust video

frame interpolation method that employs a fully deep con-

volutional neural network to produce high-quality video in-

terpolation results. This method has a few advantages. First,

since it models video interpolation as a single process, it is

able to make proper trade-offs among competing constraints

and thus can provide a robust interpolation approach. Sec-

http://graphics.cs.pdx.edu/project/adaconv
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ond, this frame interpolation deep convolutional neural net-

work can be directly trained end to end using widely avail-

able video data, without any difficult-to-obtain ground truth

data like optical flow. Third, as demonstrated in our exper-

iments, our method can generate high-quality frame inter-

polation results for challenging videos such as those with

occlusion, blurring artifacts, and abrupt brightness change.

2. Related Work

Frame interpolation for video is one of the basic com-

puter vision and video processing technologies. It is a spe-

cial case of image-based rendering where middle frames

are interpolated from temporally neighboring frames. Good

surveys on image-based rendering are available [25, 44, 62].

This section focuses on research that is specific to video

frame interpolation and our work.

Most existing frame interpolation methods estimate

dense motion between two consecutive input frames using

stereo matching or optical flow algorithms and then inter-

polate one or more middle frames according to the esti-

mated dense correspondences [1, 53, 61]. Different from

these methods, Mahajan et al. developed a moving gradient

method that estimates paths in input images, copies proper

gradients to each pixel in the frame to be interpolated and

then synthesizes the interpolated frame via Poisson recon-

struction [33]. The performance of all the above methods

depends on the quality of dense correspondence estimation

and special care needs to be taken to handle issues like oc-

clusion during the late image synthesis step.

As an alternative to explicit motion estimation-based

methods, phase-based methods have recently been shown

promising for video processing. These methods encode mo-

tion in the phase difference between input frames and ma-

nipulate the phase information for applications like motion

magnification [51] and view expansion [6]. Meyer et al.

further extended these approaches to accommodate large

motion by propagating phase information across oriented

multi-scale pyramid levels using a bounded shift correction

strategy [36]. This phase-based interpolation method can

generate impressive video interpolation results and handle

challenging scenarios gracefully; however, further improve-

ment is still required to better preserve high-frequency de-

tail in the video with large inter-frame changes.

Our work is inspired by the success of deep learning

in solving not only difficult visual understanding prob-

lems [16, 20, 26, 28, 39, 40, 42, 45, 54, 60, 64] but also

other computer vision problems like optical flow estima-

tion [9, 14, 19, 48, 49, 52], style transfer [11, 15, 23, 30, 50],

and image enhancement [3, 7, 8, 41, 43, 55, 57, 63, 66]. Our

method is particularly relevant to the recent deep learning

algorithms for view synthesis [10, 13, 24, 29, 47, 59, 65].

Dosovitiskiy et al. [10], Kulkarni et al. [29], Yang et

al. [59], and Tatarchenko et al. [47] developed deep learning

algorithms that can render unseen views from input images.

These algorithms work on objects, such as chairs and faces,

and are not designed for frame interpolation for videos of

general scenes.

Recently, Flynn et al. developed a deep convolutional

neural network method for synthesizing novel natural im-

ages from posed real-world input images. Their method

projects input images onto multiple depth planes and

combines colors at these depth planes to create a novel

view [13]. Kalantari et al. provided a deep learning-based

view synthesis algorithm for view expansion for light field

imaging. They break novel synthesis into two components:

disparity and color estimation, and accordingly use two se-

quential convolutional neural networks to model these two

components. These two neural networks are trained simul-

taneously [24]. Long et al. interpolate frames as an interme-

diate step for image matching [31]. However, their interpo-

lated frames tend to be blurry. Zhou et al. observed that the

visual appearance of different views of the same instance is

highly correlated, and designed a deep learning algorithm

to predict appearance flows that are used to select proper

pixels in the input views to synthesize a novel view [65].

Given multiple input views, their method can interpolate

a novel view by warping individual input views using the

corresponding appearance flows and then properly combin-

ing them together. Like these methods, our deep learning

algorithm can also be trained end to end using videos di-

rectly. Compared to these methods, our method is dedicated

to video frame interpolation. More importantly, our method

estimates convolution kernels that capture both the motion

and interpolation coefficients, and uses these kernels to di-

rectly convolve with input images to synthesize a middle

video frame. Our method does not need to project input im-

ages onto multiple depth planes or explicitly estimate dis-

parities or appearance flows to warp input images and then

combine them together. Our experiments show that our for-

mulation of frame interpolation as a single convolution step

allows our method to robustly handle challenging cases. Fi-

nally, the idea of using convolution for image synthesis has

also been explored in the very recent work for frame extrap-

olation [12, 22, 58].

3. Video Frame Interpolation

Given two video frames I1 and I2, our method aims to

interpolate a frame Î temporally in the middle of the two

input frames. Traditional interpolation methods estimate

the color of a pixel Î(x, y) in the interpolated frame in

two steps: dense motion estimation, typically through op-

tical flow, and pixel interpolation. For instance, we can

find for pixel (x, y) its corresponding pixels (x1, y1) in

I1 and (x2, y2) in I2 and then interpolate the color from

these corresponding pixels. Often this step also involves

re-sampling images I1 and I2 to obtain the corresponding

2
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(a) Interpolation by motion estimation and color interpolation
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Figure 2: Interpolation by convolution. (a): a two-step ap-

proach first estimates motion between two frames and then

interpolates the pixel color based on the motion. (b): our

method directly estimates a convolution kernel and uses it

to convolve the two frames to interpolate the pixel color.

values I1(x1, y1) and I2(x2, y2) to produce a high-quality

interpolation result, especially when (x1, y1) and (x2, y2)
are not integer locations, as illustrated in Figure 2 (a). This

two-step approach can be compromised when optical flow

is not reliable due to occlusion, motion blur, and lack of

texture. Also, rounding the coordinates to find the color

for I1(x1, y1) and I2(x2, y2) is prone to aliasing while re-

sampling with a fixed kernel sometimes cannot preserve

sharp edges well. Advanced re-sampling methods exist and

can be used for edge-preserving re-sampling, which, how-

ever, requires high-quality optical flow estimation.

Our solution is to combine motion estimation and pixel

synthesis into a single step and formulate pixel interpolation

as a local convolution over patches in the input images I1
and I2. As shown in Figure 2 (b), the color of pixel (x, y) in

the target image to be interpolated can be obtained by con-

volving a proper kernel K over input patches P1(x, y) and

P2(x, y) that are also centered at (x, y) in the respective in-

put images. The convolutional kernel K captures both mo-

tion and re-sampling coefficients for pixel synthesis. This

formulation of pixel interpolation as convolution has a few

advantages. First of all, the combination of motion estima-

tion and pixel synthesis into a single step provides a more

robust solution than the two-step procedure. Second, the

convolution kernel provides flexibility to account for and

address difficult cases like occlusion. For example, opti-

cal flow estimation in an occlusion region is a fundamen-

tally difficult problem, which makes it difficult for a typ-

ical two-step approach to proceed. Extra steps based on

heuristics, such as flow interpolation, must be taken. This

paper provides a data-driven approach to directly estimate

type BN ReLU size stride output

input - - - - 6× 79× 79

conv 7× 7 1× 1 32× 73× 73

down-conv - 2× 2 2× 2 32× 36× 36

conv 5× 5 1× 1 64× 32× 32

down-conv - 2× 2 2× 2 64× 16× 16

conv 5× 5 1× 1 128× 12× 12

down-conv - 2× 2 2× 2 128× 6 × 6

conv 3× 3 1× 1 256× 4 × 4

conv - 4× 4 1× 1 2048× 1 × 1

conv - - 1× 1 1× 1 3362× 1 × 1

spatial softmax - - - - 3362× 1 × 1

output - - - - 41×82× 1 × 1

Table 1: The convolutional neural network architecture. It

makes use of Batch Normalization (BN) [21] as well as

Rectified Linear Units (ReLU). Note that the output only

reshapes the result without altering its value.

the convolution kernel that can produce visually plausible

interpolation results for an occluded region. Third, if prop-

erly estimated, this convolution formulation can seamlessly

integrate advanced re-sampling techniques like edge-aware

filtering to provide sharp interpolation results.

Estimating proper convolution kernels is essential for our

method. Encouraged by the success of using deep learning

algorithms for optical flow estimation [9, 14, 19, 48, 49, 52]

and image synthesis [13, 24, 65], we develop a deep con-

volutional neural network method to estimate a proper con-

volutional kernel to synthesize each output pixel in the in-

terpolated images. The convolutional kernels for individual

pixels vary according to the local motion and image struc-

ture to provide high-quality interpolation results. Below we

describe our deep neural network for kernel estimation and

then discuss implementation details.

3.1. Convolution kernel estimation

We design a fully convolutional neural network to esti-

mate the convolution kernels for individual output pixels.

The architecture of our neural network is detailed in Ta-

ble 1. Specifically, to estimate the convolutional kernel K

for the output pixel (x, y), our neural network takes recep-

tive field patches R1(x, y) and R2(x, y) as input. R1(x, y)
and R2(x, y) are both centered at (x, y) in the respective

input images. The patches P1 and P2 that the output kernel

will convolve in order to produce the color for the output

pixel (x, y) are co-centered at the same locations as these

receptive fields, but with a smaller size, as illustrated in Fig-

ure 1. We use a larger receptive field than the patch to better

handle the aperture problem in motion estimation. In our

implementation, the default receptive field size is 79 × 79
pixels. The convolution patch size is 41× 41 and the kernel

size is 41 × 82 as it is used to convolve with two patches.

Our method applies the same convolution kernel to each of
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color loss color loss + gradient loss

Figure 3: Effect of using an additional gradient loss.

the three color channels.

As shown in Table 1, our convolutional neural network

consists of several convolutional layers as well as down-

convolutions as alternatives to max-pooling layers. We use

Rectified Linear Units as activation functions and Batch

Normalization [21] for regularization. We employ no fur-

ther techniques for regularization since our neural network

can be trained end to end using widely available video data,

which provides a sufficiently large training dataset. We are

also able to make use of data augmentation extensively, by

horizontally and vertically flipping the training samples as

well as reversing their order. Our neural network is fully

convolutional. Therefore, it is not restricted to a fixed-size

input and we are, as detailed in Section 3.3, able to use a

shift-and-stitch technique [17, 32, 39] to produce kernels

for multiple pixels simultaneously to speedup our method.

A critical constraint is that the coefficients of the output

convolution kernel should be non-negative and sum up to

one. Therefore, we connect the final convolutional layer

to a spatial softmax layer to output the convolution kernel,

which implicitly meets this important constraint.

3.1.1 Loss function

For clarity, we first define notations. The ith training ex-

ample consists of two input receptive field patches Ri,1 and

Ri,2 centered at (xi, yi), the corresponding input patches

Pi,1 and Pi,2 that are smaller than the receptive field patches

and also centered at the same location, the ground-truth

color C̃i and the ground-truth gradient G̃i at (xi, yi) in the

interpolated frame. For simplicity, we omit the (xi, yi) in

our definition of the loss functions.

One possible loss function of our deep convolutional

neural network can be the difference between the interpo-

lated pixel color and the ground-truth color as follows.

Ec =
∑

i

‖[Pi,1 Pi,2] ∗Ki − C̃i‖1 (1)

where subscript i indicates the ith training example and

Ki is the convolution kernel output by our neural network.

Our experiments show that this color loss alone, even using

ℓ1 norm, can lead to blurry results, as shown in Figure 3.

This blurriness problem was also reported in some recent

work [31, 34, 38]. Mathieu et al. showed that this blurri-

ness problem can be alleviated by incorporating image gra-

dients in the loss function [34]. This is difficult within our

pixel-wise interpolation approach, since the image gradi-

ent cannot be directly calculated from a single pixel. Since

differentiation is also a convolution, assuming that kernels

locally vary slowly, we solve this problem by using the as-

sociative property of convolution: we first compute the gra-

dient of input patches and then perform convolution with

the estimated kernel, which will result in the gradient of the

interpolated image at the pixel of interest. As a pixel (x, y)
has eight immediate neighboring pixels, we compute eight

versions of gradients using finite difference and incorporate

all of them into our gradient loss function.

Eg =
∑

i

8∑

k=1

‖[Gk
i,1 Gk

i,2] ∗Ki − G̃k
i ‖1 (2)

where k denotes one of the eight ways we compute the gra-

dient. Gk
i,1 and Gk

i,2 are the gradients of the input patches

Pi,1 and Pi,2, and G̃k
i is the ground-truth gradient. We

combine the above color and gradient loss as our final loss

Ec + λ · Eg. We found that λ = 1 works well and used it.

As shown in Figure 3, this color plus gradient loss enables

our method to produce sharper interpolation results.

3.2. Training

We derived our training dataset from an online video col-

lection, as detailed later on in this section. To train our neu-

ral network, we initialize its parameters using the Xavier

initialization approach [18] and then use AdaMax [27] with

β1 = 0.9, β2 = 0.999, a learning rate of 0.001 and 128
samples per mini-batch to minimize the loss function.

3.2.1 Training dataset

Our loss function is purely based on the ground truth video

frame and does not need any other ground truth informa-

tion like optical flow. Therefore, we can make use of videos

that are widely available online to train our neural network.

To make it easy to reproduce our results, we use publicly

available videos from Flickr with a Creative Commons li-

cense. We downloaded 3, 000 videos using keywords, such

as “driving”, “dancing”, “surfing”, “riding”, and “skiing”,

which yield a diverse selection. We scaled the downloaded

videos to a fixed size of 1280 × 720 pixels. We removed

interlaced videos that sometimes have a lower quality than

the videos with the progressive-scan format.

To generate the training samples, we group all the frames

in each of the remaining videos into triple-frame groups,

each containing three consecutive frames in a video. We

then randomly pick a pixel in each triple-frame group and

extract a triple-patch group centered at that pixel from the

video frames. To facilitate data augmentation, the patches

are selected to be larger than the receptive-field patches re-

quired by the neural network. The patch size in our training
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dataset is 150×150 pixels. To avoid including a large num-

ber of samples with no or little motion, we estimate the opti-

cal flow between patches from the first and last frame in the

triple-frame group [46] and compute the mean flow magni-

tude. We then sample 500, 000 triple-patch groups without

replacement according to the flow magnitude: a patch group

with larger motion is more likely to be chosen than the one

with smaller motion. In this way, our training set includes

samples with a wide range of motion while avoiding being

dominated by patches with little motion. Since some videos

consist of many shots, we compute the color histogram be-

tween patches to detect shot boundaries and remove the

groups across the shot boundaries. Furthermore, samples

with little texture are also not very useful to train our neu-

ral network. We therefore compute the entropy of patches

in each sample and finally select the 250, 000 triple-patch

groups with the largest entropy to form the training dataset.

In this training dataset, about 10 percent of the pixels have

an estimated flow magnitude of at least 20 pixels. The aver-

age magnitude of the largest five percent is approximately

25 pixels and the largest magnitude is 38 pixels.

We perform data augmentation on the fly during train-

ing. The receptive-field size required for the neural network

is 79× 79, which is smaller than the patch size in the train-

ing samples. Therefore, during the training, we randomly

crop the receptive field patch from each training sample. We

furthermore randomly flip the samples horizontally as well

as vertically and randomly swap their temporal order. This

forces the optical flow within the samples to be distributed

symmetrically so that the neural network is not biased to-

wards a certain direction.

3.3. Implementation details

We used Torch [5] to implemented our neural network.

Below we describe some important details.

3.3.1 Shift-and-stitch implementation

A straightforward way to apply our neural network to frame

interpolation is to estimate the convolution kernel and syn-

thesize the interpolated pixel one by one. This pixel-wise

application of our neural network will unnecessarily per-

form redundant computations when passing two neighbor-

ing pairs of patches through the neural network to esti-

mate the convolution kernels for two corresponding pixels.

Our implementation employs the shift-and-stitch approach

to address this problem to speedup our system [17, 32, 39].

Specifically, as our neural network is fully convolutional

and does not require a fixed-size input, it can compute ker-

nels for more than one output pixels at once by supplying

a larger input than what is required to produce one ker-

nel. This can mitigate the issue of redundant computations.

The output pixels that are obtained in this way are how-

ever not adjacent and are instead sparsely distributed. We

employ the shift-and-stitch [17, 32, 39] approach in which

slightly shifted versions of the same input are used. This ap-

proach returns sparse results that can be combined to form

the dense representation of the interpolated frame.

Considering a frame with size 1280 × 720, a pixel-

wise implementation of our neural network would require

921,600 forward passes through our neural network. The

shift-and-stitch implementation of our neural network only

requires 64 forward passes for the 64 differently shifted ver-

sions of the input to cope with the downscaling by the three

down-convolutions. Compared to the pixel-wise implemen-

tation that takes 104 seconds per frame on an Nvidia Titan

X, the shift-and-stitch implementation only takes 9 seconds.

3.3.2 Boundary handling

Due to the receptive field of the network as well as the size

of the convolution kernel, we need to pad the input frames

to synthesize boundary pixels for the interpolated frame. In

our implementation, we adopt zero-padding. Our experi-

ments show that this approach usually works well and does

not introduce noticeable artifacts.

3.3.3 Hyper-parameter selection

The convolution kernel size and the receptive field size are

two important hyper-parameters of our deep neural net-

work. In theory, the convolution kernel, as shown in Fig-

ure 2, must be larger than the pixel motion between two

frames in order to capture the motion (implicitly) to produce

a good interpolation result. To make our neural network ro-

bust against large motion, we tend to choose a large kernel.

On the other hand, a large kernel involves a large number

of values to be estimated, which increases the complexity

of our neural network. We choose to select a convolution

kernel that is large enough to capture the largest motion in

the training dataset, which is 38 pixels. Particularly, the

convolution kernel size in our system is 41× 82 that will be

applied to two 41×41 patches as illustrated in Figure 1. We

make this kernel a few pixels larger than 38 pixels to pro-

vide pixel support for re-sampling, which our method does

not explicitly perform, but is captured in the kernel.

As discussed earlier, the receptive field is larger than

the convolution kernel to handle the aperture problem well.

However, a larger receptive field requires more computation

and is less sensitive to the motion. We choose the receptive

field using a validation dataset and find that 79×79 achieves

a good balance.

4. Experiments

We compare our method to state-of-the-art video frame

interpolation methods, including the recent phase-based in-

terpolation method [36] and a few optical flow-based meth-

ods. The optical flow algorithms in our experiment include
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Input frame 1 Ours Meyer et al. DeepFlow2 FlowNetS MDP-Flow2 Brox et al.

Figure 4: Qualitative evaluation on blurry videos.

MDP-Flow2 [56], which currently produces the lowest in-

terpolation error according to the Middlebury benchmark,

the method from Brox et al. [2], as well as two recent

deep learning based approaches, namely DeepFlow2 [52]

and FlowNetS [9]. Following recent frame interpolation

work [36], we use the interpolation method from the Mid-

dlebury benchmark [1] to synthesize the interpolated frame

using the optical flow results. Alternatively, other advanced

image-based rendering algorithms [67] can also be used.

For the two deep learning-based optical flow methods, we

directly use the trained models from the author websites.

4.1. Comparisons

We evaluate our method quantitatively on the Middle-

bury optical flow benchmark [1]. As reported in Table 2,

our method performs very well on the four examples with

real-world scenes. Among the over 100 methods reported

in the Middlebury benchmark, our method achieves the

best on Evergreen and Basketball, 2nd best on Dumptruck,

and 3rd best on Backyard. Our method does not work as

well on the other four examples that are either synthetic or

of lab scenes, partially because we train our network on

videos with real-world scenes. Qualitatively, we find that

our method can often create results in challenging regions

that are visually more appealing than state-of-the-art meth-

ods.

Blur. Figure 4 shows two examples where the input videos

suffer from out-of-focus blur (top) and motion blur (bot-

tom). Blurry regions are often challenging for optical flow

estimation; thus these regions in the interpolated results

suffer from noticeable artifacts. Both our method and the

phase-based method from Meyer et al. [36] can handle

blurry regions better while our method produces sharper im-

ages, especially in regions with large motion, such as the

right side of the hat in the bottom example.

Abrupt brightness change. As shown in Figure 5, abrupt

brightness change violates the brightness consistency as-

Mequ. Schef. Urban Teddy Backy. Baske. Dumpt. Everg.

Ours 3.57 4.34 5.00 6.91 10.2 5.33 7.30 6.94

DeepFlow2 2.99 3.88 3.62 5.38 11.0 5.83 7.60 7.82

FlowNetS 3.07 4.57 4.01 5.55 11.3 5.99 8.63 7.70

MDP-Flow2 2.89 3.47 3.66 5.20 10.2 6.13 7.36 7.75

Brox et al. 3.08 3.83 3.93 5.32 10.6 6.60 8.61 7.43

Table 2: Evaluation on the Middlebury testing set (average

interpolation error).

sumption and compromises optical flow estimation, caus-

ing artifacts in frame interpolation. For this example, our

method and the phase-based method generate more visually

appealing interpolation results than flow-based methods.

Occlusion. One of the biggest challenges for optical flow

estimation is occlusion. When optical flow is not reliable or

unavailable in occluded regions, frame interpolation meth-

ods need to fill in holes, such as by interpolating flow from

neighboring pixels [1]. Our method adopts a learning ap-

proach to obtain proper convolution kernels that lead to

visually appealing pixel synthesis results for occluded re-

gions, as shown in Figure 6.

To better understand how our method handles occlusion,

we examine the convolution kernels of pixels in the oc-

cluded regions. As shown in Figure 1, a convolution kernel

can be divided into two sub-kernels, each of which is used

to convolve with one of the two input patches. For the ease

of illustration, we compute the centroid of each sub-kernel

and mark it using x in the corresponding input patch to in-

dicate where the output pixel gets its color. Figure 7 shows

an example where the white leaf moves up from Frame 1

to Frame 2. The occlusion can be seen in the left image

that overlays two input frames. For this example, the pixel

indicated by the green x is visible in both frames and our

kernel shows that the color of this pixel is interpolated from

both frames. In contrast, the pixel indicated by the red x is

visible only in Frame 2. We find that the sum of all the coef-

ficients in the sub-kernel for Frame 1 is almost zero, which

indicates Frame 1 does not contribute to this pixel and this

6
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Figure 5: Qualitative evaluation on video with abrupt brightness change.

Input frame 1 Ours Meyer et al. DeepFlow2 FlowNetS MDP-Flow2 Brox et al.

Figure 6: Qualitative evaluation with respect to occlusion.

Overlay Frame 1 Ours Frame 2

Figure 7: Occlusion handling.

pixel gets its color only from Frame 2. Similarly, the pixel

indicated by the cyan x is only visible in Frame 1. Our ker-

nel correctly accounts for this occlusion and gets its color

from Frame 1 only.

4.2. Edgeaware pixel interpolation

In the above, we discussed how our estimated convolu-

tion kernels appropriately handle occlusion for frame inter-

polation. We now examine how these kernels adapt to im-

age features. In Figure 8, we sample three pixels in the in-

terpolated image. We show their kernels at the bottom. The

correspondence between a pixel and its convolution kernel

is established by color. First, for all these kernels, only a

very small number of kernel elements have non-zero values.

(The use of the spatial softmax layer in our neural network

already guarantees that the kernel element values are non-

negative and sum up to one.) Furthermore, all these non-

zero elements are spatially grouped together. This corre-

sponds well with a typical flow-based interpolation method

Figure 8: Convolution kernels. The third row provides mag-

nified views into the non-zero regions in the kernels in the

second row. While our neural network does not explicitly

model the frame interpolation procedure, it is able to es-

timate convolution kernels that enable similar pixel inter-

polation to the flow-based interpolation methods. More im-

portantly, our kernels are spatially adaptive and edge-aware,

such as those for the pixels indicated by the red and cyan x.

that finds corresponding pixels or their neighborhood in two

frames and then interpolate. Second, for a pixel in a flat

region such as the one indicated by the green x, its ker-

nel only has two elements with significant values. Each

of these two kernel elements corresponds to the relevant

pixel in the corresponding input frame. This is also con-

sistent with the flow-based interpolation methods although

our neural network does not explicitly model the frame in-

7
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Direct Ours

Figure 9: Comparison with direct synthesis.

terpolation procedure. Third, more interestingly, for pixels

along image edges, such as the ones indicated by the red

and cyan x, the kernels are anisotropic and their orienta-

tions align well with the edge directions. This shows that

our neural network learns to estimate convolution kernels

that enable edge-aware pixel interpolation, which is critical

to produce sharp interpolation results.

4.3. Discussion

Our method is scalable to large images due to its pixel-

wise nature. Furthermore, the shift-and-stitch implementa-

tion of our neural network allows us to both parallel pro-

cessing multiple pixels and reduce the redundancy in com-

puting the convolution kernels for these pixels. On a single

Nvidia Titan X, this implementation takes about 2.8 sec-

onds with 3.5 gigabytes of memory for a 640× 480 image,

and 9.1 seconds with 4.7 gigabytes for 1280×720, and 21.6
seconds with 6.8 gigabytes for 1920× 1080.

We experimented with a baseline neural network by

modifying our network to directly synthesize pixels. We

found that this baseline produces a blurry result for an ex-

ample from the Sintel benchmark [4], as shown in Figure 9.

In the same figure, we furthermore show a comparison with

the method from Long et al. [31] that performs video frame

interpolation as an intermediate step for optical flow esti-

mation. While their result is better than our baseline, it is

still not as sharp as ours.

The amount of motion that our method can handle is nec-

essarily limited by the convolution kernel size in our neural

network, which is currently 41×82. As shown in Figure 10,

our method can handle motion within 41 pixels well. How-

ever, any large motion beyond 41 pixels, cannot currently

be handled by our system. Figure 11 shows a pair of stereo

image from the KITTI benchmark [35]. When using our

method to interpolate a middle frame between the left and

right view, the car is blurred due to the large disparity (over

41 pixels), as shown in (c). After downscaling the input im-

ages to half of their original size, our method interpolates

well, as shown in (d). In the future, we plan to address this

issue by exploring multi-scale strategies, such as those used

for optical flow estimation [37].

0.0

0.5

1.0

0 5 10 15 20 25 30 35 40

S
S
I
M

Figure 10: Interpolation quality of our method with respect

to the flow magnitude (pixels).

(a) Left view (b) Right view

(c) Ours - full resolution (d) Ours - half resolution

Figure 11: Interpolation of a stereo image.

Unlike optical flow- or phased-based methods, our

method is currently only able to interpolate a single frame

between two given frames as our neural network is trained

to interpolate the middle frame. While we can continue the

synthesis recursively to also interpolate frames at t = 0.25
and t = 0.75 for example, our method is unable to interpo-

late a frame at an arbitrary time. It will be interesting to bor-

row from recent work for view synthesis [10, 24, 29, 47, 65]

and extend our neural network such that it can take a vari-

able as input to control the temporal step of the interpola-

tion in order to interpolate an arbitrary number of frames

like flow- or phase-based methods.

5. Conclusion

This paper presents a video frame interpolation method

that combines the two steps of a frame interpolation algo-

rithm, motion estimation and pixel interpolation, into a sin-

gle step of local convolution with two input frames. The

convolution kernel captures both the motion information

and re-sampling coefficients for proper pixel interpolation.

We develop a deep fully convolutional neural network that

is able to estimate spatially-adaptive convolution kernels

that allow for edge-aware pixel synthesis to produce sharp

interpolation results. This neural network can be trained di-

rectly from widely available video data. Our experiments

show that our method enables high-quality frame interpola-

tion and handles challenging cases like occlusion, blur, and

abrupt brightness change well.
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