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Abstract 

 

We develop a general-purpose algorithm using a Bayesian 

optimization framework for the efficient refinement of 

object proposals. While recent research has achieved 

substantial progress for object localization and related 

objectives in computer vision, current state-of-the-art 

object localization procedures are nevertheless 

encumbered by inefficiency and inaccuracy.  

 

We present a novel, computationally efficient method for 

refining inaccurate bounding-box proposals for a target 

object using Bayesian optimization. Offline, image features 

from a convolutional neural network are used to train a 

model to predict an object proposal’s offset distance from 

a target object. Online, this model is used in a Bayesian 

active search to improve inaccurate object proposals.  

 

In experiments, we compare our approach to a state-of-the-

art bounding-box regression method for localization 

refinement of pedestrian object proposals. Our method 

exhibits a substantial improvement for the task of 

localization refinement over this baseline regression 

method. 

 

1. Introduction 

Fine-grained object localization is an enduring and 

critical challenge in computer vision. For example, precise 

localization of pedestrians in images remains an area of 

active research due to its rich application potential [27]. 

Although recent advances in computer vision have 

achieved impressive results for object detection, these 

methods commonly employ semi-exhaustive search, 

requiring a high volume—typically thousands—of 

potentially expensive function evaluations, such as 

classifications by a convolutional neural network (CNN). 

Furthermore, such methods, by virtue of their black-box 

nature, often lack the kind of interpretability desirable in 

artificial intelligence applications [12]. In contrast, our 

approach aims for efficiency, accuracy and intelligibility. 

 

 
Figure 1. Idealized visualization of refining object proposals 

for pedestrian image data. (All figures in this paper are best 

viewed in color.) 

 

Girshick et al. [8][9] achieved state-of-the-art 

performance on several object detection benchmarks using 

a “regions with convolutional neural networks” (R-CNN) 

approach. More recently, faster R-CNN [19] combined the 

fine-tuned improvements of Fast R-CNN for detection by 

merging it with a region-proposal network (RPN) that 

simultaneously predicts object bounds and objectness 

scores for proposals. R-CNN and its extensions crucially 

rely on the computation of CNN features, which have been 

shown to outperform hand-coded features—e.g. HOG 

features—in difficult vision tasks [5]. To avoid the problem 

of exhaustively computing CNN features over an entire 

image, R-CNN utilizes a selective search algorithm [25] 

that effectively diminishes this computational overhead, 

with the requirement that the image is segmented first. 

While the various R-CNN models perform well on general 

detection tasks, localization error can be a significant 

weakness of this framework. In particular, Hoiem et al. [11] 

show that inaccurate or “misaligned” bounding-boxes (i.e., 

boxes with a small IOU or intersection over union: 0.05 < 

IOU < 0.5) present a significant difficulty, as localization 

error is not easily handled by object detectors. Indeed, the 

R-CNN models are critically reliant on high-quality (i.e., 

IOU > 0.5) initial proposals; when no such proposals are 

present, R-CNN achieves much weaker results [27]. The 

various R-CNN models all use category-specific 

“bounding-box regression” models to refine object 

proposals made by the system.  

More generally, refinement of inaccurate bounding-box 
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proposals for fine-grained localization is a vital task for 

many real-world applications of computer vision, including 

autonomous driving [7], object tracking, medical computer 

vision [1], and robotics [15]. In this paper, we describe an 

algorithm that improves in several ways on the bounding-

box regression method used in R-CNN and other state-of-

the-art object-detection architectures.  

As part of our method, we use features computed by a 

pretrained CNN to provide a localization “signal.” This is 

in contrast to using the CNN as a discriminative object 

detector. We show that this signal (a function of the 

normalized offset distance of a bounding-box from the 

target ground-truth object) can be used effectively in a 

Bayesian optimization setting to quickly improve 

inaccurate proposals.  

Our work provides the following contributions: (1) We 

demonstrate that CNN features computed from an object-

proposal bounding box can be used to predict spatial offset 

from a target object. (2) We frame the localization method 

as an active search using Gaussian processes and a dynamic 

Bayesian optimization procedure requiring very few 

bounding-box proposals for substantial localization 

refinement. (3) By rendering an active Bayesian search, our 

method can provide a principled and interpretable 

groundwork for more complex vision tasks. We compare 

our approach with the bounding-box regression method 

used in R-CNN through experiments that test efficiency and 

accuracy for the task of localization refinement.  

The subsequent sections give some background on 

related work, the details of our method and algorithm, 

experimental results, summary remarks, and considerations 

of future work.  

2. Background and Related Work  

Object localization is the task of locating an instance of 

a particular object category in an image, typically by 

specifying a tightly-cropped bounding box centered on the 

instance. An object proposal specifies a candidate bounding 

box, and an object proposal is said to be a correct 

localization if it sufficiently overlaps a human-labeled 

“ground truth” bounding box for the given object. In the 

computer vision literature, overlap is measured via the 

intersection over union (IOU) of the two bounding boxes, 

and the threshold for successful localization is typically set 

to 0.5 [6]. In the literature, the “object localization” task is 

to locate one instance of an object category, whereas 

“object detection” focuses on locating all instances of a 

category in a given image. 

For humans, recognizing a visual situation—and 

localizing its components—is an active process that unfolds 

over time, in which prior knowledge interacts with visual 

information as it is perceived, in order to guide subsequent 

eye movements. This interaction enables a human viewer to 

very quickly locate relevant aspects of the situation [16].  

 Our method supports this more human-like approach of 

active object localization (e.g., [4][10][14]), in which a 

search for objects likewise unfolds over a series of time 

steps.  At each time step the system uses information gained 

in previous time steps to decide where to search. 

 In recent years, CNN-based features have become 

common for detection and localization tasks. Sermanet et 

al. [22] apply an exhaustive, sliding window approach with 

CNNs but use convolutions on the entire image for 

efficiency.  Girshick et al. [9] achieved state-of-the-art 

results with R-CNN by exploiting the richness of CNN 

features in combination with the efficiency of selective 

search for object proposals. Several subsequent extensions 

of R-CNN further improve the region proposal module 

[8][19]. Of note, the OverFeat method [21] applies deep 

learning to directly predict box coordinates for localization; 

Multibox [24] utilizes a saliency-inspired network for 

proposals, and then applies bounding-box regression for 

detection. 

Finally, the work of Zhang et al. [28] provides an 

extension of R-CNN that relates most closely to the present 

work due to its use of Bayesian optimization. Despite this 

similarity, our work differs significantly in several 

important ways. Zhang et al., for instance, train their 

classifier as an object detector, whereas we instead train an 

offset-prediction signal. Furthermore, where Zhang et al. 

demonstrate a marginal improvement over baseline R-CNN 

on localization tasks, our method is fine-tuned for refining 

object proposals, particularly in the case of very inaccurate 

initial proposals.  

3. Bayesian Optimization for Refining Object 

Proposals  

Bayesian optimization is frequently applied in domains 

for which it is either difficult or costly to directly evaluate 

an objective function. In the case of object detection and 

localization, it is computationally prohibitive to extract 

CNN features for a large number of bounding-box 

proposals (this is why, for instance, R-CNN utilizes 

selective search). There consequently exists a fundamental 

tension at the heart of any object localization paradigm: 

with each bounding box for which we extract CNN (or 

some such robust set of learned) features, we gain useful 

knowledge that can be directly leveraged in the localization 

process, but each such piece of information comes at a 

price.  

  A Bayesian approach is well-suited for solving the 

problem of function optimization under these challenging 

circumstances. In the case of object-proposal refinement, 

we are attempting to minimize the spatial offset from a 

ground-truth bounding box (Figure 1). To do this, we train 

a model, y (described in Section 3.1), to predict spatial 

offset of a proposal using CNN features extracted from the 

proposal. Once trained, the model’s output can be used to 
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minimize the predicted offset. Ideally, the model’s output is 

minimum when it is given the features of the actual ground-

truth bounding box of the target object.  

Because we wish to minimize the number of calls to a 

potentially expensive prediction model, we choose instead 

to optimize a cheap approximation—the surrogate (also 

called the response surface) to the offset prediction—over 

the image space. We give details of the realization of the 

surrogate function as a Gaussian process in Section 3.2.  

 Finally, after rendering this approximation, we decide 

where to sample next according to the principle of 

maximum expected utility, which is itself a secondary 

optimization problem. We identify utility using a 

dynamically defined acquisition function that strikes a 

balance between minimizing uncertainty and greedy 

optimization. This method is described in more detail in 

Section 3.3.  

3.1 Training an Offset-Prediction Model 

We train a model that, given an inaccurate object 

proposal, can predict the proposal’s normalized offset 

distance1 from a target ground-truth object. The output of 

this model is the predicted distance of a proposal’s center 

from the center of the target object, and the inverse of the 

output is the predicted proximity.  We call the latter the 

“response signal.”  The higher the response signal, the 

closer the proposal is predicted to be to the target.   

For each image in the training set, we generate a large 

number of image crops that are offset from the ground-truth 

pedestrian by a random amount. These randomized offset 

crops cover a wide range of IOU values (with respect to the 

ground-truth bounding box). Furthermore, these offset 

crops are also randomly scaled, so that the offset-prediction 

model can learn scale-invariance (with regard to bounding 

box size) for approximating offset distance. For each of the 

offset crops, we extracted CNN features using the pre-

trained imagenet-vgg-f network in MatConvNet [29]. 

Using these features, we trained a ridge regression model 

mapping features to normalized offset distance from the 

ground-truth bounding box center. Next, we transformed 

this mapping in two steps using: (1) a scale transformation 

so that our feature-mapping scale corresponds to the 

bandwidth parameter used in the Gaussian process (see 

Section 3.2); and (2) a Gaussian-like transformation so that 

our prediction model renders an appropriate basin of 

attraction around the center of a target object that coheres 

with basic Gaussian process model assumptions. Note that 

in our regime, small offsets from the center of the target 

ground will yield (ideally) a maximum response signal. To 

improve the accuracy of our offset predictor, we average an 

                                                           
1 We use the Euclidean distance between the centers of two bounding 

boxes, scaled by the square root of the area of the image for the measure 
of “normalized offset distance.” 

ensemble of model outputs ranging over five different 

bounding-box scales.  

The performance results of the offset-prediction model 

are plotted in Figure 2.  

3.2 Gaussian Processes  

We use a Gaussian Process (GP) to compute a surrogate 

function f using observations  {𝑦} of response signals from 

our prediction model:  𝑦(𝑥) = 𝑓0(𝑥) + 𝜀. (Recall that the 

signal y is high when the input proposal is predicted to be 

close to the target object.) The surrogate function 

approximates f0, the objective signal value for coordinates 

x in the image space, with ε connoting the irreducible error 

for the model.   

GPs offer significant advantages over other general-

purpose approaches in supervised learning settings due in 

part to their non-parametric structure, relative ease of 

computation and the extent to which they pair well with a 

Bayesian modeling regime. GPs have been applied recently 

with success in a rich variety of statistical inference 

domains, including [3][26]. 

More formally, we let  𝑥𝑖 ∈ ℝ2 be the ith observation 

from a dataset 𝐷1:𝑇 = {𝑥1:𝑇 , 𝑦(𝑥1:𝑇)} consisting of T total 

pairs of object-proposal coordinates x in the image space 

and response signals y, respectively. We wish to estimate 

the posterior distribution 𝑝(𝑓|𝐷1:𝑇) of the objective 

function given these data: 𝑝(𝑓|𝐷1:𝑇) ∝ 𝑝(𝐷1:𝑇|𝑓)𝑝(𝑓). 

This simple formula allows us to iteratively update the 

posterior over the signal as we acquire new data. 

A GP for regression defines a distribution over functions 

with a joint Normality assumption. We denote f, the 

realization of the Gaussian process:  

 

𝑓~𝐺𝑃(𝑚, 𝑘)         (1) 

 

Here the GP is fully specified by the mean m and covariance 

k. A common kernel function that obeys suitable continuity 

characteristics for the GP realization is the squared-

exponential kernel, which we use here:   

 

𝑘(𝑥, 𝑥′) = 𝜎𝑓
2𝑒𝑥𝑝 [−

1

2𝑙2
‖𝑥 − 𝑥′‖2] + 𝜎𝜀

2𝛿𝑥𝑥′      (2) 

 

where 𝜎𝑓
2 is the variance of the GP realization, which we set 

heuristically; 𝜎𝜀
2 is the variance of the ε parameter that we 

estimate empirically; and 
xx 

 is the Kroenecker delta 

function which is equal to 1 if and only if 𝑥 = 𝑥′ and is 

equal to zero otherwise. GPs are particularly sensitive to the 

choice of the length-scale/bandwidth parameter l, which we 
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optimize with grid search for the reduced log marginal 

likelihood (see [18] for additional details).   

The posterior predictive of the surrogate function for a 

new datum 𝑥∗ is given by [2]:  

 

𝑝(𝑓∗|𝑥∗, 𝑋, 𝑦) = 𝑁(𝑓∗|𝑘∗
𝑇𝐾𝜎

−1𝑦, 𝑘∗∗ − 𝑘∗
𝑇𝐾𝜎

−1𝑘∗) ,      (3) 
 

where X is the data matrix (all prior observations x), 𝑘∗ =
[𝑘(𝑥∗, 𝑥1), … , 𝑘(𝑥∗, 𝑥𝑇)], 𝑘∗∗ = 𝑘(𝑥∗, 𝑥∗) 

and 𝐾𝜎 = 𝐾 + 𝜎𝑦
2𝐼𝑇, where 𝐾 = 𝑘(𝑥𝑖 , 𝑥𝑗), 1 ≤ 𝑖, 𝑗 ≤ 𝑇.  

For our algorithm, we compute posterior predictive 

updates using equation (3) in batch iterations (see Section 

4.2). At each iteration, the realization of the GP is 

calculated over a grid of size M corresponding with the 

image space domain of the object localization process. This 

grid size can be chosen to match a desired 

granularity/computational overhead tradeoff.  

Considering equation (3) further, we note that posterior 

predictive updates entail a one-time (per iteration) inversion 

of the matrix 𝐾𝜎 , requiring 𝑂(𝑇3) operations, where T is 

the number of calls to the offset-prediction model. 

Naturally, choosing information-rich bounding-box 

proposals (see Section 3.3) will improve the efficiency of 

the localization process and thus keep T reasonably small in 

general. To this end, we furthermore incorporate a “short 

memory” mechanism in our algorithm so that older 

proposal query values, which convey less information 

pertinent to the current localization search, are “forgotten” 

(see Section 4).  For improved numerical stability, we apply 

a Cholesky decomposition prior to matrix inversion [18].  

3.3 Bayesian Optimization for Active Search  

In the framework of Bayesian optimization, acquisition 

functions are used to guide the search for the optimum of 

the surrogate (which approximates the true objective 

function). Intuitively, acquisition functions are defined in 

such a way that high acquisition indicates greater likelihood 

of an objective function optimum. Most commonly, 

acquisition functions encapsulate a data query experimental 

design that favors either regions of large signal response, 

large uncertainty, or a combination of both.  

One can formally express the utility of a Bayesian 

optimization procedure with GP parameter θ, 

observations {𝑦}, and acquisition function instantiated by 

𝑎(𝜉) with design parameter ξ≥ 0, as the information gained 

when we update our prior belief 𝑝(𝜃|𝑎(𝜉)) to the posterior, 

𝑝(𝜃|𝑦, 𝑎(𝜉)), after having acquired a new observation [2]. 

At each iteration of our algorithm the acquisition 

function, defined below, is maximized to determine where 

to sample from the objective function (i.e., the response 

signal value) next. The acquisition function incorporates 

the mean and variance of the predictions over the image 

space to model the utility of sampling [2]. We then evaluate 

the objective function at these maximal points and the 

Gaussian process is updated appropriately. This procedure 

is iterated until the stopping condition is achieved.  

A standard acquisition function used in applications of 

Bayesian optimization is the Expected Improvement (EI) 

function [23]. We define a dynamic variant of EI that we 

call Confidence-EI (CEI) that better accommodates our 

problem setting: 

 

𝑎𝐶𝐸𝐼(𝑥, 𝜉) ≜ {

(𝜇(𝑥) − 𝑓(𝑥+) − 𝜉)𝛷(𝑍) + 𝜎(𝑥)𝜑(𝑍) 

𝑍 =
𝜇(𝑥) − 𝑓(𝑥+) − 𝜉

𝜎(𝑥)

(4) 

 

In equation (4), 𝑓(𝑥+) represents the incumbent maximum 

of the surrogate function, 𝜇(𝑥) is the mean of the surrogate 

at the input point x in the image space, 𝜎(𝑥) > 0 is the 

standard deviation of the surrogate at the input; 𝜑(∙) 

and 𝛷(∙) are the pdf and cdf of the Gaussian distribution, 

respectively; and ξ is the dynamically-assigned design 

parameter. The design parameter controls the 

exploration/exploitation tradeoff for the Bayesian 

optimization procedure; if, for instance, we set 𝜉 = 0, then 

EI performs greedily.  

 For our algorithm, we let 𝜉 vary over the course of 

localization run by defining it as a function of a per-iteration 

total confidence score. Lizotte [13] showed that varying the 

design parameter can improve performance for Bayesian 

optimization. With each iteration of localization, we set the 

current total confidence value equal to the median of the 

response signal for the current batch of bounding-box 

proposals. In this way, high confidence disposes the search 

to be greedy and conversely low confidence encourages 

exploration.  

 

4. Algorithm and Experimental Results 

4.1 Dataset  

Following [17] and [20], in the current study we use a 

subset consisting of single pedestrian instances from the 

Portland State Dog-Walking Images for our proof of 

concept and comparative experiments [30]. This subset 

contains 460 high-resolution annotated photographs, taken 

in a variety of locations. Each image is an instance of a 

“Dog-Walking” visual situation in a natural setting 

containing visible pedestrians. Quinn et al. [17] used this 

dataset to demonstrate the utility of applying prior situation 

knowledge and active, context-directed search in a 

structured visual situation for efficient object localization. 

This dataset represents a challenging benchmark for 

pedestrian localization refinement, due to its high degree of 

variability.  
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4.2 GPLR Algorithm  

Below we present details of the Gaussian Process 

Localization Refinement (GPLR) algorithm. To begin, we 

randomly set aside 400 images from our dataset for training 

and 60 for testing. We train the prediction model, y, using 

features computed by the pre-trained imagenet-vgg-f 

network in MatConvNet [29]. The features we use are from 

the last fully-connected layer, which yields feature vectors 

of dimension 4096. For training, we generated 100k offset 

crops of pedestrians from the training images. In addition, 

we fit a log-Normal distribution 𝑝(∙)𝑤,ℎ for width and 

height parameters of the pedestrian object-proposal 

bounding boxes over the training set, to serve as a general 

prior for target bounding box size. We optimize the 

hyperparameter θ for the Gaussian process using grid 

search. The design parameter ξ is set as a function of the 

per-step total. Lastly, we set the size of the GP realization, 

𝑀 = 5002 (i.e., the realization occurs over a 500x500 grid). 

We found that this size achieved a suitable balance between 

localization precision and computational overhead.  

In order to simulate bounding boxes generated by a 

detection algorithm (e.g. R-CNN), we begin by randomly 

generating a set of misaligned bounding-box proposals of 

size 𝑛0 = 10. We then use our trained model to compute 

response signal values for this proposal set, yielding 

𝐷𝑝𝑟𝑜𝑝𝑜𝑠𝑎𝑙
(0)

. At each subsequent step of the GPLR algorithm 

we generate a GP realization using the proposal set (step 3). 

To find the next batch (n = 5) of proposals, we use the top-

n ranked points in the space, ranked using the CEI 

acquisition function defined in Section 3.3. We then 

augment the proposal set with this new batch of points and 

the previous generations of proposals specified by the 

GPmem parameter, which indicates the number of batches 

contained in the algorithm “memory” (steps 9 and 10). For 

our experiments, we set GPmem= 3 with T = 10, for a total 

of 50 proposals per execution of GPLR. 

 

 

Algorithm: Gaussian Process Localization Refinement 

(GPLR)  

 

Input: Image I, trained model y giving response signals, a 

set of n0 initial, misaligned bounding-box proposals and 

response signal values: 𝐷𝑛0
= {(𝑥𝑖 , 𝑦(𝑥𝑖))

𝑖=1

𝑛0
}, GP 

hyperparameters θ, size of GP realization space M, dynamic 

design parameter for Bayesian active search 𝜉, learned prior 

distribution for bounding-box size parameters 

(𝑤𝑖 , ℎ𝑖)~𝑝(∙)𝑤,ℎ, size of GP memory GPmem (as number of 

generations used), batch size n, number of iterations T, 

current set of bounding-box proposals and response signals 

𝐷𝑝𝑟𝑜𝑝𝑜𝑠𝑎𝑙
(𝑡)

. 

 

1:𝐷𝑝𝑟𝑜𝑝𝑜𝑠𝑎𝑙
(0)

⟵  𝐷𝑛0
 

2:for t = 1 to T do 

3:   Compute 𝜇(𝑥)(𝑡) and σ(𝑥)(𝑡) for the GP realization    

        𝑓𝑀
(𝑡)

  of  𝐷𝑝𝑟𝑜𝑝𝑜𝑠𝑎𝑙
(𝑡−1)

 over grid of M points  (Equation 3) 

4:   for i = 1 to n do 

5:     𝑧𝑖 = argmax
𝑥

𝑎𝐶𝐸𝐼 (𝑓𝑀
(𝑡)

 \{𝑧𝑗}
𝑗=1

𝑗=𝑖−1
, 𝜉) (Equation 4) 

6:      𝑠𝑎𝑚𝑝𝑙𝑒: (𝑤𝑖 , ℎ𝑖)~𝑝(∙)𝑤,ℎ 

7:      𝑝𝑖 = (𝑧𝑖 , 𝑤𝑖 , ℎ𝑖) 

8:   end for 

9:    𝐷(𝑡) ⟵ {(𝑥𝑖 , 𝑦(𝑥𝑖))
𝑖=1

𝑛
} 

10:  𝐷𝑝𝑟𝑜𝑝𝑜𝑠𝑎𝑙
(𝑡)

⟵ ⋃ 𝐷(𝑗)𝑡
𝑗=𝑡−𝐺𝑃𝑚𝑒𝑚

 

11: end for 

12: Return argmax
𝑥

𝜇(𝑥)(𝑇)  

 

4.3 Experimental Results 

We evaluate the GPLR algorithm described in Section 

4.1 in comparison with the benchmark bounding-box 

regression model used in Faster R-CNN [19] for the task of 

refining object proposals. Both the GP and bounding-box 

regression models were trained with 100k offset image 

crops taken from the test image set. For the bounding-box 

regression trials, the algorithm receives a randomized offset 

crop in the IOU range [0, .4], and then outputs a refined 

bounding box. In the case of GPLR, the algorithm is 

initialized with a small set (𝑛0 = 10) of inaccurate 

proposals in the same range; the median IOU of this initial 

set of proposal bounding-boxes was .12 for the 

experimental trials. The output of the GPLR algorithm is a 

single refined bounding box, as in the case of the regression 

model. In each case, we compare the final refined 

bounding-box with the ground truth for the target object. In 

total, we tested each method for 400 experimental trials, 

including multiple runs with different random 

initializations on test images.  

 Girshick et al. [9] thresholded their training regime for 

localization with bounding-box regression at large 

bounding-box overlap (IOU ≥ 0.6). To comprehensively 

test our method against bounding-box regression (BB-R), 

we trained two distinct regression models: one with IOU 

thresholded for training at 0.6, as used with R-CNN, and 

one with IOU thresholded at 0.1.   

Results for our experiments are summarized in Table 1 

and Figure 4. We report the median and standard error (SE) 

for IOU difference (final – initial), the median relative IOU 

improvement (final – initial) / initial, the total percentage of 

the test data for which the method yielded an IOU 

improvement, in addition to the total percentage of test data 

for which the target was successfully localized (i.e., final 

IOU ≥ 0.5).  
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Figure 2. Performance of the offset-prediction model on test data 

(n = 1000 offset image crops). The mean (center curve) and +/−1 

standard deviations (outer curves) are shown. As desired, the 

response signal yields a Gaussian-like peak around the center of 

the target object bounding-box (i.e., zero ground-truth offset). The 

bumps present in the range of values above 0.35 offset from the 

ground truth is indicative of noisy model outputs when offset 

crops contain no overlap with the target object.  (Figure is best 

viewed in color.)  

 
 

Method IOU 
Difference 

Median 

(SE) 

Median 
Relative IOU 

Improvement 

% of Test 
Set with IOU 

Improvement 

% of Test 
Set  

Localized 

BB-R 
(0.6) 

.0614 
(.0035) 

34.62% 90.1% 12.3% 

BB-R 

(0.1)  

.1866 

(.0077) 

92.91% 90.0% 33.2% 

GPLR .4742 

(.012) 
194.02% 89.3% 75.2% 

 
Table 1. Summary statistics for the pedestrian localization task. 

BB-R (0.6) indicates the bounding-box regression model with 

training thresholded at initial IOU 0.6 and above; BB-R (0.1) 

denotes the bounding-box regression model with training 

thresholded at initial IOU 0.1 and above; GPLR denotes Gaussian 

Process Localization Refinement.  

4.4 Discussion 

Our experimental results are strongly favorable for the 

GPLR algorithm. Using only a small number of total 

bounding box proposals (50) per trial, GPLR performed 

comparably with BB-R for percentage of test images for 

which the IOU improved. In addition, GPLR significantly 

outperformed BB-R for all other localization metrics, 

including the percentage of test set images achieving 

successful localization and the median relative IOU 

improvement.  

During our experimental trials, we discovered a 

substantial disparity in performance for BB-R depending on 

the training regime. In general, BB-R (0.6), as used in R-

CNN, yielded inferior localization results in general when 

compared to BB-R (0.1) (see Table 1). In particular, BB-R 

(0.1) was much stronger for low initial IOU values than BB-

R (0.6). However, as initial IOU increased, localization 

results deteriorated starkly with BB-R (0.1) due to 

overfitting. For larger initial IOU values (e.g., IOU > 0.4), 

BB-R (0.1) yielded IOU improvement on only 22.1% of the 

experimental trials; when the IOU threshold was increased 

to 0.5 this IOU improvement percentage dropped even 

further to 13.0%. In contrast, GPLR indicated no signs of 

deterioration in localization performance when given initial 

offset proposals with a large IOU. For separate test runs of 

100 trials each, GPLR achieved an IOU improvement on 

98% of the trials (for median initial IOU > 0.4) and an IOU 

improvement on 100% of the trials (for median initial IOU 

> 0.5). 

 In addition to this strong experimental performance, 

GPLR provides several broad methodological advantages 

over previous techniques, particularly in applications 

requiring fast and precise object localization. Most 

importantly, by working within a Bayesian framework, 

GPLR is able to perform an efficient, active search by 

“learning” continuously from its response signal at each 

step of the algorithm. Because GPLR renders both the mean 

and standard deviation for the predictive posterior,  the 

GPLR model maintains a measure of uncertainty that can 

be applied in systems as a potential (early) stopping 

condition when real-world resources are limited (e.g. 

robotics, video tracking using Kalman filters).  

 

5. Conclusion and Future Work  

We have presented a novel technique for the challenging 

task of the efficient refinement of object proposals. Our 

method trains a predicted-offset model, demonstrating 

successfully the ability of CNN-based features to serve as 

the input for an object localization method.  Using Bayesian 

optimization, we surpass the state-of-the-art regression 

method employed in R-CNN (and its extensions) for the 

localization refinement of pedestrian object proposals with 

computational efficiency.  

With future research, we plan to extend our approach to 

massively scalable GPs, so that our model can directly 

incorporate bounding-box size parameters, leverage visual 

context for localization and search for multiple target 

objects simultaneously. 

Our work indicates the strong promise of applying the 

Bayesian paradigm to the outstanding goal of computer 

vision: real-time object detection.  
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Figure 3. Examples of runs on two test images with the GPLR algorithm. In each row the test image is shown on the far-left; the 

“search IOU history” is displayed in the second column, with the algorithm iteration number on the horizontal axis and IOU with 

the ground-truth target bounding box on the vertical axis. The remaining columns present the GPLR response surface for the 

posterior mean and variance; the first pair of boxes reflect the second iteration of the algorithm and the last pair show the third 

iteration of the algorithm. In each case localization occurs rapidly thus requiring a very small number of proposals.  

 

 

 
 

 

 
 

 

 
Figure 4. Graph of BB-R (0.6), BB-R (0.1) and GPLR localization results for test images. The horizontal axis indicates the median 

IOU for the initial proposal bounding boxes, while the vertical axis designates the final IOU with the target object ground truth. 

The line depicted indicates “break-even” results.  
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