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University, Portland, OR, USA; 2University of Wisconsin-Madison, Madison, WI, USA; 3University of

Washington, Seattle, WA, USA
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ABSTRACT
High-precision triple oxygen isotope analysis of water has given rise to a novel second-order parameter,
17O-excess (often denoted as D17O), which describes the deviation from a reference relationship between d18O
and d17O. This tracer, like deuterium excess (d-excess), is affected by kinetic fractionation (diffusion) during
phase changes within the hydrologic cycle. However, unlike d-excess, 17O-excess is present in paleowater
proxy minerals and is not thought to vary significantly with temperature. This makes it a promising tool in
paleoclimate research, particularly in relatively arid continental regions where traditional approaches have
produced equivocal results. We present new d18O, d17O, and d2H data from stream waters along two
east–west transects in the Pacific Northwest to explore the sensitivity of 17O-excess to topography, climate,
and moisture source. We find that discrepancies in d-excess and 17O-excess between the Olympic Mountains
and Coast Range are consistent with distinct moisture source meteorology, inferred from air-mass back
trajectory analysis. We suggest that vapor d-excess is affected by relative humidity and temperature at its
oceanic source, whereas 17O-excess vapor is controlled by relative humidity at its oceanic source. Like d-
excess, 17O-excess is significantly affected by evaporation in the rain shadow of the Cascade Mountains,
supporting its utility as an aridity indicator in paleoclimate studies where d2H data are unavailable. We use a
raindrop evaporation model and local meteorology to investigate the effects of subcloud evaporation on d-
excess and 17O-excess along altitudinal transects. We find that subcloud evaporation explains much, but not
all of observed increases in d-excess with elevation and a minor amount of 17O-excess variation in the
Olympic Mountains and Coast Range of Oregon.

KEY POINTS

1. 17O-excess correlates spatially with relative humidity across the Pacific Northwest, supporting its use as an aridity indicator in
paleoclimate studies.

2. Discrepancies in d-excess and 17O-excess between the Olympic Mountains and Oregon Coast Range suggest that their
moisture source is different.

3. Subcloud evaporation explains most of observed increases in d-excess with elevation, and a minor amount of 17O-excess
variation in the Olympic Mountains and Oregon Coast Range.

Keywords: stable isotopes, meteoric water, Pacific Northwest, climate, atmospheric circulation,
hydrologic cycle

1. Introduction

The isotopic composition of meteoric water (d18O, d2H,
and increasingly, d17O) has been used extensively to

investigate the hydrologic cycle. This is because stable
isotopes fractionate during phase changes in often pre-
dictable ways as a function of their environment
(Dansgaard, 1964), enabling an understanding of the
oceanic source of continental moisture (Gupta et al.,�Corresponding author. e-mail: jbershaw@gmail.com
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2005), the relative contribution of glacier melt to surface
water (Karim and Veizer, 2002; Fan et al., 2015), the
amount of surface water recycling in arid to semi-arid
regions (Bershaw et al., 2016; Wang et al., 2016b; Li and
Garzione, 2017), and mechanisms of precipitation
(Rozanski et al., 1993; Risi et al., 2008; Rohrmann et al.,
2014). In addition, stable isotope geochemistry has also
been applied to the rock record using a variety of proxies
for paleowater that constrain environmental change on
geologic timescales, including paleoclimate and paleo-
altimetry investigations (e.g. Garzione et al., 2000; Mulch
et al., 2006; Wang et al., 2008; Kent-Corson et al., 2009;
Bershaw et al., 2010; Leier et al., 2013; Saylor and
Horton, 2014; Kar et al., 2016).

Though stable isotopes of both oxygen (d18O) and
hydrogen (d2H) have great utility, explanations of
observed isotopic patterns are often underconstrained,
resulting in non-unique interpretations (e.g. Ehlers and
Poulsen, 2009; Galewsky, 2009; Botsyun et al., 2019). The
combination of d18O and d2H, expressed as deuterium
excess (d-excess), adds constraints to modern water iso-
tope interpretation as d-excess is uniquely sensitive to
relative humidity during evaporation, both at the mois-
ture source (an ocean, sea, or continental surface water)
and as precipitation falls through an unsaturated air col-
umn (subcloud evaporation) (Gat and Carmi, 1970; Tian

et al., 2007; Froehlich et al., 2008; Uemura et al., 2008;
Bershaw et al., 2012). However, d-excess is challenging to
obtain from the rock record as most minerals used to
reconstruct paleoclimate reflect either oxygen or hydro-
gen, not both. 17O-excess (often denoted as D17O) has
been shown to respond similarly to d-excess (Landais
et al., 2010; Uemura et al., 2010), but only requires pres-
ervation of oxygen to measure, as it is a function of d18O
and d17O. This is promising for paleoclimate research, as
shown in preliminary studies of d17O in sedimentary car-
bonates (Passey et al., 2014; Passey and Ji, 2019).

Although there are a growing number of studies on
17O-excess patterns in polar ice and snow (Landais et al.,
2008; Risi et al., 2010; Winkler et al., 2011; Landais
et al., 2012; Schoenemann et al., 2014), meteoric water on
the continental scale (Luz and Barkan, 2010; Li et al.,
2015), and in tropical moisture (Landais et al., 2010), pat-
terns of 17O-excess along altitudinal transects across stark
changes in climate are not well characterized and under-
stood. Here, we present stable isotope data (d-excess and
17O-excess) from surface water along two altitudinal
transects in the Pacific Northwest (Fig. 1) to investigate
the relationship between isotopic parameters and both cli-
mate and topography. Our results suggest that subcloud
evaporation impacts meteoric water d-excess (and
17O-excess) up the windward side of mountain ranges,

Fig. 1. Location map showing two east–west transects that were sampled across mountain ranges in the Pacific Northwest. The
southern transect is at �44.6� and crosses Oregon (red circles). The northern transect is at �47.8� and crosses Washington (blue circles).
Both transects dissect two major mountain ranges, the Coast Range and Cascade Mountains in Oregon and the Olympic and Cascade
Mountains in Washington. Moisture is typically brought into the study area by westerlies with significant rainout on the windward
(western) flank of the Coast Range, Olympic Mountains, and Cascade Mountains. A substantial rain shadow exists east of the Cascade
Mountains. The background digital elevation map (DEM) is from the Shuttle Radar Topography Mission (SRTM).
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consistent with altitudinal transects elsewhere (Froehlich
et al., 2008; Kong et al., 2013; Bershaw, 2018). However,
both d-excess and 17O-excess increase with elevation more
than the modeling of subcloud evaporation predicts, rais-
ing the possibility that upper tropospheric and/or strato-
spheric water vapor is influencing the isotopic
composition of meteoric water in the mountains (e.g.
Bony et al., 2008; Blossey et al., 2010; Galewsky and
Samuels-Crow, 2014; Samuels-Crow et al., 2014; Salmon
et al., 2019). In addition, isotopic differences between
transects suggest that the moisture source for precipita-
tion in the Olympic Mountains is significantly different
from that in the Coast Range of Oregon. Lastly, we show
that both d-excess and 17O-excess are significantly
affected by evaporation in the rain shadow of the
Cascade Mountains, confirming that 17O-excess can be
used in paleoclimate research to constrain aridity.

2. Background

2.1. Climate

Pacific Northwest climate is shaped by its mid-latitude
location in the northern hemisphere where westerlies
dominate throughout most of the year. The climate is
characterized as Mediterranean in that winters are wet
and summers are dry. Precipitation seasonality is influ-
enced by the Aleutian Low during the winter and Pacific
High during the summer (Whiteman, 2000). In the wet
season (winter), moist southwesterly air comes into con-
tact with cooler polar air, often resulting in steady pre-
cipitation. When this moist air encounters the Pacific
Northwest coast, it cools over the land surface.

Precipitation is a combination of cyclonic convergence
and convection, intensified by an orographic component
on the windward (west) flanks of the Olympic Mountains
(Washington), Coast Range (Oregon), and Cascade
Mountains inland. Orographic enhancements on the
windward side of the Cascades are thought to increase
precipitation amounts by a factor of 2–3 (Hobbs et al.,
1975; Dettinger et al., 2004). Precipitation maxima have
been shown to follow smoothed topography (e.g.
Pedgley, 1970), though erratic patterns can exist due to
deep valleys and convective activity (Barry, 2008). In the
Coast Range of Oregon and the Olympic Mountains,
annual precipitation amounts increase with elevation up
to the range crests. In the Cascade Mountains, annual
precipitation amounts start to decrease before reaching
the range crest (upwind to the west) (Fig. 2). This is con-
sistent with models of orographic precipitation where the
generation of condensation decreases exponentially with
elevation, leaving the crests of large mountain ranges
relatively dry (Roe, 2005). A rain shadow extends into
the lee (east) of the Cascade Mountains associated with
relatively arid conditions across the inland Pacific
Northwest. The stark contrast in precipitation amount
across the region is exemplified by the Hoh rain forest on
the west side of the Olympic Mountains (Washington)
which receives up to 400 cm annually, while Richland, a
town located in the lee of the Cascade Mountains receives
less than 20 cm of precipitation (Whiteman, 2000). By
summer, the polar jet stream shifts northward and high-
pressure cells associated with the subtropical horse lati-
tudes develop over the north Pacific and continental
interior, resulting in persistently dry conditions from late
June to September.

Fig. 2. Plot of climate parameters versus longitude for both the Washington (A) and Oregon (B) transects. For the Olympic
Mountains (Washington) and Coast Range (Oregon), precipitation amount increases to the highest elevations. For the Cascades,
precipitation amount and relative humidity start to decrease before reaching the range crest. Climate information is derived from the
PRISM 30-year normals at 800m resolution. Relative humidity is estimated from mean annual temperature and mean annual dew point
temperature using Eq. (4) in Supplementary Materials. Elevation information is derived from a 200m resolution digital elevation model
(DEM) from the Shuttle Radar Topography Mission (SRTM). Each curve represents the average value along a 100 km swath centered
along each transect at (A) 47.8� and (B) 44.5� latitudes.
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2.2. Notation and isotope systematics

Changes in the ratio of water isotopes (Rx) are expressed
with respect to Vienna Standard Mean Ocean Water
(RVSMOW) in delta notation (d) and expressed as per mil
(&):

d ¼ Rx

RVSMOW
� 1

� �
�1000: (1)

The relationship between d18O and d2H for meteoric
waters is defined as the global meteoric water line
(GMWL) and defined by Craig (1961) as:

d2H ¼ 8 � d18O þ 10: (2)

The y-intercept of this line is referred to as d-excess,
which can vary significantly based on local environmental
conditions, such as the temperature of condensation, the
amount of subcloud evaporation during rainout, and the
degree of local moisture recycling (Jouzel and Merlivat,
1984; Rank and Papesch, 2005; Gat and Airey, 2006;
Liotta et al., 2006; Froehlich et al., 2008; Kurita and
Yamada, 2008; Cui et al., 2009; Kong et al., 2013; Wang
et al., 2016a). A direct relationship between d-excess and
elevation is observed in the Himalaya and on the wind-
ward side of mountains generally, where high elevations
are associated with relatively high d-excess values of sur-
face water (Froehlich et al., 2008; Bershaw et al., 2012;
Kong et al., 2013). This is largely due to greater degrees
of subcloud evaporation at lower elevations as raindrops
fall through a relatively tall and warm air column,
decreasing d-excess values of precipitation at low eleva-
tions. High d-excess values associated with vapor from
the relatively dry upper troposphere may also contribute
(Galewsky and Samuels-Crow, 2014).

The relationship between d18O and d17O is often shown
in natural log space, where meteoric waters generally plot
along a slope (k) of 0.528 (Luz and Barkan, 2010). This
is slightly less than the slope of water undergoing pure
equilibrium fractionation (0.529± 0.001) (Barkan and
Luz, 2005) and higher than the slope of water vapor dif-
fusing through air (0.5185± 0.0003) (Barkan and Luz,
2007). Similar to the GMWL for d18O and d2H, the refer-
ence line for d17O and d18O in meteoric waters defines an
average 17O-excess of 37 ppm (per meg, 0.001&, or 10�6)
and is defined by Luz and Barkan (2010) as:

D17O ¼ ln
d17O
1000

þ 1

� �
� 0:528ln

d18O
1000

þ 1

� �
: (3)

Miller (2018) suggests that the slope is lower for meteoric
waters outside Antarctica (k¼ 0.527), which would increase
17O-excess values calculated using Eq. (3) (e.g. Uechi and
Uemura, 2019). Like d-excess, 17O-excess is thought to be
affected by relative humidity during evaporation (Landais

et al., 2010; Li et al., 2015), but not as sensitive as d-excess
to temperature (Angert et al., 2004).

3. Methods

3.1. Water sampling and analysis

Our strategy was to collect stream water along two east–-
west transects in the Pacific Northwest to investigate the
relationship between stable isotopes (d18O, d17O, and
d2H), climate, and topography on the windward and lee-
ward side of mountain ranges (Fig. 1). We targeted
stream waters as these have been shown to integrate
numerous precipitation events, similar to what is
observed in long-term precipitation records (Kendall and
Coplen, 2001). We followed the approach of Garzione
et al. (2000) by sampling small catchments (<100 km2)
when possible in order to minimize the elevation range
and catchment area represented by each water sample.
However, in arid regions where active tributaries are
scarce in summer months, water from larger rivers was
collected. In total, 58 stream water samples, three lake
samples, and one ocean water sample were collected in
water-tight plastic containers. Samples were kept refriger-
ated prior to isotopic analysis.

High-precision triple water-isotope ratios were meas-
ured at the University of Washington’s Isolab with a
Picarro L2140-i, a cavity ring-down spectroscopy analyzer
with laser-current-tuned cavity resonance (Steig et al.,
2014). Data were normalized to the VSMOW-SLAP scale
(Schoenemann et al., 2013), which assumes SLAP values
of d18O ¼ �55.5&, 17O-excess ¼ 0 ppm, and gives a ref-
erence slope (k) between d18O and d17O in natural log
space of 0.528. Samples were measured in triplicate
according to Schauer et al. (2016) and values presented
are an average of these. Measurement precision for d18O,
d2H, d-excess, d17O, and 17O-excess is 0.07&, 0.42&,
0.46&, 0.04&, and 8 ppm respectively, where precision is
the root mean square error (Schauer et al., 2016).

4. Results

We present stream water d18O, d17O, and d2H values for
two different east–west transects in the Pacific Northwest.
One spans northern Oregon (45�N) from the Pacific
Ocean east to Idaho (�600 km inland) and includes 28
stream water samples and one lake sample. The second is
a similar length transect east–west, but across north-cen-
tral Washington (48�N) and includes samples from 30
streams and two lakes. We also sampled the ocean once
on the central Oregon Coast (Fig. 1 and Table 1).

d18O and d-excess values generally become more nega-
tive inland (eastward) with averages of �9.2& and 7.2&
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respectively for all Coast Range samples, compared to
averages of �13.8& and �0.4& respectively for all sam-
ples east of the Cascades Mountains. The behavior of
17O-excess is more varied, with relatively high values in
the Coast Range (average ¼ 30 ppm), lower values in the
Cascades (average ¼ 25 ppm), and similar to slightly
higher values east of the Cascades (average ¼ 26 ppm).

The local meteoric water line (LMWL) for all samples
has a slope of 8.9 (R2 ¼ 0.96) (Fig. 3A), which is higher
than the Global Meteoric Water Line (GMWL) slope of
8. When only stream water samples collected from east of
the Cascades (rain shadow) are considered, the LMWL
slope is 5.2 (R2 ¼ 0.77) with an average d-excess value of
�0.4& (Fig. 4A). When only Coast Range (Oregon) and
Olympic Mountains (Washington) stream samples are
considered, the LMWL slope is 8.1 (R2 ¼ 0.99) with an
average d-excess value of 7.8& (not shown). These differ-
ences suggest that subcloud and surface water evapor-
ation east of the Cascades (rain shadow) is the likely
cause of a LMWL slope > 8 for all samples, as eastern
samples with lower d18O and d2H values plot below the
GMWL (lower d-excess).

The oxygen isotope fractionation coefficient (k) for all
stream and lake samples analyzed in this study is
0.5280± 0.0005 (Fig. 3B). This is close to the theoretically
determined coefficient for equilibrium fractionation of

water (k¼ 0.529± 0.001) (Barkan and Luz, 2005) and the
same as that observed in meteoric waters generally
(k¼ 0.528) (Meijer and Li, 1998; Luz and Barkan, 2010).

5. Discussion

5.1. Isotopic lapse rates

An isotopic lapse rate (change in d18O of meteoric water
with elevation) is observed on the windward sides of both
the Coast Range and Cascade Mountains for stream sam-
ples of �3.15 &/km (R2 ¼ 0.7) (Fig. 5). This is similar to
the average for mountains generally which is �2.8 &/km
(Poage and Chamberlain, 2001) and indicates that
Rayleigh distillation of air masses is occurring, creating
an ‘altitude effect’, or inverse relationship between d18O
and elevation, for ranges in the Pacific Northwest (e.g.
Rozanski et al., 1993). However, we do not observe a sig-
nificant relationship between d18O and elevation east of
the Cascade Mountains (R2 ¼ 0.17), likely because evap-
oration is significantly affecting the isotopic composition
of sampled surface water at relatively high elevations.
Thus, the modern isotopic lapse rate from the Coast
Range and Cascade Mountains applied to the isotopic
composition of paleowater proxies from the rain shadow
is likely to predict erroneously low elevations due to
evaporative enrichment.

Fig. 3. (A) Plot of d18O versus d2H for all samples analyzed in this study. Circles are stream samples and squares are lake samples.
Solid symbols are from west of the Cascades Mountains and open symbols are from east of the Cascades. The slope of the Local
Meteoric Water Line (LMWL) (solid) is slightly higher than the Global Meteoric Water Line (GMWL) (dashed) at 8.86 versus 8,
respectively. Significant evaporation in the rain shadow of the Cascade Mountains (east) lowering d-excess in more distilled (continental)
samples is likely the primary cause as the LMWL for Oregon Coast Range and Olympic Mountain samples (not shown) has a slope
similar to the GMWL (y¼ 8.1xþ 9.3; R2 ¼ 0.99). (B) Plot of ln(d18O/1000þ 1) and ln(d17O/1000þ 1) for all samples analyzed in this
study. This is the same sample population shown in (A). The mass-dependent fractionation coefficient (k) for all samples is
0.5280±0.0005. This is close to the theoretically determined coefficient for equilibrium fractionation of water (k¼ 0.529±0.001) (Barkan
and Luz, 2005) and the same as that observed in meteoric waters (k¼ 0.528) (Meijer and Li, 1998; Luz and Barkan, 2010). Uncertainty
in d18O, d2H, d-excess, d17O, and 17O-excess are 0.07&, 0.42&, 0.46&, 0.04&, and 8 ppm, respectively.
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5.2. Subcloud evaporation

A positive relationship between d-excess and elevation
along the windward side of mountain ranges has been
observed globally and is interpreted, in part, as a decrease
in subcloud evaporation of raindrops as elevation
increases (Froehlich et al., 2008; Kong et al., 2013;
Bershaw, 2018). Relatively low temperatures of condensa-
tion at high elevations also cause an increase in d-excess
of precipitation (�0.3&/�1 �C) based on empirically
derived fractionation experiments (Majoube, 1971). High
d-excess values in vapor from the relatively dry upper
troposphere may also contribute (e.g. Bony et al., 2008;
Blossey et al., 2010; Galewsky and Samuels-Crow, 2014;
Samuels-Crow et al., 2014; Salmon et al., 2019).

On the windward side of the Olympic Mountains and
Coast Range of Oregon, we observe this positive relation-
ship between d-excess and elevation (Fig. 6). Linear
regressions through these two sample populations give R2

values of 0.6 (p value ¼ 0.02) and 0.8 (p value ¼ 0.04),
respectively. For the Olympics, if the lowest elevation
sample is removed (DHOW-20), the R2 decreases to 0.3.
A lower correlation coefficient in the Olympic Mountains
relative to the Coast Range may be due to larger
amounts of high elevation snow. The crest of the
Olympic Mountains receives annual average snowfall of
�10m while precipitation in the central Coast Range of
Oregon occurs largely as rain due to its lower elevations
(Fig. 2). Falling snow is not affected by subcloud evapor-
ation, but its meltwater contributes significantly to

streams. That said, linear regressions through each tran-
sect have similar slopes (Fig. 6) suggesting that processes
responsible for increases in d-excess with elevation are
similar for both ranges.

We estimate the effect of subcloud evaporation on
d-excess across the windward side of the Coast Range in
Oregon and Olympic Mountains in Washington using a
model of subcloud evaporation based on local meteor-
ology. Estimated d-excess values of precipitation at the
cloud base (unaffected by subcloud evaporation) are
shown as open symbols in Fig. 6, suggesting that the
majority of d-excess changes with elevation can be
explained by subcloud evaporation, consistent with the
windward side of ranges elsewhere (Bershaw, 2018).
Generally, subcloud evaporation decreases with elevation
as the average surface air temperature decreases and rela-
tive humidity of the unsaturated air column increases.
Our modeled change in raindrop d-excess as a function
of the amount evaporated is about �1&/1%, consistent
with studies in the Tian Shan of Central Asia (Kong
et al., 2013; Wang et al., 2016b). Input parameters are
generally consistent with modeling of d-excess in the Alps
(Froehlich et al., 2008) and the Tian Shan of China
(Kong et al., 2013). Please refer to the Supplementary
Materials for a description of model assumptions
and equations.

Unlike d-excess, we do not observe a clear relationship
between 17O-excess and elevation for the windward
Olympic Mountains and Coast Range of Oregon (Fig. 7).
Linear regressions through these two sample populations

Fig. 4. (A) Plot of d18O versus d2H for stream samples in the rain shadow (east) of the Cascade Mountains in Washington (>�119�

longitude) and Oregon (>�121� longitude). The slope, m, of the Local Meteoric Water Line (LMWL) is significantly lower than the
Global Meteoric Water Line (GMWL) (m¼ 5.15 versus m¼ 8), reflecting the influence of evaporation under relatively arid conditions.
(B) Plot of ln(d18O/1000þ 1) and ln(d17O/1000þ 1) for the same sample population as (A). The slope (k) is 0.5235, significantly lower
than that observed for meteoric water globally (k¼ 0.528) (Luz and Barkan, 2010). Sample OR641 has been excluded from plots due to
anomalously high d18O, d17O, and d2H values. Uncertainty in d18O and d2H values are less than 0.07& and 0.42&, respectively.
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give R2 values of 0.5 (p value ¼ 0.05) and 0.1 (p value ¼
0.65), respectively. Scatter in 17O-excess may simply be
due to analytical uncertainty, which has a lower signal-
to-noise ratio relative to d-excess. That said, along the
Olympic Mountains transect (Fig. 7A), it appears that
higher elevation samples have higher 17O-excess values
than the low elevation sample in excess of analytical
uncertainty (±8 ppm), similar to trends in d-excess. More
data are needed as this observation is based on one low
elevation sample and the Oregon Coast Range transect
does not show a clear pattern (Fig. 7B).

Previous studies have suggested that 17O-excess is
affected by subcloud evaporation on the continental scale
(Li et al., 2015) and in the tropics (Landais et al., 2010).
We use this same subcloud evaporation model described
above to predict 17O-excess of unevaporated precipitation
at the cloud base (open symbols in Fig. 7). The model pre-
dicts a change of �1 ppm/1% of raindrop evaporated frac-
tion. Unlike d-excess, the effect of subcloud evaporation
on 17O-excess is minor relative to variation with elevation.
This suggests that 17O-excess changes with elevation are
more likely related to analytical uncertainty or are influ-
enced by upper tropospheric and/or lower stratospheric
17O (e.g. Bechtel and Zahn, 2003; Webster and Heymsfield,

Fig. 5. Plot of d18O versus elevation for the windward side of
the Olympic Mountains (solid circles) and Cascades (solid
triangles) in Washington, and the Coast Range (open circles) and
Cascades (open triangles) in Oregon. Note that elevation is on
the x-axis and d18O is on the y-axis. A linear regression through
these data shows an isotopic lapse rate of �3.2&/km of elevation
gain, similar to the global average of �2.8&/km (Poage and
Chamberlain, 2001). Elevation is reported as mean basin
hypsometry and is derived from a DEM from the SRTM at
�200m resolution.

Fig. 6. Plot of d-excess versus elevation for samples from the windward side of the (A) Olympic Mountains (triangles) and (B) Oregon
Coast Range (circles). Right-angle arrows show where the cloud base is inferred to intersect with the ground surface, above which there
is no subcloud evaporation (relative humidity is 100%). We estimate this is roughly �750m for the Olympics and 500m for the Oregon
Coast Range based on the elevation of maximum precipitation amount (Fig. 2). The open symbols show d-excess values of precipitation
at the cloud base estimated from a subcloud evaporation model. Subcloud evaporation explains much of the difference between high
and low elevation samples. Linear regressions through each transect have similar slopes suggesting that there is a similar reduction in
subcloud evaporation with elevation for both ranges. The difference in y-intercept is likely due to unique moisture provenance for each
transect as shown in Fig. 9. Elevation is reported as mean basin hypsometry and is derived from a DEM from the SRTM at �200m
resolution. Uncertainty in d-excess values is ±0.46&.
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2003; Lin et al., 2013; Winkler et al., 2013), possibly
through tropopause folding events (Shapiro, 1980).

In contrast to the Olympic Mountains and Coast
Range of Oregon, the Cascade Mountains in Washington
and Oregon do not show a significant relationship

between d-excess or 17O-excess and elevation (R2 ¼ 0.18
and 0.17, respectively). We speculate this is because high
elevations in the Cascades are relatively dry, resulting in
evaporation at both low and high elevations, with a wet
band of precipitation in-between (Fig. 2). At mid-

Fig. 7. Plot of 17O-excess versus elevation for samples from the windward side of (A) the Olympic Mountains (triangles) and (B)
Oregon Coast Range (circles). Right-angle arrows show where the cloud base is inferred to intersect with the ground surface, above
which there is no subcloud evaporation (relative humidity is 100%). This is roughly �750m for the Olympics and 500m for the Oregon
Coast Range based on the elevation of maximum precipitation amount (Fig. 2). The open symbols show 17O-excess values of
precipitation at the cloud base estimated from a subcloud evaporation model. Though there is significant scatter, the disparity between
low- and high-elevation samples does not appear to be explained by subcloud evaporation alone. Elevation is reported as mean basin
hypsometry and is derived from a DEM from the SRTM at �200m resolution. Uncertainty in 17O-excess values is ±8ppm.

Fig. 8. Plot of d-excess (A) and 17O-excess (B) versus relative humidity (H) for samples from the windward sides of the Coast Range
and Cascades. Circles are colored by elevation which is reported as mean basin hypsometry (MBH). Two anomalous samples are not
included in this regression. They are DHOW-20 from Ruby Beach, whose PRISM-derived H is anomalously high, likely because it is
right next to the ocean, and WA16-1, a shallow, slow moving, and likely highly evaporated stream. Uncertainty in d-excess and
17O-excess values are less than 0.46& and 8ppm, respectively.
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latitudes, condensation decreases exponentially with sur-
face height. The decrease in water content of an air mass
with height (a function of vapor saturation pressure) is a
natural log of temperature as defined by the
Clausius–Clapeyron equation, resulting in lower moisture
removal rates at higher elevations and thus relatively dry
mountain tops (Roe, 2005). This is observed in larger
mountain ranges and is a reason why precipitation rates
maximize at lower elevations on their windward slopes.
The effect of relatively dry conditions at high and low
elevations in the Cascade Mountains is seen in the plot of
relative humidity versus d-excess and 17O-excess for wind-
ward Olympic, Coast Range, and Cascade Mountain
samples (Fig. 8). The relationship between relative humid-
ity and d-excess (1% per 0.76&) is within the range
observed for precipitation in the Tian Shan of Central
Asia (1% per 0.1-1.0&) (Wang et al., 2016b). Though we
suspect that evaporation at lower elevations is likely due
to subcloud evaporation, the nature of high elevation
evaporation in the Cascade Mountains could be a com-
bination of subcloud and surface water evaporation, in
addition to sublimation of snow (Lechler and
Niemi, 2012).

5.3. Moisture source

Though both the windward Olympic Mountains and
Coast Range exhibit similar slopes in a plot of d-excess
versus elevation (Fig. 6), the estimated d-excess values at
the cloud base (dc) differ by �2.5&, significantly more
than analytical uncertainty in d-excess (0.46&). At low
elevation coastal sites, the d-excess value of precipitation
at the cloud base (dc) is estimated as 7.3& in the
Olympic Mountains and 9.8& along the Oregon Coast
Range transect. We investigate whether relatively low
d-excess values in Olympic mountain water samples com-
pared to Oregon Coast Range samples for the same
elevations may be explained by differences in relative
humidity at their oceanic source (e.g. Rozanski et al.,
1993; Jouzel et al., 1997; Pfahl and Sodemann, 2014). A
difference map of air mass back trajectories computed
every 6-h over winter months (Oct-Mar) during the years
of sampling (2015–2016) shows variation in moisture
source between the two transects (Fig. 9). Refer to the
Supplementary Materials for a detailed description of
back-trajectory calculations. Some stream water sampled
in the Olympic Mountains originated to the northwest
in Canada where relative humidity is �90%, whereas
many back trajectories for the Coast Range in Oregon
originated to the southwest where relative humidity is
lower, averaging �80%. The difference in d-excess
between the two transects is consistent with observa-
tions elsewhere that d-excess negatively correlates with

relative humidity for vapor above its oceanic source
(e.g. Gat and Carmi, 1970; Merlivat and Jouzel, 1979;
Benetti et al., 2014). Colder temperatures of evaporation
to the northwest of the study area also promote lower
d-excess values in Olympic Mountain water vapor rela-
tive to the Oregon Coast Range. Surface air tempera-
tures averaged over the same time period (Oct–Mar
during 2015–2016) are about 10 �C colder in northwest
Canada compared to the ocean southwest of Oregon
(NOAA/NCDC, 2010).

For 17O-excess, the subcloud evaporation model pre-
dicts a difference between transects in cloud base precipi-
tation (D17Oc) of �11 ppm (Fig. 7). At low elevation
coastal sites, the 17O-excess value of precipitation at the
cloud base (D17Oc) is estimated as 17 ppm in the Olympic
Mountains and 28 ppm along the Oregon Coast Range
transect. Unlike d-excess, we speculate that this variation
is a function of differences in relative humidity at the
source, not temperature, as changes in 17O-excess related
to the temperature of mass-dependent equilibrium frac-
tionation are minimal (Angert et al., 2004; Landais
et al., 2008).

5.4. Rain shadow effects

East of the Cascade Mountains in Washington and
Oregon, the isotopic composition of stream water is sig-
nificantly affected by evaporation under semi-arid condi-
tions as relative humidity drops over 15% (Fig. 2). The
rain shadow sample population is defined as watersheds
with a centroid that is >�119� longitude (Washington)
and >�121� longitude (Oregon). Evaporation is shown
in the region’s LMWL which has a slope (5.15), much
lower than the global average (m¼ 8) (Fig. 4A). It is also
shown in a plot of ln(d18O/1000þ 1) versus ln(d17O/
1000þ 1) for the same sample population, which has a
slope (k) of 0.5235 (Fig. 4B), less than the average of
meteoric water (k¼ 0.528) (Luz and Barkan, 2010). This
is evidence that d18O, d17O, and d2H are significantly
affected by evaporation under a relatively dry climate in
the rain shadow of the Cascade Mountains. That said,
17O-excess and d-excess show weak to non-existent rela-
tionships with relative humidity in the rain shadow (R2 ¼
0.6 and 0.2, respectively, not shown). High 17O-excess
and d-excess values are generally associated with low rela-
tive humidity in the rain shadow, the opposite of what
we observe to the west of the Cascades (the latter shown
in Fig. 8). Interestingly, both isotopic parameters show a
weak positive correlation with elevation in the rain
shadow (Fig. 10), suggesting subcloud evaporation of
raindrops is affecting low-elevation samples more than
high. Though high elevations are dry, subcloud evapor-
ation is likely minimal considering average temperatures
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Fig. 9. Surface relative humidity during winter months (Oct–Mar) with an overlay of the difference between air parcel provenance for
the Olympic Mountains (blue circle and solid contours) compared to the Oregon Coast Range (red circle and dashed contours).
Relatively low d-excess values in Olympic mountain water samples compared to Oregon Coast Range samples for the same elevations
(Fig. 6) are likely due to comparatively high relative humidity (H) over its source area (�90% H over SW British Columbia compared
to �80% H over the Pacific Ocean offshore California). A similar pattern is observed in 17O-excess with relatively low values in the
Olympic Mountains relative to the Oregon Coast Range (Fig. 7). Refer to the Supplementary Materials section for details on how this
map was created including parameters for HYSPLIT back trajectory analysis. Relative humidity is derived from the NCEP/NCAR
reanalysis dataset for years 2015–2016 (Kalnay et al., 1996).

Fig. 10. Plot of (A) d-excess and (B) 17O-excess versus elevation for samples from the leeward (east) side of the Cascade Mountains in
Washington (triangles) and Oregon (circles). Eastern population is defined as sample watersheds with a centroid that is >�119�

longitude (Washington) and >�121� longitude (Oregon). Elevation is reported as mean basin hypsometry and is derived from a DEM
from the SRTM at �200m resolution. Uncertainty in d-excess and 17O-excess values are less than 0.46& and 8ppm respectively.
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during winter months at high elevations are near freezing.
Upper tropospheric and/or stratospheric vapor may also
be influencing the isotopic composition of precipitation at
high elevations (e.g. Bony et al., 2008; Blossey et al.,
2010; Galewsky and Samuels-Crow, 2014; Samuels-Crow
et al., 2014; Salmon et al., 2019).

It is also likely that evaporation of water from the
ground surface is significantly affecting d-excess and 17O-
excess in eastern Washington and Oregon, particularly at
low elevations. The closest Global Network of Isotopes
in Precipitation (GNIP) site east of the Cascades is Orem,
Utah, which exhibits a LMWL slope of m¼ 6.9 (R2 ¼
0.99) (IAEA/WMO, 2018). Because GNIP sites collect
precipitation samples, evaporation occurs while raindrops
are falling through the air column, not from the ground.
Our stream water samples from eastern Washington and
Oregon have a slope that is significantly lower than this
(m¼ 5.15) (Fig. 4A). Assuming that the GMWL repre-
sents a minimally evaporated end member (m¼ 8), the
relative difference in slopes suggests that on average, the
majority of evaporation in the Cascade Mountain rain
shadow is occurring on the surface (�60%), sometime
after the raindrop hits the ground.

6. Conclusions

Second-order isotopic parameters, d-excess and
17O-excess from surface waters collected across the
Pacific Northwest show the influence of kinetic fraction-
ation (diffusion) during evaporation at all stages of the
hydrologic cycle. Differences in relative humidity at the
oceanic sources of Olympic Mountain (Washington) and
Coast Range (Oregon) stream water are reflected in d-
excess and 17O-excess values. Our subcloud evaporation
model for falling raindrops largely accounts for changes
in d-excess with elevation on the windward sides of these
ranges. Our model of subcloud evaporation does not
explain observed variation in 17O-excess with elevation,
possibly due to analytical uncertainty or the influence of
upper tropospheric and/or stratospheric vapor at high ele-
vations. From the Cascade Mountains eastward, the rela-
tionship between d-excess, 17O-excess, and elevation is
weak, possibly because topography exceeds the moisture
scale height, resulting in dry air at high elevations (Roe,
2005). In the Cascade Mountain rain shadow across east-
ern Washington and Oregon, subcloud and surface water
evaporation is significant. The observation that 17O-
excess is significantly affected by evaporation in the lee of
the Cascade Mountains confirms its utility as a proxy for
aridity in paleoclimate research.
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