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Abstract 
This paper presents a cellular-automatic model of a reversible regular structure called Davio lattice. Regular 
circuits are investigated because of the requirement of future (nano-) technologies where long wires should be 
avoided. Reversibility is a valuable feature because it means much lower energy dissipation. A circuit is 
reversible if the number of its inputs equals the number of its outputs and there is a one-to-one mapping between 
spaces of input vectors and output vectors. It is believed that one day regular reversible structures will be 
implemented as nano-scale 3-dimensional chips. This paper introduces the notion of the Toffoli gate and its 
cellular-automatic implementation, as well as an example of the Davio lattice built exclusively of Toffoli gates 
and run on a special cellular automaton called CAM-Brain Machine (CBM). 

 
1. Introduction 
This paper presents a cellular-automatic model of a reversible regular structure called Davio lattice. 
We call a circuit regular when it is composed of one or few types of identical logic/geometrical 
modules, connected only by abutting (short wires) and buses (long wires connected identically to all 
modules). A circuit is reversible if the number of its inputs equals the number of its outputs and there 
is a one-to-one mapping between spaces of input vectors and output vectors (Fredkin & Toffoli 1982). 
Reversible circuits appear to be a promising solution because they are expected to dissipate much less 
energy than their irreversible counterparts exploited nowadays (cf. Bennett 1973). Cellular Automaton 
(CA) is defined as a computing device based on three elements: a set of connected sites (cells), a set 
of states that are allowed on the sites (cells), and a set of rules for how the states are updated (cf. 
Gershenfeld 1999: 102).  

The Davio lattice we presented is the first step toward automated design of arbitrary 
combinational functions and finite state machines in cellular automata. We propose a new approach 
where a two-dimensional regular layout of a desired circuit is generated by software developed by 
Perkowski and Mishchenko (2002) and next converted to certain states of the cells constituting a 
cellular automaton. This requires a non-trivial layout of the lattice’s modules such that signals 
produced in one module are received by another module in appropriate place and in appropriate time. 
For implementation of the reversible modules we used CA adjusted based of the following 
assumptions (Buller 2003b): (1) the state of every cell is defined using one binary variable called the 
pulsing state variable, as well as six binary variables called the frozen state variables, and (2) there is 
only one cell transition rule, that is the Boolean function S1 that returns 1 when exactly one of its 
inputs is equal to one and returns zero otherwise.  

The ATR CAM-Brain Machine (CBM) was used as the research platform. It is a dedicated 
FPGA-based hardware for experiments with 3-D CA designed to evolve and emulate large-scale para-
neural networks (Korkin et al. 2000). The ATR’s Brain Building Group developed the NeuroMaze 3.0 
ProTM, software for computer aided designing and testing of neural modules to be run on the CBM 
(Liu 2002). This software appeared a convenient tool for rapid modeling and testing of reversible 
cascades.  
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2. Reversible circuits 

In the realm of Reversible Logic it is seldom possible to use as many inputs and outputs as in classic 
logic synthesis. There are tree reasons. First, we may want to synthesize a function that by definition 
has a different numbers of inputs and outputs, usually real life functions have more inputs than 
outputs. While the basic requirement for reversible circuit is that a number of inputs is equal to the 
number of outputs. Second, even if the desired function has itself as many inputs as outputs, it may be 
not a reversible function and has thus to be converted to a reversible functions by adding input signals 
(set to constant values) and output signals (not used) Perkowski et al 2001b. The basic reversible gates 
used in such a new reversible circuit may produce some useful and some useless values. These useless 
values are called garbage. It is one of the goals of reversible logic synthesis technique to create 
systematic algorithms with as small garbage as possible. Sometimes the garbage of the entire circuit 
can be reduced via creating the so-called mirror circuit but at the price of adding more intermediate 
variables (Perkowski et al. 2001a; Perkowski et al 2001b). Nevertheless, increasing the width of the 
circuit is sometimes undesirable, for example when the reversible logic is to be implemented as a 
quantum computing device. 

Thus, a smart design is when the designer manages to make use of all outputs produced by the 
components of his circuit, thus introducing no input signals. The smaller the number of employed 
wires the better the design of a defined initial function in a reversible cascade. This task is quite 
difficult and different from standard logic synthesis. So far no good methods exist for reversible 
synthesis of functions of many variables and high quality algorithms have been created only for few 
variables. Evolutionary algorithms are some of the most successful methods for reversible design so 
far, which is in contrast to the classical logic design, where evolutionary methods are not yet 
competitive to general purpose two- and many-level design tools that are capable of producing better-
than-human designs for functions with hundreds of inputs and outputs and where they totally 
eliminate human logic minimization from modern industrial design processes. 

 

3. Toffoli Gate 

The Toffoli gate is one of belongs to the basic library of reversible structures Shende et al. (2002). We 
use it as a module of the Davio lattice we present here. It concerns three and only three wires 
(Figure 1).  The logical values in the wires to which the controls are attached are the same both 
immediately before and immediately after a given control. As for the wire on which the inverter is 
attached, the Toffoli gate’s behavior depends on the values detected by the controls. When the product 
of the values detected by the controls is 1, the gate affects the wire the same way as NOT. When the 
product of values detected by the controls is 0, the logical value in the wire to which the inverter is 
attached is the same both immediately before and immediately after the inverter (Figure 2).  
 
 
 
 
 
 
 
 
 
 
 
 
 
 

x ⊕  yz x 

y y 

z z 

Exclusive OR  
(0 ⊕ 0 = 0, 0 ⊕ 1 = 1, 
1 ⊕ 0 = 1, 1 ⊕ 1 = 0)  

inverter 

controls 
inputs 

Figure 1. Toffoli gate. (a) general scheme, (b) special scheme 

a. b.
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4. Davio Lattice 

Let us make a special arrangement of inputs to and outputs from the Toffoli gate as in Figure 1b.This 
way we obtained a functional “tile”. Owing to the location of inputs and outputs, such tiles can be 
easily arranged into 2-dimensional regular structures. One of such structures is the Davio lattice 
(Figure 3).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

It can been proved that arbitrary Boolean function can be realized in a Reversible Davio Lattice, 
assuming repetition of variables in levels of the lattice.  For instance, every symmetric function 

Constant C1 

Constant C2 

Constant C3 

Constant C5 Constant C6 Constant C4 

Garbage 

Garbage 

Garbage 

Garbage 

Garbage 

Garbage 

GarbageGarbage

Input A

Input C

Input B

F(A, B, C) 

Figure 3. Davio lattice built exclusively of Toffoli gates 

Figure 2. Toffoli gate’s behavior  
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F(A,B,C) of three variables A, B, C can be realized in the lattice from Figure 2, assuming correct 
setting of all constants Ci to values 0 and 1. If we take C5=1 and all other constants equal to zero, the 
lattice will return F(A, B, C) = AB ⊕ BC ⊕ CA. 
 
5. Cellular Automaton (CA) for Reversible Modeling 
As a medium for the modeled reversible computing Buller (2003b) employed a cellular automaton 
(CA) run on ATR’s CAM-Brain Machine (CBM). The cellular automaton is 3-dimensional and works 
according to one simple rule. It can be imagined as a set of cubic cells arranged in such a way that 
each of the cubes has up to six neighbors. Every cell has a door in each of its 6 walls. The set of open 
doors and the set of closed doors must be determined in the framework of the automaton’s initial state 
and kept unchanged for entire calculation process. Hence, the doors are called frozen state variables. 

Every cell can be either activated or not activated. Hence, the variable representing activation 
of a given cell is called activation or pulsing state variable. A given cell gets activated in time t, if and 
only if the number of its doors opened toward neighbors activated in time t-1 is equal to just 1.  

In order to describe the idea more precisely, let us employ the elementary symmetric function 
S1 that returns 1 if and only if one of its six inputs is equal to one (Sasao 1999: 99). Let us assume that 
binary a1, a2, …, a6 represent activations of six neighbors of a given cell, while binary variables d1, d2, 
…, d6 are doors toward the neighbors. Let a0 be activation of the cell itself. The cellular automaton has 
been adjusted to work in such a way that for every cell  a0,t+1  = S1( d1a1,t, d2a2,t, …, d6a6,t ).  

5.1. Graphic representation of cell’s state 

A convenient way to show a frozen state of a given cell is the “arrow metaphor” used in the 
NeuroMaze software tool. , , , ,  and  represent open doors to Western, Eastern, 
Northern, Southern, Upper and Lower neighbor, respectively, all located in a square representing cell 
activation (pulsing state variable). Let color of the square be white or grey for activation 0 or 1, 
respectively.  

5.2. Channel  and Exor 

Channel is elementary structure of the discussed CA. It employs only cells that have only one gate 
open. Figure 4 and 5 show two samples of propagation of activation in the channels. If a cell has two 
and only two gates opened, it can serve as Exor gate (Fig. 6). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
t = 3t = 1t = 0 t = 2
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Figure 5. An example of multi-level channels. 

t = 0 t = 2t = 1 t = 3

t = 5t = 4

Figure 4. An example 
of uni-level channels. 
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5.4. Eeckhaut gate 

Eeckhaut gate (Eeckhaut & Van Campenhout 2003) serves as an AND gate (Fig. 7 and 8). 
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Figure 7. Eeckhaut gate which works  
as delayed AND, i.e. Et+3 = xt yt. 

Case 1  (x = 1, y = 0) 

Case 2  (x = 0, y = 1) 

Case 3  (x = 1, y = 1) 

Figure 8. Behavior of the Eeckhaut gate

Figure 6. CA-based Exor. et+1 = x ⊕ y. The trivial case x = 0, y = 0  
is not shown since all cells would always be blank.  
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6. Cellular Davio lattice 

Figure 9 shows a cellular model of Tofoli gate using an Eeckhaut gate. Figure 10 shows the model of 
Tofoli gate modified to serve as a tile in the Davio lattice. Note that the layout of cells is such that for 
each “wire” the propagation time is the same and is equal to 18 clocks. The lattice is shown in Figure 
11. The cellular structures have been built under the NeuroMaze 3.0 Pro, a software tool for computer 
aided designing of 3-D β-PPNNs (Pulsed Para-Neural Networks) executable on the ATR’s CAM-
Brain Machine (CBM) (Buller 2003a).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

8. Conclusions and future work 
It was shown, that the Davio lattice could be modeled on in a 3-dimensional cellular automaton where 
some cells’s state variables were set as “frozen”. This automaton is executable on the ATR’s CAM-
Brain Machine (CBM). The ATR’s NeuroMaze 3.0 Pro, a software for computer aided designing of 
pulsed neural networks could be enhanced to facilitate fully automated creation of large-scale models 
of reversible cascades. Indeed, owing to regular input-output layouts of the presented structures, they 
can be attached one to another by a simple program. Several other regular logic structures presented 
by our group in the past can be mapped to 3-dimensional cellular automata in a quite similar way. The 
future research will include extending the algorithm for synthesis of lattices to multiple-output circuits 
and automating the 2D-3D transformation to avoid buses. It is believed that one day such lattices will 
be implemented as nano-scale 3-dimensional chips that nowadays are impossible because of the still 
unsolved problem of heat produced in traditional logic gates.  

Figure 9. Toffoli gate 
modeled in CA. One of 
components is Eeckhaut 
gate (grey color) 

z 

y 

x 

Upper layer Lower layer 

Figure 10. Cellular Toffoli gate modified to serve as a tile in the Davio lattice  
(cf. Figure 1b). The propagation time of 18 clocks is equal for each “wire”. 
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Notes 
An example of regular circuits are lattices, proposed for the first time in (Perkowski & Pierzchala 1993; 
Pierzchala et al 1994) Lattices can be generated for binary, multiple-valued and continuous (including fuzzy and 
Lukasiewicz) logics (Pierzchala and Perkowski 1999) as well as for various technologies, such as single electron 
transistor (Hasegawa 2001; Hasegawa et al 2001; Postma et al. 2001) or quantum (Al-Rabadi 2002) For each of 
these logics and realization technologies a cellular automaton can be created, but here for simplicity we 
illustrated only the binary case. Much research on 2-dimensional regular combinational circuits has been 
published previously (Perkowski et al 1997a,b,c; Chrzanowska-Jeske et al 1999) and efficient software to 
generate various types of lattices has been written (Perkowski and Mishchenko 2002). Three-dimensional 
lattices have been proposed also, both for irreversible binary and ternary logic (Perkowski et al 1997b,c), and for 
reversible logic (Perkowski et al 2001, Al-Rabadi 2002). However, all these designs assumed the presence of 
buses – i.e. long wires in which the signal is propagated with very small delay. These buses are used for all input 
variables. Therefore these designs cannot be directly adapted for cellular automata model where buses do not 
exist and all communication is therefore from cell-to-cell only. 
 

 

Figure 11. Davio lattice’s upper layer in the NeuroMaze’s worksheet. 
For the clock t it returns F(At-3⋅18+8, Bt-4⋅18+8, Ct-5⋅18+8) 
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