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Figure 4: Qualitative evaluation on blurry videos.

MDP-Flow2 [56], which currently produces the lowest in-

terpolation error according to the Middlebury benchmark,

the method from Brox et al. [2], as well as two recent

deep learning based approaches, namely DeepFlow2 [52]

and FlowNetS [9]. Following recent frame interpolation

work [36], we use the interpolation method from the Mid-

dlebury benchmark [1] to synthesize the interpolated frame

using the optical flow results. Alternatively, other advanced

image-based rendering algorithms [67] can also be used.

For the two deep learning-based optical flow methods, we

directly use the trained models from the author websites.

4.1. Comparisons

We evaluate our method quantitatively on the Middle-

bury optical flow benchmark [1]. As reported in Table 2,

our method performs very well on the four examples with

real-world scenes. Among the over 100 methods reported

in the Middlebury benchmark, our method achieves the

best on Evergreen and Basketball, 2nd best on Dumptruck,

and 3rd best on Backyard. Our method does not work as

well on the other four examples that are either synthetic or

of lab scenes, partially because we train our network on

videos with real-world scenes. Qualitatively, we find that

our method can often create results in challenging regions

that are visually more appealing than state-of-the-art meth-

ods.

Blur. Figure 4 shows two examples where the input videos

suffer from out-of-focus blur (top) and motion blur (bot-

tom). Blurry regions are often challenging for optical flow

estimation; thus these regions in the interpolated results

suffer from noticeable artifacts. Both our method and the

phase-based method from Meyer et al. [36] can handle

blurry regions better while our method produces sharper im-

ages, especially in regions with large motion, such as the

right side of the hat in the bottom example.

Abrupt brightness change. As shown in Figure 5, abrupt

brightness change violates the brightness consistency as-

Mequ. Schef. Urban Teddy Backy. Baske. Dumpt. Everg.

Ours 3:57 4:34 5:00 6:91 10 :2 5 :33 7 :30 6 :94
DeepFlow2 2:99 3:88 3:62 5:38 11:0 5:83 7:60 7:82
FlowNetS 3:07 4:57 4:01 5:55 11:3 5:99 8:63 7:70
MDP-Flow2 2:89 3 :47 3:66 5:20 10 :2 6:13 7:36 7:75
Brox et al. 3:08 3:83 3:93 5:32 10:6 6:60 8:61 7:43

Table 2: Evaluation on the Middlebury testing set (average

interpolation error).

sumption and compromises optical flow estimation, caus-

ing artifacts in frame interpolation. For this example, our

method and the phase-based method generate more visually

appealing interpolation results than flow-based methods.

Occlusion. One of the biggest challenges for optical flow

estimation is occlusion. When optical flow is not reliable or

unavailable in occluded regions, frame interpolation meth-

ods need to fill in holes, such as by interpolating flow from

neighboring pixels [1]. Our method adopts a learning ap-

proach to obtain proper convolution kernels that lead to

visually appealing pixel synthesis results for occluded re-

gions, as shown in Figure 6.

To better understand how our method handles occlusion,

we examine the convolution kernels of pixels in the oc-

cluded regions. As shown in Figure 1, a convolution kernel

can be divided into two sub-kernels, each of which is used

to convolve with one of the two input patches. For the ease

of illustration, we compute the centroid of each sub-kernel

and mark it using x in the corresponding input patch to in-

dicate where the output pixel gets its color. Figure 7 shows

an example where the white leaf moves up from Frame 1

to Frame 2. The occlusion can be seen in the left image

that overlays two input frames. For this example, the pixel

indicated by the green x is visible in both frames and our

kernel shows that the color of this pixel is interpolated from

both frames. In contrast, the pixel indicated by the red x is

visible only in Frame 2. We find that the sum of all the coef-

ficients in the sub-kernel for Frame 1 is almost zero, which

indicates Frame 1 does not contribute to this pixel and this

6
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Figure 5: Qualitative evaluation on video with abrupt brightness change.

Input frame 1 Ours Meyer et al. DeepFlow2 FlowNetS MDP-Flow2 Brox et al.

Figure 6: Qualitative evaluation with respect to occlusion.

Overlay Frame 1 Ours Frame 2

Figure 7: Occlusion handling.

pixel gets its color only from Frame 2. Similarly, the pixel

indicated by the cyan x is only visible in Frame 1. Our ker-

nel correctly accounts for this occlusion and gets its color

from Frame 1 only.

4.2. Edge­aware pixel interpolation

In the above, we discussed how our estimated convolu-

tion kernels appropriately handle occlusion for frame inter-

polation. We now examine how these kernels adapt to im-

age features. In Figure 8, we sample three pixels in the in-

terpolated image. We show their kernels at the bottom. The

correspondence between a pixel and its convolution kernel

is established by color. First, for all these kernels, only a

very small number of kernel elements have non-zero values.

(The use of the spatial softmax layer in our neural network

already guarantees that the kernel element values are non-

negative and sum up to one.) Furthermore, all these non-

zero elements are spatially grouped together. This corre-

sponds well with a typical flow-based interpolation method

Figure 8: Convolution kernels. The third row provides mag-

nified views into the non-zero regions in the kernels in the

second row. While our neural network does not explicitly

model the frame interpolation procedure, it is able to es-

timate convolution kernels that enable similar pixel inter-

polation to the flow-based interpolation methods. More im-

portantly, our kernels are spatially adaptive and edge-aware,

such as those for the pixels indicated by the red and cyan x.

that finds corresponding pixels or their neighborhood in two

frames and then interpolate. Second, for a pixel in a flat

region such as the one indicated by the green x, its ker-

nel only has two elements with significant values. Each

of these two kernel elements corresponds to the relevant

pixel in the corresponding input frame. This is also con-

sistent with the flow-based interpolation methods although

our neural network does not explicitly model the frame in-
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Figure 9: Comparison with direct synthesis.

terpolation procedure. Third, more interestingly, for pixels

along image edges, such as the ones indicated by the red

and cyan x, the kernels are anisotropic and their orienta-

tions align well with the edge directions. This shows that

our neural network learns to estimate convolution kernels

that enable edge-aware pixel interpolation, which is critical

to produce sharp interpolation results.

4.3. Discussion

Our method is scalable to large images due to its pixel-

wise nature. Furthermore, the shift-and-stitch implementa-

tion of our neural network allows us to both parallel pro-

cessing multiple pixels and reduce the redundancy in com-

puting the convolution kernels for these pixels. On a single

Nvidia Titan X, this implementation takes about 2.8 sec-

onds with 3.5 gigabytes of memory for a 640× 480 image,

and 9.1 seconds with 4.7 gigabytes for 1280×720, and 21.6
seconds with 6.8 gigabytes for 1920× 1080.

We experimented with a baseline neural network by

modifying our network to directly synthesize pixels. We

found that this baseline produces a blurry result for an ex-

ample from the Sintel benchmark [4], as shown in Figure 9.

In the same figure, we furthermore show a comparison with

the method from Long et al. [31] that performs video frame

interpolation as an intermediate step for optical flow esti-

mation. While their result is better than our baseline, it is

still not as sharp as ours.

The amount of motion that our method can handle is nec-

essarily limited by the convolution kernel size in our neural

network, which is currently 41×82. As shown in Figure 10,

our method can handle motion within 41 pixels well. How-

ever, any large motion beyond 41 pixels, cannot currently

be handled by our system. Figure 11 shows a pair of stereo

image from the KITTI benchmark [35]. When using our

method to interpolate a middle frame between the left and

right view, the car is blurred due to the large disparity (over

41 pixels), as shown in (c). After downscaling the input im-

ages to half of their original size, our method interpolates

well, as shown in (d). In the future, we plan to address this

issue by exploring multi-scale strategies, such as those used

for optical flow estimation [37].

0.0

0.5

1.0

0 5 10 15 20 25 30 35 40

S
S
I
M

Figure 10: Interpolation quality of our method with respect

to the flow magnitude (pixels).

(a) Left view (b) Right view

(c) Ours - full resolution (d) Ours - half resolution

Figure 11: Interpolation of a stereo image.

Unlike optical flow- or phased-based methods, our

method is currently only able to interpolate a single frame

between two given frames as our neural network is trained

to interpolate the middle frame. While we can continue the

synthesis recursively to also interpolate frames at t = 0.25
and t = 0.75 for example, our method is unable to interpo-

late a frame at an arbitrary time. It will be interesting to bor-

row from recent work for view synthesis [10, 24, 29, 47, 65]

and extend our neural network such that it can take a vari-

able as input to control the temporal step of the interpola-

tion in order to interpolate an arbitrary number of frames

like flow- or phase-based methods.

5. Conclusion

This paper presents a video frame interpolation method

that combines the two steps of a frame interpolation algo-

rithm, motion estimation and pixel interpolation, into a sin-

gle step of local convolution with two input frames. The

convolution kernel captures both the motion information

and re-sampling coefficients for proper pixel interpolation.

We develop a deep fully convolutional neural network that

is able to estimate spatially-adaptive convolution kernels

that allow for edge-aware pixel synthesis to produce sharp

interpolation results. This neural network can be trained di-

rectly from widely available video data. Our experiments

show that our method enables high-quality frame interpola-

tion and handles challenging cases like occlusion, blur, and

abrupt brightness change well.

Acknowledgments. The top image in Figure 4 is used with

permission from Rafael McStan while the other images in

Figures 4, 5, 6 are used under a Creative Commons license

from the Blender Foundation and the city of Nuremberg.

We thank Nvidia for their GPU donation. This work was

supported by NSF IIS-1321119.

8



References

[1] S. Baker, D. Scharstein, J. P. Lewis, S. Roth, M. J. Black, and

R. Szeliski. A database and evaluation methodology for opti-

cal flow. International Journal of Computer Vision, 92(1):1–

31, 2011. 1, 2, 6

[2] T. Brox, A. Bruhn, N. Papenberg, and J. Weickert. High ac-

curacy optical flow estimation based on a theory for warping.

In European Conference on Computer Vision, volume 3024,

pages 25–36, 2004. 6

[3] H. C. Burger, C. J. Schuler, and S. Harmeling. Image de-

noising: Can plain neural networks compete with BM3D? In

IEEE Conference on Computer Vision and Pattern Recogni-

tion, pages 2392–2399, 2012. 2

[4] D. J. Butler, J. Wulff, G. B. Stanley, and M. J. Black. A

naturalistic open source movie for optical flow evaluation.

In European Conference on Computer Vision, volume 7577,

pages 611–625, 2012. 8

[5] R. Collobert, K. Kavukcuoglu, and C. Farabet. Torch7: A

matlab-like environment for machine learning. In BigLearn,

NIPS Workshop, 2011. 5

[6] P. Didyk, P. Sitthi-amorn, W. T. Freeman, F. Durand, and

W. Matusik. Joint view expansion and filtering for automulti-

scopic 3D displays. ACM Trans. Graph., 32(6):221:1–221:8,

2013. 2

[7] C. Dong, Y. Deng, C. C. Loy, and X. Tang. Compression ar-

tifacts reduction by a deep convolutional network. In ICCV,

pages 576–584, 2015. 2

[8] C. Dong, C. C. Loy, K. He, and X. Tang. Image

super-resolution using deep convolutional networks. IEEE

Transactions on Pattern Analysis and Machine Intelligence,

38(2):295–307, 2016. 2

[9] A. Dosovitskiy, P. Fischer, E. Ilg, P. Häusser, C. Hazirbas,
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