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Article 

Graphical Models in Reconstructability Analysis  

and Bayesian Networks 

Marcus Harris * and Martin Zwick 

Systems Science Program, Portland State University, Portland, OR 97207, USA; zwick@pdx.edu 

* Correspondence: maharris@pdx.edu 

Abstract: Reconstructability Analysis (RA) and Bayesian Networks (BN) are both probabilistic 

graphical modeling methodologies used in machine learning and artificial intelligence. There are 

RA models that are statistically equivalent to BN models and there are also models unique to RA 

and models unique to BN. The primary goal of this paper is to unify these two methodologies via a 

lattice of structures that offers an expanded set of models to represent complex systems more accu-

rately or more simply. The conceptualization of this lattice also offers a framework for additional 

innovations beyond what is presented here. Specifically, this paper integrates RA and BN by devel-

oping and visualizing: (1) a BN neutral system lattice of general and specific graphs, (2) a joint RA-

BN neutral system lattice of general and specific graphs, (3) an augmented RA directed system lat-

tice of prediction graphs, and (4) a BN directed system lattice of prediction graphs. Additionally, it 

(5) extends RA notation to encompass BN graphs and (6) offers an algorithm to search the joint RA-

BN neutral system lattice to find the best representation of system structure from underlying system 

variables. All lattices shown in this paper are for four variables, but the theory and methodology 

presented in this paper are general and apply to any number of variables. These methodological 

innovations are contributions to machine learning and artificial intelligence and more generally to 

complex systems analysis. The paper also reviews some relevant prior work of others so that the 

innovations offered here can be understood in a self-contained way within the context of this paper. 

Keywords: probabilistic graphical models; Reconstructability Analysis; Bayesian Networks;  

information theory; maximum entropy; artificial intelligence; machine learning; lattice of general 

structures; hypergraph; directed acyclic graph 

 

1. Introduction 

Reconstructability Analysis (RA) and Bayesian Networks (BN) are both probabilistic 

graphical modeling methodologies. A probabilistic graphical model uses a graph (or hy-

pergraph) to encode independencies and dependencies between variables and probability 

theory to encode the precise nature of the relations between variables. Graphs are either 

undirected or directed. RA graphs include undirected graphs (or hypergraphs) that have 

loops or do not have loops. BN graphs are directed graphs that do not have cycles. 

(“Loops” here refer to undirected graphs; “cycles” refer to directed graphs.) RA and BN 

graphs can represent independence structures that are unique to each methodology, and 

also independence structures that are the same in both methodologies. For RA models 

without loops and for all BN models, variable independencies can be represented in 

closed algebraic (factorized) form. For RA models with loops, solutions require iterative 

calculations. The value of integrating these two methodologies lies in the fact that the RA 

lattice of structures offers potential models of complex systems not found in BNs, while 

BNs are a more widely used analytical approach than RA and also include unique models. 

Combining the candidate models of the two methodologies thus offers a more expressive 
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framework than either alone. It also does so in an organized and coherent way that allows 

for future possible extensions discussed in Section 6. 

RA is a data modeling approach developed in the systems community [1–17] that 

combines graph theory and information theory. Its applications are diverse, including 

time-series analysis, classification, decomposition, compression, pattern recognition, pre-

diction, control, and decision analysis [14]. It is designed especially for nominal variables, 

but continuous variables can be accommodated if their values are discretized. RA could 

in theory accommodate continuous variables; however, this extension of the methodology 

has yet to be formalized. Graph theory specifies the structure of the model: if the relations 

between the variables are all dyadic (pairwise), the structure is a graph; if some relations 

have higher ordinality, the structure is a hypergraph. In speaking of RA, the word ‘graph’ 

will henceforth include the possibility that the structure is a hypergraph. The structure is 

independent of the data except for specification of variable cardinalities. In RA, information 

theory uses the data to characterize the precise nature and the strength of the relations. Data 

applied to a graph structure yields a probabilistic graphical model of the data.  

RA has three primary types of models: variable-based models without loops, varia-

ble-based models with loops and state-based models (where individual states of variables 

specify model constraints) that nearly always have loops. Models that do not have loops 

have closed-form algebraic solutions; those that have loops require iterative proportional 

fitting. In RA, graphs are undirected, although directions are implicit if one variable is 

designated as the response variable (dependent variable or DV), while all other variables 

are designated as explanatory variables (independent variables or IVs). In principle, there 

could be more than one DV, but in the discussion that follows, a single DV is assumed. If 

the IV-DV distinction is made, the system is ‘directed’ and the primary aim is prediction 

of the DV given the IVs; if no IV-DV distinction is made, the system is ‘neutral’ and the 

primary aim is to characterize the nature of relations among all variables.  

RA models are undirected graphs that either have or do not have loops, where a ‘loop’ 

is the presence of circularity in a set of undirected links. We reserve the word ‘cycle’ and 

‘acyclic’ for circularity or lack thereof in directed graphs, which are used in BN and not in 

RA. An undirected graph having a loop can become an acyclic graph for certain assignments 

of link directions. For example, an RA model that posits relations between A and B, between 

B and C, and between A and C has a loop, but if directions are assigned in a BN model so 

that these relations are A→B, B→C, and A→C, the resulting graph is acyclic.  

Graphs are general or specific. A general graph identifies relations among variables 

that are unlabeled, i.e., variables whose identity is not specified; a specific graph labels 

(identifies) the variables. For example, for a system consisting of variables A, B, and C, 

AB:BC is a specific graph where nodes A and B are linked and B and C are also linked. 

Specific graphs AB:BC, BA:AC and AC:CB are all instances of the same general graph that 

has a unique independence structure regardless of variable labels. In this notation, the 

order of variables in any relation is arbitrary, as is the order of the relations. For example, 

CB:BA is identical to AB:BC. Relations include all of their embedded relations. For exam-

ple, ABC includes embedded relations AB, AC and BC and the univariate margins A, B, 

and C.  

The lattice of graphs for a neutral or a directed system with or without loops depends 

upon the number of variables in the data. For a three-variable neutral system allowing 

loops there are five general graphs and nine specific graphs; for four variables there are 

20 general graphs and 114 specific graphs. The number of graphs increases hyper-expo-

nentially with the number of variables. In the confirmatory mode, RA can test the signifi-

cance of a single model—a hypothesis being tested—relative to another model used as a 

reference. In the exploratory mode, RA can search the lattice of graphs for models that are 

statistically significant and best represent the data with maximal information captured 

and minimal complexity.  
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Bayesian Networks (BN) are another probabilistic graphical modeling approach to 

data modeling that is closely related to RA. Indeed, where BN overlaps RA the two meth-

ods are equivalent, but with respect to neutral systems, RA and BN each has distinctive 

features absent in the other methodology. For directed systems; however, where predic-

tion of a single dependent variable is the aim, RA encompasses all models found in BN 

under the convention used in this paper that all nodes except for parent nodes within a 

V-structure are allowed to be the variable being predicted; this inclusion of the BN di-

rected system lattice within the RA lattice will be shown later in this paper.  

BNs have origins in the type of path model described by Wright [18,19], but it was 

not until the 1980s that BNs became more formally established [20–23]. As does RA, BN 

combines graph theory and probability theory: graph theory provides the structure and 

probability theory characterizes the nature of relationships between variables. BNs are 

represented by a single type of graph structure; a directed acyclic graph, which is a subset 

of chain graphs, also known as block recursive models [24]. BNs can be represented more 

generally by partially directed acyclic graphs (PDAG), a subset of chain graphs where 

edge directions are removed when directionality has no effect on the underlying inde-

pendence structure. Discrete variables are most common in BNs, but BNs accommodate 

continuous variables without discretization [25]. In principal RA could also accommodate 

continuous variables but this feature has not yet been implemented. For a three variable 

BN lattice, there are 5 general graphs and 11 specific graphs; for four variables there are 

20 general graphs and 185 specific graphs with unique probability distributions. In the 

confirmatory mode, BNs can test the significance of a model relative to another model 

used as a reference [26]; in the exploratory mode, BNs can search for the best possible 

model given a scoring metric. BNs are used to model expert knowledge about uncertainty 

and causality [20,21] and are also used for exploratory data analysis with no use of expert 

knowledge [27]. Like RA, BN applications in machine learning and artificial intelligence 

are broad including classification, prediction, compression, pattern recognition, image 

processing, time-series, decision analysis and many others. 

The joint RA-BN lattice of neutral system general and specific graphs and the accom-

panying search algorithm developed in this paper expands both RA and BN beyond what 

was previously available by either RA alone or BN alone, thus providing a more complete 

ensemble of models for the representation of complex systems. When prediction of a sin-

gle dependent variable (DV) is the aim, the RA directed system lattice encompasses the 

BN directed system lattice under the strict convention used in this paper that excludes a 

parent node with a V-structure being the DV. However, we also show that when this con-

straint is relaxed so that a parent node within a V-structure can be the DV, BN models can 

offer predictions unique to BN. We also show that (under the above convention) the BN 

directed system lattice reduces the size of the full BN neutral system lattice by retaining 

only graphs that give unique predictions of the DV, significantly reducing the search 

space to find the best BN when prediction of a single DV is the aim. Finally, this paper 

develops an augmented RA directed system lattice which expands the conventional RA 

lattice of prediction graphs to include naïve Bayes equivalent graphs. This augmented 

lattice encompasses graphs in the BN directed system lattice and allows for models of 

complex systems which are (i) more predictive and/or (ii) simpler and thus both more 

comprehensible and more generalizable than models restricted to the conventional RA 

directed system lattice.  

2. RA Lattice 

2.1. RA Neutral Systems 

All lattices shown in this paper are for four variables, but the theory and methodology 

presented in this paper are general and apply to any number of variables. RA neutral sys-

tems include only independent variables, i.e., there is no concept in such systems of a de-

pendent variable. A neutral system model thus represents the relationships, graphically and 
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probabilistically, between all the (independent) variables. The graphical representation 

specifies the independencies among variables. When data are then applied, probabilities 

represent the strength of the relationships between dependent variables. Neutral system 

graphs are commonly used in applications where variable clustering is important, such as 

computer vision and social and biological network analyses. Neutral system analysis is 

more computationally demanding than directed system analysis, so when one is really in-

terested in predicting specific variables, directed system models are more convenient.  

The four-variable RA lattice of neutral system general graphs (Figure 1), [7,9], repre-

sents all four-variable RA graphs with unique independence structures. Bold graphs do 

not have loops while non-bold graphs have loops. In these graphs, lines (including 

branching lines) are variables; boxes are relations. Where only two lines extend from a 

box, the relation is dyadic. If more than two lines extend from a box, the graph is a hyper-

graph. Where two or more specific graphs have the same independence structure, regard-

less of variable labels, they are part of the same general graph equivalence class. For ex-

ample, the left-most and right-most variables in G7 are independent of one another given 

the two central variables that connect both relations; this results in the general independ-

ence structure (. ⊥.. | …, ….), where each different number of dots indicates a different 

variable, but does not specify its actual identity. The expression says that the first variable 

is independent (“⊥” is the symbol used in this paper for independence) of the second var-

iable given (“|” is the symbol used in this paper for “given”) the third and (the comma “,” 

represents a logical “and”) fourth variables. 

G1 is the most complex general graph, in which the variables are connected in a 

tetradic relation. Graphs below G1 reflect increasingly less complex decompositions of G1, 

ending with G20 which has complete independence among the variables. Arrows from 

one general graph to another represent hierarchy such that going from the parent graph 

(the source of the arrow) to the child graph (the terminus of the arrow) results from delet-

ing one relation from the parent graph. 

In this paper, when the variables of a general graph are labeled in RA or BN, it is called 

a specific graph, which is a unique probabilistic model given the data. For RA, given data 

and after labeling all the variables, there is only one specific graph for any general graph. By 

contrast, as explained in the Section 3, (beginning in the Section 3.2.1), two or more topolog-

ically different BN general graphs can have the same probability distribution; such equiva-

lent graphs have the same underlying set of independencies even though they are topolog-

ically different; they are said to constitute a ‘Markov equivalence class’ [28]. 
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Figure 1. Lattice of four-variable RA neutral system general graphs. Structures with bold boxes (re-

lations) are loopless. All lattices in this paper are for four variables. 

RA graphs can include pairwise and non-pairwise relations. For example, graph G15 

has four lines (variables) and three boxes (relations). One line connects to all three boxes, 

meaning one variable is included in all three relations, and separately a single line repre-

senting one of the other three variables extends from each box. Because only two lines 

extend from any given box, all relations in G15 are pairwise (dyadic). Figure 2 shows G15 

with labels (A, B, C, D) added for the variables, yielding a specific structure having dyadic 

relations AD, BD, and CD. In RA notation, this graph is AD:BD:CD, the colon represents 

independence among relations. The notation AD:BD:CD encodes the independencies 

(𝐴 ⊥  𝐵, 𝐶 | 𝐷), (𝐵 ⊥  𝐶 | 𝐷). The example in Figure 2 represents one of four specific graphs 

for the general graph G15, the other possible permutations are AB:AC:AD, BA:BC:BD, 

 G1

G2

G3

G4

G5

G6

G7

G8

G9G10

G11 G12G13

G14
G15 G16

G17 G18

G19

G20
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CA:CB:CD. These permutations have the same general independence structure (. ⊥.., … | 

….), (… ⊥ … | ….), but given data, produce different conditional probability distributions.  

 

Figure 2. RA specific graph G15, AD:BD:CD. 

In contrast to graph G15 which includes dyadic relations only, graph G13 in Figure 1 

is a hypergraph, with three lines extending from one box and a single line extending from 

the other. This could, for example, represent four variables A, B, C and D, where A, B, and 

C label the three lines extending from one box, and D labels the single line extending from 

the other box. Figure 3 shows this specific graph, which in RA notation is ABC:D with the 

independence structure of (𝐷 ⊥  𝐴, 𝐵, 𝐶). This example represents one of four specific 

graphs for general graph G13, the other three being, ABD:C, ACD:B, and BCD:A with 

independencies of (𝐶 ⊥  𝐴, 𝐵, 𝐷), (𝐵 ⊥  𝐴, 𝐶, 𝐷), and (𝐴 ⊥  𝐵, 𝐶, 𝐷), respectively. Given 

data, each of these four specific graphs (ABC:D, ABD:C, ACD:B, and BCD:A) generates a 

unique probability distribution. 

 

Figure 3. RA specific graph G13. 

Figure 4 shows all of the general graphs from Figure 1 as well as all of the specific 

graphs associated with each general graph. There are 20 general graphs in the RA lattice 

and 114 specific graphs.  

Searching the RA Neutral System Lattice 

The data are the top of the lattice, i.e., G1 ABCD, and one searches the lattice to find 

a good representation of the data. The lattice can be searched from the top down or from 

the bottom up or from some other starting model. Typically, a reference model, a specific 

graph, is selected to begin the search. Commonly, it is the independence (bottom) model, 

G20 A:B:C:D from Figure 4, that is selected as the reference model, and the lattice is 

searched upward to find the best model. The lattice may also be searched downward start-

ing from the saturated (top) model, G1, or from a reference model in-between the bottom 

or top, searching up or down. The starting model does not have to be the reference model, 

but this is often the case. 

Commonly, when the lattice is being searched, the goal is to find a model (a specific 

graph) that adequately represents but is less complex than the data. This best characterizes 

a search downwards that (typically) starts from G1. When searching down the lattice, the 

goal is to search as far down the lattice as possible, resulting in the greatest complexity 

reduction from the reference model, while incurring the least amount of information loss, 

so that the model still adequately represents the data. Finding a simpler representation of 

the data reduces the complexity of the system under observation, allowing for greater 

understanding of the most important underlying relations. Alternatively, the goal is to 

find a model, a specific graph, that captures as much of the information in the data as 

possible, as long as its difference from mutual independence of the variables, i.e., G20 in 

Figure 4, is defensible, so the model is not overfit, and its application to new data is likely 
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to be more successful. This best characterizes a search upwards that (typically) starts from 

G20. For directed systems where prediction of a single DV is the aim, a high information 

model is one that gives maximal reduction of the Shannon entropy (uncertainty) of the 

DV.  

 

Figure 4. Lattice of RA neutral system general and specific graphs. 

Given data, specific graphs can be tested for statistical significance. The Chi square 

statistical test can be used to test the difference between any candidate model and a refer-

ence model, usually the data, G1, or the independence model, G20. As an alternative or in 

addition to such a statistical test, the Bayesian Information Criteria (BIC) and the Akaike 
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Information Criteria (AIC) are among the other measures that can be used to decide on 

the best model.  

2.2. RA Directed Systems 

2.2.1. Conventional Directed System Lattice 

The RA lattice of directed systems shown in Figure 5 is a sub-lattice of the complete 

neutral system lattice of Figure 1. The purpose of the directed system lattice is to organize 

models that make an IV-DV (explanatory-response) distinction and where prediction of 

the DV is the sole aim. In contrast, the neutral system lattice organizes models that do not 

make any IV-DV distinction; these models do not focus on a single response variable. 

There are fewer general graphs in the directed system lattice compared to the neutral sys-

tem lattice because, by convention, we care only about models whose predictions of the 

DV are different and are not interested in identifying relations among the IVs. The word 

‘directed’ in RA ‘directed systems’ has a meaning that is different from the meaning of the 

same word in BN ‘directed acyclic graphs’. In RA ‘directed systems’, this word means that 

the focus of modeling is on the relation of the dependent variable to the independent var-

iables. It does not imply directionality of edges from the IVs to the DV as this word means 

in BN ‘directed acyclic graphs’. 

In the neutral system lattice of Figure 1, any of the variables can be part of any rela-

tion. In contrast, in the standard directed system lattice, by convention, all of the IVs are 

always included in one of the relations (the “IV relation”); the other relations in the model 

include predictive IV-DV interactions (or the DV alone if there are no such interactions). 

In this paper, the DV in directed system specific graphs is called “Z” and the IVs are called 

A, B, C, and so on. For example, the first specific graph listed under G3 from Figure 5, 

ABC:ABZ:ACZ, has all three IVs in the first relation, followed by two IV-DV relations. 

Aside from allowing for the presence of relations among the IVs (without specifying any 

such relations), the model says that there is a relation in which A and B might predict Z 

and another relation in which A and C might predict Z; the net predictive relation between 

A, B, C and Z is a maximum entropy fusion of these two predictive relations.  

General graph G13 (ABC:Z) from Figure 5 represents independence between the IVs 

(ABC) and the DV (Z), thus there is no relation between the IVs and the DV, and graph 

G1 (ABCZ, which is not written as ABC:ABCZ because ABC is embedded in ABCZ) rep-

resents complete dependence among the IVs and the DV. It should be noted; however, 

that the directed system lattice of Figure 5 is not entirely exhaustive. What restricts this 

lattice is that all models include the “IV relation”; this makes these models hierarchically 

nested, and amenable to standard statistical tests. There are additional predictive graphs 

where this restriction is dropped that produce different predictions of Z than the models 

of Figure 5; these additional graphs are discussed in the following Section 2.2.2.  

Figure 5 shows all directed system general and specific graphs for four variables. The 

graphs that are greyed represent graphs from the neutral system lattice from Figure 5 that 

are not part of the directed system lattice because they do not offer unique predictions of 

the DV. There are nine directed system general graphs and 19 specific graphs in contrast 

to the neutral system lattice, which has 20 general graphs and 114 specific graphs.  
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Figure 5. Conventional RA directed system lattice. Structures with boxes (relations) in bold are loop-

less. 

2.2.2. Augmented Directed System Lattice 

Figure 6 augments the conventional directed system lattice (on the left) of Figure 5 

with a lattice of additional predictive graphs (on the right). These additional graphs offer 

unique analytical results, but that are not typically included when searching the hierar-

chically restricted directed system lattice.  
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Figure 6. Conventional RA directed system lattice and additional predictive specific graphs. Structures with bold boxes 

(relations) are loopless. 

In Figure 6, the graphs in the Additional Predictive Graphs lattice are denoted by an 

apostrophe to identify that the original graph was altered by removing the IV relation. For 

example, the bottom relation in graph G2, interpreted as the IV relation, ABC, was re-

moved to produce an additional predictive graph G2′. This general graph has only one 

specific graph, ABZ:ACZ:BCZ, which is analytically different from G2 

(ABC:ABZ:ACZ:BCZ) because the ABC term in graph G2 imposes a constraint among the 

IVs that is not imposed in graph G2′. Because G2′ does not follow the standard directed 

system convention of including the IV terms in a first relation, it produces a different pre-

diction of Z. The apostrophe-marked graphs are less complex than the graphs from which 

they are derived, and so should also be considered in searches for good predictive models. 

G5′ and G8′ from Figure 6 represent naïve Bayes equivalent RA graphs; G4′ is also a naïve 

Bayes-like graph. This is discussed in Section 3.3.  

A merger of the conventional directed system lattice with the additional predictive 

graphs of Figure 6 gives the augmented directed system lattice in Figure 7. The specific 

graphs from G2′ and G3′ from Figure 6 are members of general graphs G3 and G7, respec-

tively. Three general graphs are added to the augmented lattice, namely G10, G15 and 

G17; these are G4′, G5′, and G8′ from Figure 6, the naïve Bayes or naïve Bayes-like equiv-

alent RA general graphs. All of the specific structures that are added to the augmented 

lattice are denoted in bold letters in Figure 7. G13 is the independence model for the con-

ventional directed system graphs. The augmented lattice also includes G20 A:B:C:D, 

which is the natural independence model for the additional predictive graphs that do not 

include the IV term (ABC). Including these additional predictive graphs in the directed 
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system lattice increases the number of predictive general graphs from nine in the conven-

tional directed system lattice to 12 in the augmented lattice and 19 specific graphs in the 

conventional lattice to 31 in the augmented lattice. 

 

Figure 7. Augmented RA directed system lattice. Structures with bold boxes are loopless; model 

names in bold are augmentations. 

3. BN Lattice 

3.1. BN Introduction  

A Bayesian Network model, like an RA model, is a type of probabilistic graphical 

model. BN modeling originated from path models in the early 1900s [18,19] and was ex-

panded as a field of study in the late 1900s by Pearl [21], Neapolitan [20] and others.  
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BNs are directed graphs: nodes represent variables, and edges represent relations. 

The graph structure or topology (variables, edges, orientations of edges) encodes inde-

pendencies, and thus also dependencies, among the variables identified in a particular 

graph. Since BNs are directed graphs, edges typically have arrows or some form of nota-

tion representing directionality: A→B means that variable B is dependent upon variable 

A. (This dependency might be interpreted as a causal influence of A on B, but in this paper, 

we will not address such causal interpretations of BNs.) A is the ‘parent’ of B, which means 

that they are dependent. One variable is independent of all other variables given its par-

ents. For example, in the BN A→B→C, variable C is independent of A given B, since B is 

the parent of C. 

A BN graph provides the structure from which a probability expression can be de-

rived that describes the relation between variables. For example, the graph A→B provides 

the structure identifying the dependence between A and B, and probability values define 

the nature and strength of the relation between A and B. A unique feature of BNs versus 

other graphical models is in the independencies that are encoded when two edges con-

verge. For example, in A→B←C the edges converge on variable B. If A and C are not di-

rectly connected by an edge, this convergence is called a V-structure [29]. This V-structure 

is interpreted as yielding the conditional distribution p(B|A,C)p(A)p(C), which encodes 

dependence among A, B, and C, but marginal independence between A and C. The inter-

pretation is that together, but being independent of one another, A and C influence or 

cause or allow one to predict B.  

BNs are also acyclic graphs, meaning they have no closed paths following the arrows. 

For example, graph A→B→C→A is disallowed because it contains a cycle. Because BNs 

are acyclic, inference on all BN graphs can be performed in closed algebraic form.  

The primary differences between RA and BN are two-fold: (1) BNs are directed and 

acyclic whereas RA graphs are undirected and can have loops or not have loops and (2) 

some BN graphs contain converging edges, that is one or more V-structures that encode 

unique independence relations not found in RA graphs. The absence of a V-structure in a 

BN graph results in this graph being equivalent to some (loopless) RA graph. The presence 

of a V-structure results in the graph not having an RA equivalent and thus being unique 

to BN. This is discussed below in Section 3.2.6, in connection with Table 3.  

3.2. BN Neutral Systems  

3.2.1. Lattice of BN General Graphs  

As in RA, there are general BN graphs and specific BN graphs; in the BN literature 

general graphs are referred to as maximally oriented graphs [30], essential graphs [31], 

equivalence classes of directed acyclic graphs [32], and partially directed graphs (PDAG) 

[29].  

In BN general graphs, the graph structure (variables, edges, and orientations of 

edges) results in a unique independence structure, where specific identities are not as-

signed to the variables. Figure 8, developed by Harris and Zwick [33], shows all BN gen-

eral graphs with four variables and their hierarchy. There are 20 BN general graphs in the 

lattice, i.e., 20 unique independence structures. The procedure to generate this lattice is 

outlined in Section 3.2.6. 



Entropy 2021, 23, 986 13 of 42 
 

 

 

Figure 8. Lattice of BN neutral system general graphs. 
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In Figure 8, general graphs are labeled BN1, BN2…BN19, BN20. Solid squares repre-

sent variables; edges are represented by directed arrows from one square to another, rep-

resenting a parent–child dependency relationship. The dashed lines with arrows from one 

general graph to another represent the hierarchy of general graphs, with parent graphs 

being above child graphs. Child graphs result from the deletion of one edge from the par-

ent graph. The insert on the bottom right indicates structures that are topologically differ-

ent from graphs in the lattice marked with asterisks but have identical independence 

structures to these marked graphs and thus are Markov equivalent (the topological differ-

ence cannot be removed by any labeling of the variables). For example, BN2b and BN2c 

in the insert are topologically different but have the same independence structure as BN2* 

in the lattice. These additional representations are discussed below in Section 3.2.2. 

Table 1 summarizes the RA and BN terminology and supports the discussion of BN 

that follows. Entries in the table for RA general and specific graphs (the lattices of general 

and specific graphs from Figures 1 and 4, respectively) have already been discussed 

above. The discussion that follows this table will explain the additional representations of 

BN general graphs in the insert of Figure 8, and will derive the lattice of specific BN graphs 

summarized in Figure 14 presented below in Section 3.2.5.  

Table 1. RA and BN terminology. 

 
Our Termi-

nology  

Literature Termi-

nology 

Lattice Name, RA-

like Notation 
Visuals 

RA 
General RA 

graph 
G-structures [7] G15 (Figure 1) 

 

 
Specific RA 

graph 

Specific RA graph 

[15] 

G15 (Figure 4), 

AD:BD:CD 

 

BN 
General BN 

graph 

Maximally ori-

ented graphs, es-

sential graphs, 

equivalence clas-

ses of directed 

acyclic graphs, 

partially directed 

graphs [29–32]  

BN11* & BN11b 

(Figure 8) 

 

 

Specific BN 

graph (no-V-

structure) 

Labeled maxi-

mally oriented 

graphs, essential 

graphs, equiva-

lence classes of di-

rected acyclic 

graphs, partially 

directed graphs  

BN11*, BN11b 

(Figure 14), 

AD:BD:CD 

 

Specific BN 

graph (V-

structure) 

BN17 (Figure 14), 

BCDB:C:A 

 

3.2.2. Additional Representations of BN General Graphs  

There are 20 general graphs in the BN lattice. However, eight of these, marked with 

asterisks in Figure 8, namely BN2*, BN4*, BN5*, BN9*, BN11*, BN14*, BN15*, and BN16*, 

represent Markov equivalence classes that include additional unique edge topologies that 

 G15

 G15

A

B

C
D

AD

BD

CD

 BN11* BN11b

 BN11* BN11b
A B

C D

A B

C D

 BN17
A B

C D
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have identical probability distributions when applied to data. These additional topologies, 

shown in the insert at the bottom right of Figure 8, cannot be made equivalent to the rep-

resentative graphs (those with asterisks) by any 1:1 mapping of unlabeled variables. This 

property, described by Heckerman [34], who showed that BNs with differing edge topol-

ogies can have the same independence structure and thus the same probability distribu-

tion, is unique to BN and is not found in RA, where there is a single unique representation 

of each RA general graph. All general graphs in Figure 8 without an asterisk have no Mar-

kov equivalent representations.  

Two Bayesian Networks are Markov equivalent if and only if they have the same 

skeleton and the same V-structure [28], resulting in the same underlying independence 

structure. The skeleton of a graph is its undirected representation. As already defined, a 

V-structure occurs when two or more directed edges that are not themselves directly con-

nected by an edge converge on a single node. Figure 9 shows an example of Markov non-

equivalent (Example 1) and equivalent (Example 2) BN general graphs. 

 

Figure 9. Examples of Markov equivalence tests. 

BNs that are Markov equivalent define an equivalence class; this is illustrated by 

BN2* in Figure 10 for which two other general graphs (BN2b and BN2c) included in the 

insert at the bottom of Figure 8 are in the same equivalence class. All three general graphs 

are Markov equivalent because they have the same skeleton and V-structures, and thus 

the same independence structure, but they have semantically different edge orientations. 

BN2* was chosen arbitrarily to represent this equivalence class and its unique independ-

ence structure. BN2b and BN2c have the same independence structure, and for corre-

sponding variable labels, have identical probability distributions. 

 

Figure 10. BN2*, BN2b, BN2c. 

A BN general graph is represented in the literature by an unlabeled PDAG [29], also 

known as a Maximally Oriented Graphs [30], Essential Graph [31] and equivalence classes 

 

BN13BN12 BN13BN12 BN13BN12

BN9* BN9b BN9* BN9b BN9* BN9b

BN2b BN2cBN2*
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of directed acyclic graphs [32]. In a PDAG, edges can be directed, undirected or a mix of 

directed and undirected. A PDAG includes edge direction when a V-structure is present 

and removes edge direction when no V-structure is present. If there are no V-structures 

in a given BN, all edges are undirected in its PDAG representation. Figure 11 shows the 

PDAG representation of the graphs shown in the insert at the bottom of Figure 8. (PDAG2 

encompasses BN2b and BN2c, etc.) Undirected edges can have either direction as long as 

a cycle is not created and also a V-structure is not created that is represented by another 

BN general graph. For example PDAG16, labeling variables A, B, C, D in order of left to 

right, top to bottom could be oriented as B←D→C (BN16*) or B→D→C (BN16b) (or its mir-

ror image) but could not be oriented as B→D←C, because that creates a V-structure result-

ing in a different independence structure represented separately by BN17. 

 

Figure 11. PDAGs for graphs in Figure 8 insert. 

Although representation of an entire Markov equivalence class in a single PDAG is 

useful, the PDAG does not visibly display the fact that semantically different edge topol-

ogies inhere in many BN general graphs (in 8 of 20 general graphs in the four-variable 

lattice). Use of Figure 8 to display the BN general graph lattice opts instead to show rep-

resentatives of these classes and also their alternative topologies in the insert at the bottom 

of the figure. 

3.2.3. BN Specific Graph Notation 

A BN specific graph is simply a labeled BN general graph. As summarized in Table 

1, we use the terminology of “specific graph” for what in the BN literature is called a 

labeled maximally oriented graph or essential graph or equivalence class of directed acy-

clic graphs or partially directed graph; these four different terms all refer to the same 

thing. All specific graphs for a given BN general graph class can be generated by permut-

ing all possible variable labels. Given data, two BN specific graphs with different labels 

from the same BN general graph class will produce different probability distributions.  

The notation that we use for BN specific graphs is derived from the RA notation de-

scribed previously. As in RA, the colon represents marginal or conditional independence 

among variables and relations. For example, Figure 12 shows a labeled version of RA gen-

eral graph G15 and BN general graph BN11* which can also equivalently be represented 

by BN11b, both of which have the same independencies (𝐴 ⊥ 𝐵, 𝐶 | 𝐷), (𝐵 ⊥ 𝐶 | 𝐷), the 

same conditional probability distribution 𝑝(𝐴|𝐷)𝑝(𝐵|𝐷)𝑝(𝐶|𝐷)𝑝(𝐷) and thus the same 

notation AD:BD:CD. 

 

Figure 12. RA and BN notation example, without subscripts. 

RA notation must be modified to accommodate the V-structures that are unique to 

BNs and not found in RA; this is done by adding subscripts that specify the independence 

PDAG4 PDAG9 PDAG11 PDAG14 PDAG15 PDAG16PDAG2 PDAG5
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relations encoded by the V-structures. (For a BN graph without a V-structure, BN notation 

is identical to the RA notation.) For example, BN17 in Figure 13a has the notation 

BCDB:C:A, where the colon between BCDB:C and A states the independency (𝐴 ⊥  𝐵, 𝐶, 𝐷), 

namely that A is marginally independent of B, C, and D. The subscript B:C states marginal 

independence between B and C within the triadic, dependent, BCD relation. Figure 13b 

shows the more complex BN4, which has a V-structure in which A, B, and C have arrows 

going to D; this means that it has a tetradic dependency between A, B, C and D, which 

will be reflected in a 𝑝(𝐷|𝐴𝐵𝐶) in the probability expression for this graph. The graph 

also has the single independency (𝐴 ⊥  𝐵 | 𝐶) . The notation for this graph is thus 

ABCDAC:BC, which preserves the dependency between A, B, C, and D, and also encodes 

the conditional independence between A and B given C. (In RA, this conditional inde-

pendence is expressed by saying that 𝑇(𝐴𝐶: 𝐵𝐶)  =  𝑇C(𝐴: 𝐵)  =  0, where T is information-

theoretic transmission.) 

 

Figure 13. BN notation examples with subscripts. (a) BCDB:C:A; (b) ABCDAC:BC. 

3.2.4. BN Independencies and Probability Distributions 

As has been repeatedly stated in the above discussion, the marginal or conditional 

independence between variables and relations is what uniquely specifies an RA or BN 

model. “It is known that the statistical meaning of any causal model can be described 

economically by its stratified protocol, which is a list of independence statements that 

completely characterize the model” [22,23,28]. The method to determine BN independen-

cies is known as D-separation, and is described in the Appendix A.2. To determine the list 

of independence statements that completely describe any BN, D-separation is applied to 

all possible independence statements for a given BN. Those satisfying independence 

among variables are retained and represent the set of independencies that fully describe 

the structure of relations within a given BN. For four variables, Table 2 provides all pos-

sible independence statements. For a given BN, with node labels and directed edges, all 

independence statements from this table need to be tested. Independence statements that 

are satisfied are kept, and represent the set of independencies that fully describe that BN.  

Table 2. Four-variable independence statements. 

 Marginal Independence Conditional Independence 

General Expression (. ⊥ . . ) (. ⊥ . . , … ) (. ⊥ . . , … , … . ) (. ⊥ . . | . . . ) (. ⊥ . . |  … , … . ) 

Specific Expression 1 (𝐴 ⊥  𝐵) (𝐴 ⊥  𝐵, 𝐶) (𝐴 ⊥  𝐵, 𝐶, 𝐷) (𝐴 ⊥  𝐵 | 𝐶) (𝐴 ⊥  𝐵 | 𝐶, 𝐷) 

2 (𝐴 ⊥  𝐶) (𝐴 ⊥  𝐵, 𝐷) (𝐵 ⊥  𝐴, 𝐶, 𝐷) (𝐴 ⊥  𝐵 | 𝐷) (𝐴 ⊥  𝐶 | 𝐵, 𝐷) 

3 (𝐴 ⊥  𝐷) (𝐴 ⊥  𝐶, 𝐷) (𝐶 ⊥   𝐴, 𝐵, 𝐷) (𝐴 ⊥  𝐶 | 𝐷) (𝐴 ⊥  𝐷 | 𝐵, 𝐶) 

4 (𝐵 ⊥  𝐶) (𝐵 ⊥  𝐴, 𝐶) (𝐷 ⊥   𝐴, 𝐵, 𝐶) (𝐵 ⊥  𝐴 | 𝐶) (𝐵 ⊥  𝐴 | 𝐶, 𝐷) 

5 (𝐵 ⊥  𝐷) (𝐵 ⊥  𝐴, 𝐷)  (𝐵 ⊥  𝐴 | 𝐷) (𝐵 ⊥  𝐶 | 𝐴, 𝐷) 

6 (𝐶 ⊥  𝐷) (𝐵 ⊥  𝐶, 𝐷)  (𝐵 ⊥  𝐶 | 𝐷) (𝐵 ⊥  𝐷 | 𝐴, 𝐶) 

7  (𝐶 ⊥   𝐴, 𝐵)  (𝐶 ⊥  𝐴 | 𝐵) (𝐶 ⊥  𝐴 | 𝐵, 𝐷) 

8  (𝐶 ⊥   𝐴, 𝐷)  (𝐶 ⊥  𝐴 | 𝐷) (𝐶 ⊥  𝐵 | 𝐴, 𝐷) 

9  (𝐶 ⊥   𝐵, 𝐷)  (𝐶 ⊥  𝐵 | 𝐷) (𝐶 ⊥  𝐷 | 𝐴, 𝐵) 

10  (𝐷 ⊥   𝐴, 𝐵)  (𝐷 ⊥  𝐴 | 𝐵) (𝐷 ⊥  𝐴 | 𝐵, 𝐶) 

11  (𝐷 ⊥   𝐴, 𝐶)  (𝐷 ⊥  𝐴 | 𝐶) (𝐷 ⊥  𝐵 | 𝐴, 𝐶) 

12  (𝐷 ⊥   𝐵, 𝐶)  (𝐷 ⊥  𝐵 | 𝐶) (𝐷 ⊥  𝐶 | 𝐴, 𝐵) 

BN17 BN4*

(a) (b)

A B

DC

A B

DC
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D-separation can also be used to test the Markov equivalence of any labeled BNs. If 

two BNs have the same independencies as revealed by D-separation tests, they are in the 

same Markov equivalence class and thus the same BN general graph. The prior section, 

however, provided a simpler way, illustrated above in Figure 9, to test for Markov equiv-

alence of two BNs with different edge topologies. 

3.2.5. Lattice of BN General and Specific Graphs 

The BN literature on lattices predominately focuses on search algorithms to find the 

best BN given a scoring metric. Implicit in these search algorithms is a lattice of candidate 

graphs being explored in search of the best model. Chickering [35] and others have shown 

the search problem to be NP-hard, with four variables there are 543 possible BNs, with 10 

variables there are O(10^18) [36]. Because of this, research in this area has focused less on 

characterizing exhaustively the lattice of BN graphs, and more on advancing search heu-

ristics to efficiently traverse the lattice to identify the best BN given a scoring metric [37–

46], and others. 

Heckerman [34] first showed that BNs with differing edge topologies can have the 

same independence structure and the same probability distribution, herein described as 

BN specific graphs. In contrast to heuristics that search all BNs, search heuristics for BN 

specific graphs have proven to be more efficient because they reduce the dimensionality 

of search space [29,31,32,40,47–50], and others. For four variables, this approach reduces 

the search space from 543 BNs to 185 BN specific graphs [31]. These 185 BN specific graphs 

can be summarized by 20 BN general graphs all with unique independence structures 

when variable labels are removed.  

Building from the RA work of Klir [8] and Zwick [14], and the BN work of Pearl [21–

23,51], Verma [28], Heckerman [34], Chickering [29,35,40,52,53], Andersson [31], Rubin 

[54], and others, the following procedure was used to generate the four variable BN gen-

eral and specific graph lattice of Figure 14 in a way that can be integrated with the RA 

general graph lattice. While this procedure is applied in this paper to four variables, it 

could in principle be used for any number of variables, although of course as the number 

of variables increases the effort required increases exponentially. 
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Figure 14. Lattice of general and specific BN neutral system graphs. 

3.2.6. BN Neutral System General and Specific Graph Procedure 

The procedure to generate the BN neutral system general and specific graph lattice 

for any number of variables is as follows: 

1. Assign labels arbitrarily to the n solid squares representing variables. 
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ABD:C
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2. Generate all graphs for these n variables by permuting all possible edge connections 

and edge orientations. Eliminate graphs with cycles. The result is the set of all labeled 

directed acyclic graphs for n variables. 

3. For each directed acyclic graph, determine its independence structure using the D-

separation procedure [55] detailed in Appendix A.2. This identifies which of the in-

dependence statements in Table 2 apply to the graph. 

4. Collect together all graphs with the same unlabeled independencies. The set of these 

DAGs comprise a general graph equivalence class. 

5. For each general graph equivalence class, collect together all graphs with the same 

labeled independencies into specific graph equivalence classes. List the RA notation 

for each of these specific graphs.  

6. Select one specific graph equivalence class to represent the general graph, and from 

this specific graph equivalence class, select a single edge topology to represent the 

general graph. List any additional equivalent general graphs with unique edge to-

pologies separately, as was done in the insert in Figures 8 and 14. 

7. Organize general graphs into levels based upon the number of edges in each general 

graph and link hierarchically nested general graphs in the lattice to reflect parent-

child general graphs. 

Figure 14 shows the result of following this procedure for four variables. This BN 

general and specific graph lattice can be directly compared with the RA general and spe-

cific graph lattice. The RA lattice can also be extended to include the BN lattice. The com-

parison and extension will be discussed in Section 4. 

Table 3 lists specific graph representatives for each of the general graphs in Figure 

14. These specific graphs, highlighted in bold in Figure 14, assume that nodes are labeled 

in the order A, B, C, D from left to right, top to bottom, which is the labeling convention 

throughout this paper. The notation for a BN specific graph without a V-structure is iden-

tical to the RA notation. As in RA, the colon represents marginal or conditional independ-

ence among variables. For a BN graph with a V-structure, the notation adds subscripts to 

represent the independence relations encoded by the V-structure, which are unique to 

BNs and not found in RA. (See the Section 3.2.3. for more details on this notation). Thus, 

graphs in Table 3 without subscripts are equivalent to an RA graph and graphs with sub-

scripts are unique to BN. Equivalence and non-equivalence between RA and BN graphs 

will be discussed in Section 4. 

Table 3 shows for each BN general graph from Figure 14 a specific graph with its RA 

notation, probability distribution, and minimal list of independencies resulting from the 

D-separation procedure. The probability distribution is obtained as follows: (1) For each 

labeled node of a BN specific graph, list each node’s individual probability expression as 

the probability of the node given its parents, i.e., 𝑝(𝑛𝑜𝑑𝑒 | 𝑝𝑎𝑟𝑒𝑛𝑡𝑠); if there are no par-

ents, simply the 𝑝(𝑛𝑜𝑑𝑒). (2) Join the list of probability expressions. For example, for BN2* 

in Figure 15, the individual probability expressions are 𝑝(𝐴|𝐶, 𝐷) for A, 𝑝(𝐵|𝐶, 𝐷) for B, 

𝑝(𝐶) for C, and 𝑝(𝐷|𝐶) for D. Joining these gives 𝑝(𝐴|𝐶, 𝐷)𝑝(𝐵|𝐶, 𝐷)𝑝(𝐶)𝑝(𝐷|𝐶). (The ta-

ble omits the commas for variables that are given in conditional probability terms.) 

Table 3. Probability distribution and independencies of BN specific graph examples. 

BN General 

Graph 

Specific Graph Example 

RA Notation Probability Distribution Independencies 

BN1 ABCD p(B|A)p(A)p(C|AB)p(D|ABC) none 

BN2 ACD:BCD p(A|CD)p(C)p(B|CD)p(D|C) (A ⊥  B | C, D) 

BN3 ABCDA:B p(C|AB)p(A)p(B)p(D|ABC) (A ⊥  B) 

BN4 ABCDAC:BC p(A|C)p(C)p(B|C)p(D|ABC) (A ⊥  B | C) 

BN5 BCD:AD p(A|D)p(D)p(B|CD)p(C|D) (A ⊥  B, C | D) 

BN6 ABCDBC:A p(B|C)p(C)p(D|ABC)p(A) (A ⊥  B, C) 

BN7 BCD:ABDA:B p(C|BD)p(B)p(D|AB)p(A) (A ⊥  B), (A ⊥  C | B, D) 

BN8 ACDC:D:BCDC:D p(A|CD)p(C)p(D)p(B|CD) (C ⊥  D), (A ⊥  B | C, D) 
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BN9 ABD:ABCAC:BC p(A|C)p(C)p(B|C)p(D|AB) (A ⊥  B | C), (C ⊥  D | A, B) 

BN10 BCD:A p(B|C)p(C)p(D|BC) (A ⊥  B, C, D) 

BN11 AD:BD:CD p(A|D)p(D)p(B|D)p(C|D) (A ⊥  B, C | D), (B ⊥ C | D) 

BN12 ABCDA:B:C p(D|ABC)p(A)p(B)p(C) (A ⊥  B, C), (B ⊥  C) 

BN13 ACDA:C:BD p(B|D)p(D|AC)p(A)p(C) (A ⊥  C), (B ⊥  A, C |D) 

BN14 AD:BC:BD p(A|D)p(D)p(B|D)p(C|B) (A ⊥  B | D), (C ⊥  A, D | B) 

BN15 ABDA:B:BC p(C|B)p(B)p(D|AB)p(A) (A ⊥  B, C), (C ⊥  D | A, B) 

BN16 BD:CD:A p(B|D)p(D)p(C|D)p(A) (B ⊥  C | D), (A ⊥  B, C, D) 

BN17 BCDB:C:A p(D|BC)p(B)p(C)p(A) (B ⊥  C), (A ⊥  B, C, D) 

BN18 AD:BC p(C|B)p(B)p(D|A)p(A) ( A, D ⊥  B, C) 

BN19 CD:A:B p(D|C)p(C)p(A)p(B) (B ⊥  C, D), (A ⊥  B, C, D) 

BN20 A:B:C:D p(A)p(B)p(C)p(D) (A ⊥  B, C, D), (B ⊥  C, D), (C ⊥  D) 

 

Figure 15. Probability distribution for BN2* example. 

The equivalence or non-equivalence of RA and BN graphs is discussed in detail in 

Section 4, below, but Table 3 provides an advanced look at this issue. Any BN general 

graph with a specific graph example whose RA notation does not include subscripts is 

equivalent to some general RA graph; there are 10 of these BN general graphs. Any BN 

general graph with a specific graph example whose notation includes subscripts is not 

equivalent to any general RA graph; there are also 10 of these BN general graphs, which 

all have V-structures.  

3.3. BN Directed Systems 

The BN discussion so far has focused on BN neutral systems in which an IV-DV dis-

tinction is not made. This section narrows the focus to BN predictive graphs, analogous 

to RA directed systems, where the aim is to predict a single DV given the IVs. As in RA, 

we define Z as the dependent variable in the BN directed system lattice, replacing variable 

D in the neutral system lattice. We designate as the DV in a given BN any node with the 

exception of a parent node within a V-structure. That is, we do not consider here the pos-

sibility that a parent node within a V-structure could be designated as a DV; this will be 

discussed further in Section 5. As is the case for RA, many graphs in the neutral system 

lattice are redundant when the aim is only to predict the DV. The BN directed system 

lattice of Figure 16, where only graphs with unique predictions of Z are highlighted, is 

thus a subset of the BN neutral system lattice of Figure 14. For each general graph in Figure 

16 with a unique prediction, associated specific graphs are listed. Specific graphs that are 

bolded correspond to the displayed BN edge orientation and edge connections assuming 

labeling of nodes from top left, top right, bottom left, bottom right as A, B, C, Z respec-

tively. These bolded specific graphs also correspond to the examples in below Table 4. 

Graphs not highlighted in Figure 16 are equivalent in their predictions to highlighted 

graphs. (Asterisks in this figure have the same meaning they have in BN Figures 8 and 

14). For two graphs with identical predictions, the graph with the least degrees of freedom 

was selected. There are eight general graphs and 18 specific graphs in the BN directed 

system lattice; this is a significant compression of the BN neutral system lattice that in-

cludes 20 general graphs and 185 specific graphs.  

  

p(A|C,D)p(B|C,D)p(C)p(D|C) 

 
BN2*

A B

DC
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Table 4. BN directed system graphs. 

BN General 

Graph 

Predictively 

Equivalent Simpler 

Graph 

Specific Graph Example 

RA Notation 

Specific Graph Example 

Probability Distribution 

BN1 BN12 ABCZ p(Z|ABC)p(C|AB)p(B|A)p(A) 

BN2 
BN7 

BN17 

ABZ:BCZ 

ABC:BCZ 

p(C|BZ)p(Z|AB)p(A|B)p(B) 

p(Z|BC)p(B|CA)p(A|C)p(C) 

BN3 BN12 ABCZA:B p(Z|ABC)p(C|AB)p(A)p(B) 

BN4 BN12 ABCZAC:BC p(Z|ABC)p(A|C)p(B|C)p(C) 

BN5 
BN13 

BN19 

ACZ:BZ 

ABC:CZ 

p(Z|AC)p(B|Z)p(C|A)p(A) 

p(Z|C)p(B|CA)p(C|A)p(A) 

BN6 BN12 ABCZBC:A p(Z|ABC)p(B|C)p(C)p(A) 

BN7 
 

BN17 

BCZ:ABZA:B 

BCZ:ABCA:C 

p(C|BZ)p(Z|AB)p(B)p(A) 

p(Z|BC)p(B|CA)p(C)p(A) 

BN8 BN17 ABCB:C:BCZB:C p(Z|BC)p(A|BC)p(B)p(C) 

BN9 BN17 BCZ:ABCAB:AC p(Z|BC)p(B|A)p(C|A)p(A) 

BN10 BN17 BCZ:A p(Z|BC)p(B|C)p(C)p(A) 

BN11 
 

BN19 

AZ:BZ:CZ 

AC:BC:CZ 

p(A|Z)p(B|Z)p(C|Z)p(Z) 

p(Z|C)p(B|C)p(C|A)p(A) 

BN12  ABCZA:B:C p(Z|ABC)p(A)p(B)p(C) 

BN13 

 
BN19 

ACZA:C:BZ 

ABCA:B:CZ 

p(Z|AC)p(B|Z)p(A)p(C) 

p(Z|C)p(C|AB)p(A)p(B) 

BN14 
BN16 

BN19 

AB:BZ:CZ 

AB:BC:CZ 

p(Z|B)p(C|Z)p(B|A)p(A) 

p(Z|C)p(B|A)p(A)p(C|B) 

BN15 
BN17 

BN19 

BCZB:C:AB 

ABCA:C:CZ 

p(Z|BC)p(A|B)p(B)p(C) 

p(Z|C)p(B|CA)p(A)p(C) 

BN16 

 
BN19 

BZ:CZ:A 

BC:CZ:A 

p(B|Z)p(C|Z)p(Z)p(A) 

p(Z|C)p(C|B)p(B) 

BN17  BCZB:C:A p(Z|BC)p(B)p(C)p(A) 

BN18 BN19 AB:CZ p(Z|C)p(B|A)p(A)p(C) 

BN19  CZ:A:B p(Z|C)p(C)p(A)p(B) 

BN20  A:B:C:Z p(Z)p(A)p(B)p(C) 
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Figure 16. BN directed system lattice. 

Table 4 lists all BN directed system general graphs. When BN graphs are greyed in 

column 1 it means the graph is equivalent in terms of prediction to a simpler (fewer de-

grees of freedom) general graph. Column 2 identifies which simpler graph it is equivalent 

to. General graphs with a blank row in column 2 have no simpler equivalently predicting 
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graph, and are included in the directed system lattice of Figure 16. Column 3 provides 

specific graph examples of these general graphs and column 4 shows the specific graph 

probability distributions. Within column 4, only the expressions that are used to predict 

the dependent variable are highlighted in black. All other non-predictive relations are 

greyed. For example, BN1, BN3, BN4, and BN6 and BN12 all predict Z in the same way, 

i.e., 𝑝(𝑍|𝐴𝐵𝐶), thus they are all equivalent in terms of prediction. However, BN12 has the 

least degrees of freedom and is therefore selected to represent all five of these equivalent 

general graphs. 

4. Joint RA-BN Neutral System Lattice 

4.1. Joint RA-BN Neutral System Lattice Introduction 

This section integrates the RA and BN neutral system general graph lattices using the 

four variable Rho lattice [7]. Combining the Rho, RA and BN lattice creates a larger and 

more descriptive lattice than any previously identified in the literature. The lattice identi-

fies independence structures unique to RA or to BNs, and independence structures that 

are equivalent across RA and BN. Equivalence is in terms of independence structure as 

described separately for RA in the Section 2, and BN in the Section 3. Where two or more 

graphs, RA or BN, have the same general independence structure regardless of variable 

labels, they are equivalent. General independence structure is represented with independ-

ence statements without labels. For example, (. ⊥ . . |  … ), one variable is independent of 

another, given a third. Consider, for example, RA general graph G15 and BN general 

graph BN11 have the same general independence structure (. ⊥ . . , … |  … ), (. . ⊥. . . |  … ), 

thus they are equivalent. Two specific graphs are equivalent if they have the same inde-

pendence structure given variable labels. For example, using RA general graph G15 and 

BN general graph BN11 again, Figure 17 shows these general graphs with variable labels 

added making them specific graphs. Given these labels, they have equivalent general and 

specific independence structure, (. ⊥ . . , … |  … . ), (. . ⊥. . . |  … )  and (𝐴 ⊥ 𝐵, 𝐶 | 𝐷), (𝐵 ⊥

 𝐶 | 𝐷) respectively. 

 

Figure 17. G15 and BN11* specific graph example. 

4.2. RA-BN Rho Neutral System Graphs 

The Rho (ρ) lattice of Figure 18 (adapted from Klir [7] (p. 237)) is a simplification of 

the RA lattice of general graphs and is used here to integrate the RA neutral system lattice 

with the BN neutral system lattice. The Rho lattice is an even more general lattice than the 

RA general graph lattice and can map both RA and BN general graphs to one of its eleven 

structures. A solid dot represents a variable; a line connects variables in the Rho lattice if 

these two variables are directly connected by any box (relation) in the RA general graph 

lattice. Arrows from one Rho graph to another represent hierarchy, i.e., the generation of 

a child graph from a parent graph. ρ1 represents maximal connectedness, or dependence, 

between variables, and ρ11 represents independence among all variables. Graphs in-be-

tween ρ1 and ρ11 represent a mix of dependence and independence among variables. 

Each RA or BN general or specific graph corresponds to one, and only one, of the eleven 

Rho graphs.  
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Figure 18. Lattice of four-variable Rho graphs. 

4.3. Rho and Equivalent RA and BN General Graphs  

Out of 20 RA neutral system general graphs and 20 BN neutral system general 

graphs, there are 10 RA general graphs, comprising all of the graphs with no loops in the 

RA lattice that are equivalent to BN general graphs. Each of these RA-BN equivalent pairs 

corresponds to one of the 11 Rho graphs from Figure 18, with the exception of ρ4. ρ4 has 

corresponding RA and BN general graphs, but these do not have equivalent independence 

structures, and are discussed in the following Section 4.3. 

ρreflects maximal connectedness among all four variables. For both the RA general 

graph G1 and the BN general graph BN1 from Figures 1 and 8 respectively, there are no 

independencies among the variables and thus the graphs are equivalent. Both graphs have 

only one specific graph, ABCD. This is summarized in Figure 19.  
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Figure 19. Rho1, G1 and BN1 specific graph. 

ρcorresponds to RA general graph G7 and BN general graph BN2*, as shown in 

Figure 20. It is clear how BN2* corresponds to Rho graph ρbecause visually they are 

represented in the same way with the exception that the Rho graph has undirected edges. 

There are two additional BN general graphs (BN3 and BN4*) that correspond to ρhow-

ever they have no equivalent RA general graph, so they are discussed in the next section 

which concerns non-equivalent RA and BN general graphs. ρ G7, and BN2* represent 

two three-variable relations with conditional independence between two variables, with 

general independence structure (. ⊥ . . |  … , … . ). Assigning labels to variables makes it eas-

ier to interpret the RA association with ρ. Figure 20 shows an example with variable la-

bels (one of six possible permutations of variable labels) assigned to RA graph G7 which 

results in RA specific graph ACD:BCD, in which A is independent of B given C and D, 

(𝐴 ⊥  𝐵|𝐶, 𝐷). Assigning labels to the BN graph in Figure 20 yields the same specific 

graph. Other label permutations yield five other equivalent RA and BN specific graphs: 

ABC:ABD, ABC:ACD, ABC:BCD, ABD:ACD, ABD:BCD. 

 

Figure 20. Rho2, G7, and BN2* example. 

ρrepresents RA graph G10 and BN graph BN5* which have the same independence 

structure, (. ⊥ .., … |….). Figure 21 shows an example of one of eight RA G10 and BN5* 

specific graphs, BCD:AD, with independencies (𝐴 ⊥  𝐵, 𝐶 |𝐷). The full list of eight spe-

cific RA G10 and BN5* specific graphs are: ABC:AD, ABC:BD, ABC:CD, ABD:AC, 

ABD:BC, ABD:DC, ACD:AB, ACD:CB, ACD:DB, BCD:BA, BCD:CA, and BCD:DA. G10 

has been previously characterized as naïve BN-like. 
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Figure 21. Rho3, G10, and BN5* specific graph example. 

ρis discussed later in the section on non-equivalent RA and BN general graphs. 

ρrepresents RA graph G13 and BN graph BN10 which have the same independence 

structure, (. ⊥ .., …, ….) in that they have no independencies in the triadic relation and the 

fourth variable is independent of all three variables in the triadic relation. Figure 22 shows 

an example of one of four RA G13 and BN10 specific graphs, BCD:A, with independencies 

(𝐴 ⊥  𝐵, 𝐶, 𝐷). The full list of RA G13 and BN10 specific graphs are: ABC:D, ABD:C, 

ACD:B, and BCD:A.  

 

Figure 22. Rho5, G13, and BN10* specific graph example. 

ρrepresents RA general graph G15 and BN graph BN11* which have the same in-

dependence structure, (. ⊥ .., … | ….), ( .. ⊥ … | ….). There are three dyadic relations in 

these graphs with one variable present in all three dyadic relations and the other three 

variables present in only one of three dyadic relations.  

This graph is described in the literature (Zhang 2004) as a naïve BN, simple Bayes, or 

independence Bayes, because of its simple dyadic relations among variables. What is also 

clear is RA general graph G15 represents a naïve BN because of its equivalent independ-

ence structure. Figure 23 shows an example of one of RA G15 and BN11* specific graphs, 

AD:BD:CD, with independencies (𝐴 ⊥  𝐵, 𝐶 | 𝐷), (𝐵 ⊥ 𝐶 | 𝐷), and conditional probability 

distribution 𝑝(𝐴|𝐷) 𝑝(𝐵|𝐷)𝑝(𝐶|𝐷)𝑝(𝐷).The full list of specific RA G15 and BN11* specific 

graphs are: AB:AC:AD, AB:BC:BD, AC:BC:CD, and AD:BD:CD. 

 

Figure 23. Rho 6, G15 and BN11* specific graph example. 
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ρrepresents RA graph G16 and BN graph BN14* which have the same independ-

ence structure, (. ⊥ .. | ….), (… ⊥ ., …. | ..). Figure 24 shows an example of one of twelve 

RA G16 and BN14* specific graphs, AD:BC:BD, with independencies (𝐴 ⊥  𝐵 | 𝐷), (𝐶 ⊥

 𝐴, 𝐷 | 𝐵) and conditional probability distribution 𝑝(𝐴|𝐷)𝑝(𝐵|𝐷)𝑝(𝐶|𝐵)𝑝(𝐷). The full list 

of specific RA G16 and BN14* specific graphs are: AB:AC:BD, AB:AC:CD, AB:AD:BC, 

AB:AD:CD, AB:BC:CD, AB:BD:CD, AC:AD:BC, AC:AD:BD, AC:BC:BD, AC:BD:CD, 

AD:BC:BD, and AD:BC:CD. 

 

Figure 24. Rho7, G16 and BN14* specific graph example. 

ρrepresents RA general graph G17 and BN general graph BN16* which have the 

same independence structure, (.. ⊥ … | ….), (. ⊥ .., …, ….). There are two dyadic relations 

in these graphs with one variable present in both dyadic relations, and the fourth variable 

not present in either dyadic relation, and thus independent of the three other variables. 

This graph is also representative of a naïve BN. Figure 25 shows an example of one of 

twelve RA G17 and BN16* specific graphs, BD:CD:A, with independencies (𝐵 ⊥

 𝐶 | 𝐷), (𝐴 ⊥  𝐵, 𝐶, 𝐷), and conditional probability distribution p(B|D) p(C|D)p(D). The 

full list of specific RA G17 and BN16* specific graphs are: AB:AC:D, AB:BC:D, AC:BC:D, 

AB:AD:C, AB:BD:C, AD:BD:C, AC:AD:B, AC:CD:B, AD:CD:B, BC:BD:A, BC:CD:A, and 

BD:CD:A. 

 

Figure 25. Rho 8, G17 and BN16* specific graph example. 

ρrepresents RA general graph G18 and BN general graph BN18 which have the 

same independence structure, (. , …. ⊥ .., …). There are two dyadic relations in these 

graphs with two variables included in one dyadic relation and the other two included in 

the other. Figure 26 shows an example of one of three RA G18 and BN18 specific graphs, 

AD:BC, with independencies (𝐴, 𝐷 ⊥  𝐵, 𝐶) , and conditional probability distribution 

𝑝(𝐶|𝐵)𝑝(𝐵)𝑝(𝐷|𝐴)𝑝(𝐴). The full list of specific RA G18 and BN18 specific graphs are: 

AB:CD, AC:BD, and AD:BC. 
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Figure 26. Rho 9, G18 and BN18* specific graph example. 

ρrepresents RA graph G19 and BN graph BN19 have the same independence 

structure, (.. ⊥ …, ….), (. ⊥ .., …, ….). There is one dyadic relation and two variables inde-

pendent of all other variables. Figure 27 shows an example of one of six RA G19 and BN19 

specific graphs, CD:A:B, with independencies (𝐵 ⊥  𝐶, 𝐷), (𝐴 ⊥  𝐵, 𝐶, 𝐷) and conditional 

probability distribution 𝑝(𝐷|𝐶)𝑝(𝐶)𝑝(𝐴)𝑝(𝐵). The full list of specific RA G19 and BN19 

specific graphs are: AB:C:D, AC:B:D, AD:B:C, BC:A:D, BD:A:C, and CD:A:B. 

ρ11 represents RA graph G20 and BN graph BN20 which have the same independ-

ence structure (. ⊥.., …, ….), (..⊥ …, ….), (…⊥....) in which all variables are independent of 

one another, (𝐴 ⊥  𝐵, 𝐶, 𝐷), (𝐵 ⊥  𝐶, 𝐷), (𝐶 ⊥  𝐷). Figure 28 shows the only specific graph 

for RA G20 and BN20, A:B:C:D.  

 

Figure 27. Rho, 10, G19 and BN19 specific graph example. 

 

Figure 28. Rho 11, G20 and BN20 specific graph. 

Table 5 summarizes all equivalent RA and BN general graphs, with their associated 

Rho graph, an example of their specific graph notations and their independences. These 

specific graph examples align with the BN general graphs of Figure 8 assuming labeling 

of nodes A, B, C, D in the order of top left, top right, bottom left, bottom right. 
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Table 5. Equivalent Rho, RA and BN neutral system general graphs. 

Rho Graph 
RA General 

Graph 

BN General 

Graph 

Specific Graph 

Example  

(RA Notation) 

Independencies 

ρ1 G1 BN1 ABCD no independencies 

ρ2 G7 BN2* ACD:BCD (A ⊥  B | C, D) 

ρ3 G10 BN5* BCD:AD (A ⊥  B, C | D) 

ρ5 G13 BN10 BCD:A (A ⊥  B, C, D) 

ρ6 G15 BN11* AD:BD:CD (A ⊥  B, C | D), (B ⊥  C | D) 

ρ7 G16 BN14* AD:BC:BD (A ⊥  B | D), (C ⊥  A, D | B) 

ρ8 G17 BN16* BD:CD:A (B ⊥  C | D), (A ⊥  B, C, D) 

ρ9 G18 BN18 AD:BC (A, D ⊥  B, C) 

ρ10 G19 BN19 CD:A:B (B ⊥  C, D), (A ⊥  B, C, D) 

ρ11 G20 BN20 A:B:C:D 
(A ⊥  B, C, D), (B ⊥  C, D), (C ⊥  

D) 

4.4. Rho and Non-Equivalent RA and BN General Graphs 

In addition to the 10 equivalent RA and BN general graphs, there are 10 general 

graphs unique to the RA lattice and 10 general graphs unique to the BN lattice. All 10 non-

equivalent RA general graphs in the four variable lattice have loops and require iteration 

to generate their probability distributions. BNs are acyclic and have analytic solutions, so 

there are no BN general graphs that are equivalent to the RA graphs with loops. Since RA 

graphs are undirected, one might think that there could be some equivalent acyclic di-

rected BN graphs, but this is not the case, because BN graphs that are acyclic when direc-

tions are considered but cyclic if directions are ignored have V-structure interpretations, 

as described previously. All 10 non-equivalent BN general graphs have such V-structures, 

which encode independence relations unique to BNs. To illustrate: the structure A→B, 

B→C, C→D, D→A is cyclic and not a legitimate BN structure, but the directed structure of 

A→B, B→C, C→D, A→D (BN9b from Figure 8), which has the same undirected links, is not 

cyclic, and is a legitimate BN structure. However, this latter structure is not interpreted as 

a set of dyadic relations, which would be written in RA notation as AB:BC:CD:AD and 

contains a loop (RA general graph G12 from Figure 1). Rather, the V-structure consisting 

of C→D and A→D is interpreted as a triadic relation, which contributes a 𝑝(𝐷|𝐴𝐶) to the 

probability expression, 𝑝(𝐴)𝑝(𝐵|𝐴)𝑝(𝐶|𝐵) 𝑝(𝐷|𝐴𝐶), which does not correspond to any 

RA structure.  

4.5. Lattice of Rho, RA, BN Neutral System General Graphs 

The lattice of Rho, RA and BN equivalent and non-equivalent general graphs in Fig-

ure 29 was developed from the RA lattice in Figure 1 and the BN lattice in Figure 8. This 

lattice includes all 10 unique RA general graphs, 10 unique BN general graphs, and 10 RA 

and BN equivalent general graphs, for a total of 30 unique general graphs. The lattice is 

organized using the Rho lattice [7]. All 20 RA general graphs and all 20 BN general graphs 

for each Rho graph are represented in the joint lattice. Within each Rho graph, where RA 

and BN graphs are equivalent, that is, when their independence structures are identical, 

the BN graph is placed under the RA equivalent graph. Where RA or BN graphs are not 

equivalent, representing an independence structure unique to RA or BN, they stand alone. 

Arrows from one graph to another in the joint lattice represent the hierarchy of the 

RA lattice only. As can be seen in Section 3, the hierarchy of the BN lattice has many more 

links from parent to child graphs and thus is not a useful representation in the joint lattice. 

Additionally, Figure A6 in Appendix A includes the Joint RA-BN lattice of general and 

specific graphs. This lattice shows 53 unique RA specific graphs, 124 unique BN specific 

graphs, and 61 RA-BN equivalent specific graphs, for a total of 238 combined, unique, RA 

and BN specific graphs. 
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Figure 29. Lattice of 4-variable general Rho, RA and BN neutral system graphs. 

4.6. Joint RA-BN Lattice Algorithm 

This section defines an algorithm for generating the Joint RA-BN lattice of neutral 

system general and specific graphs. 

4.6.1. Procedure to Generate the RA Neutral System General and Specific Graphs from a 

Single Rho Graph 

This is done in three steps: in Step 1, generate the most complex set of specific graphs 

that correspond to the Rho graph; in Step 2, generate all their less complex specific graph 

descendants; in Step 3, specific graphs are collected together in general graphs.  
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Step 1 begins with (Step 1.1) labeling the Rho graph, as shown in Figure 30. The most 

complex specific graph that corresponds to this labeled Rho graph is obtained (Step 1.2) 

by representing each clique with a single relation encompassing all the variables in the 

clique and then joining these relations with a “:”. For example, in Figure 30, A, B, and C 

are in a clique, i.e., are fully linked to one another and this is also the case for B, C, and D, 

but A and B are not linked. The resulting specific graph is ABC:BCD, which is encom-

passed in RA general graph G7. Next (Step 1.3), permute all the variables in this specific 

graph, which generates the other five specific graphs that are encompassed within G7, as 

shown in RA lattice of Figure 4.  

 

Figure 30. Example, Rho 2. 

Step 2 then generates the simpler RA representations of G7 that map to Rho2, namely 

the specific graphs that are encompassed within the RA general graphs G8 and G9. Klir 

[7] (p. 231) details the procedure for this step. In Step 3, specific graphs with the same 

independence structure are then collected together in general graph equivalence classes. 

Doing this for Rho 2 results in general graphs G7, G8 and G9 and their specific graphs as 

shown in Figure 4.  

4.6.2. Procedure to Generate the BN Neutral System General and Specific Graphs from a 

Single Rho Graph 

In contrast to RA graphs, BNs are just Rho graphs with directions added to edges, as 

shown in Figure 31. To generate all BN specific graphs for a given Rho graph, simply 

permute all possible edge directions and variable combinations, and follow the BN neutral 

system general and specific graph procedure outlined above in Section 3.2.6. Essentially, 

the process entails discarding redundant specific graphs and graphs with cycles from all 

these permutations, and collecting together BN specific graphs with unique independence 

structures into a general graph. 

 

Figure 31. Rho 2 example, with associated BNs general graphs. 

4.6.3. Generating the Joint RA-BN General and Specific Graph Lattice 

The following provides a general algorithm to generate the joint RA-BN lattice of 

neutral system general and specific graphs for any number of variables from some specific 

starting graph, either downwards or upwards.  

1. Identify a starting Rho graph 

2. Generate all possible RA and BN specific graphs for the given Rho graph.  

a. For RA, follow the procedure detailed in the prior Section 4.6.1. 

b. For BN, follow the procedure detailed in the prior Section 4.6.2. 

c. Organize all RA and BN general graph equivalence classes into three categories: 

RA graphs with loops, BN graphs with V-Structures, and equivalent RA-BN 

graphs containing no loops or V-structures.  

r  BN3BN2* BN4*
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3. If searching the lattice upward, add an edge to the prior Rho graph. If searching the 

lattice downward, delete an edge from the prior Rho graph. 

4. Repeat steps 2 and 3 until the top or bottom of the lattice is reached.  

Consider for example the results of the RA and BN procedures for Rho 2. Organizing 

these results via step 2c gives the following six general structures: G8 and G9 for RA 

graphs with loops, BN3 and BN4* for BN graphs with V-structures, and G7 and BN2* for 

equivalent RA-BN graphs. Specific structures can be simply obtained from these general 

structures by listing all permutations of variable labels. Following these procedures for 

any number of variables will result in the exhaustive, non-redundant, lattice of joint RA-

BN neutral system general and specific graphs. 

5. Comparing RA and BN Directed System Graphs 

Figure 32 shows side-by-side for comparison the RA augmented directed system lat-

tice from Figure 7 and the BN directed system lattice from Figure 16. To the left or right 

of each BN directed system general graph is the equivalent RA directed system general 

graph. For example, BN7 is equivalent to RA general graph G7. Equivalence in this context 

is in terms statistical equivalence of prediction results given data. Two directed system 

general graphs are equivalent if they predict the DV (Z) in the same way. Each of the BN 

directed system general graphs in the lattice is equivalent to an RA general graph in the 

augmented RA directed system general graph lattice. In addition, the RA directed system 

lattice includes additional predictive graphs, those with loops that are not found in the 

BN lattice. Thus, restricting BN directed systems to those where the DV is not a parent in 

a V-structure, the RA augmented directed system lattice fully encompasses the BN di-

rected system lattice and offers additional predictive graphs.  

Table 6 shows all BN directed system general graphs and their RA equivalents as 

well as specific graph examples with their associated probability distributions. In these 

probability distributions, only the terms used to predict the DV (Z) are highlighted in 

black; non-predictive terms are greyed. All equivalences necessarily involve loopless RA 

models; half of these involve RA graphs in the standard directed system lattice, where 

every model has an IV component, and the other half involve graphs in the augmentation 

of this lattice. Prior to development of the BN directed system lattice in this paper, the RA 

directed system lattice did not include naïve Bayes equivalent graphs, e.g., G15 and G17, 

and the naïve Bayes-like graph, G10. The development of the BN directed system lattice 

in this paper in part inspired the augmentation of the standard RA directed system lattice 

to include naïve Bayes type graphs. 

Table 6. BN directed system graphs and RA equivalent example. 

BN General 

Graph 

BN Specific Graph 

Example 

RA Notation 

BN Specific Graph Example 

Probability Distribution 
Equivalent RA Graph 

Equivalent RA  

Graph Notation 

Equivalent RA Graph 

Probability Distribution 

BN7 BCZ:ABZA:B p(C|BZ)p(Z|AB)p(B)p(A) G7 (augmentation) BCZ:ABZ p(C|BZ)p(Z|AB)p(B|A)p(A) 

BN11 AZ:BZ:CZ p(A|Z)p(B|Z)p(C|Z)p(Z) G15 (augmentation) AZ:BZ:CZ p(A|Z)p(B|Z)p(C|Z)p(Z) 

BN12 ABCZA:B:C p(Z|ABC)p(A)p(B)p(C) G1 ABCZ p(Z|ABC)p(ABC) 

BN13 ACZA:C:BZ p(Z|AC)p(B|Z)p(A)p(C) G10 (augmentation) ACZ:BZ p(Z|AC)p(B|Z)p(C|A)p(A) 

BN16 BZ:CZ:A p(B|Z)p(C|Z)p(Z)p(A) G17 (augmentation) BZ:CZ:A p(B|Z)p(C|Z)p(Z)p(A) 

BN17 BCZB:C:A p(Z|BC)p(B)p(C)p(A) G7 ABC:BCZ p(Z|BC)p(B|CA)p(A|C)p(C) 

BN19 CZ:A:B p(Z|C)p(C)p(A)p(B) G10 ABC:CZ p(Z|C)p(ABC) 

BN20 A:B:C:Z p(Z)p(A)p(B)p(C) G13 ABC:Z p(Z)p(ABC) 
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Figure 32. Comparison of RA augmented directed system lattice to BN directed system lattice. 

However, as pointed out above, the BN directed system lattice developed in this pa-

per was constrained to disallow any DV that is a parent node within a V-structure. If this 

constraint were to be relaxed to allow DVs that are parent nodes in V-structures, then 

there are BN predictive models that give different analytical results than RA predictive 

models. Therefore, the BN directed system lattice developed in this paper is preliminary 

and incomplete. 

To illustrate this point, consider BN17 from Figure 16 with its specific graph 

ABZA:B:C, and removing variable “C” for simplicity resulting in ABZA:B with edge orien-

tations A->Z<-B and with probability distribution 𝑝(𝑍|𝐴𝐵)𝑝(𝐴)𝑝(𝐵). Here, Z is the DV 
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and is the child node within the V-structure and is thus included within the BN directed 

system lattice developed in this paper. This graph is equivalent in terms of prediction to 

RA directed system graph G7 with specific graph ABC:ABZ. In contrast, consider BN17 

with its specific graph ABZA:Z:C. Again, for simplicity and comparability, removing vari-

able “C” results in ABZA:Z with edge orientations A->B<-Z and with probability distribu-

tion 𝑝(𝐵|𝐴𝑍)𝑝(𝐴)𝑝(𝑍). Here, Z is the DV, and is a parent node within the V-structure; 

therefore, this specific graph was not considered in the BN directed system lattice devel-

oped in this paper. However, the predicting components within the probability distribu-

tion are different and thus will result in a different statistical result. The differences be-

tween ABZA:B and ABZA:Z are illustrated in Figure 33, in which a hypothetical joint proba-

bility distribution 𝑝(𝐴𝐵𝑍), shown in (a), yields a conditional distribution 𝑝(𝑍|𝐴𝐵) for RA 

model ABZ and BN model ABZA:B, shown in (b), that is different from the conditional 

distribution 𝑞(𝑍|𝐴𝐵) for BN model ABZA:Z, shown in (c). ABZA:Z is an unconventional BN 

model in its choice of the parent node Z as the DV. These non-conventional BN models 

are not considered in this paper, but are a promising topic for future research that will 

extend the work reported here.  

 

Figure 33. BN Directed System Prediction Example. 

6. Discussion 

6.1. Neutral Systems 

This paper builds on the RA work of Harris and Zwick [33], which developed the BN 

neutral system general graph lattice of Figure 8, expanding it here to offer the BN neutral 

system specific graph lattice of Figure 14. This paper also builds on the joint RA-BN neu-

tral system general graph lattice of Figure 29 developed in that earlier work, expanding it 

here to offer the joint RA-BN neutral system specific graph lattice of Figure A6. In devel-

oping these new lattices, this paper extends RA notation to encompass BN graphs (see 

Section 3.2.3).  

For four variables, the joint RA-BN neutral system general graph lattice increases the 

number of general graphs from 20 in the RA lattice and 20 in the BN lattice to 30 in the 

joint RA-BN lattice, and unique specific graphs from 114 in the RA lattice and 185 in the 

BN lattice to 238 in the joint lattice. The integration of the two lattices offers a richer and 

more expansive way to model and represent complex systems leveraging the V-structure 

unique to BN graphs and the ability accommodate loops and hypergraphs in the RA lat-

tice.  

This paper also develops an algorithm to generate the joint RA-BN neutral system 

general and specific graph lattices for any number of variables in both upward and down-

ward directions (Section 4.6). The exhaustive and non-redundant RA and BN lattices fol-

low the more general Rho lattice. Figure A6 shows the results of this algorithm for four 

variables. Although this algorithm is exhaustive, it does not create a hierarchical nesting 

(a) p(ABZ), joint  distribution for ABZ 

                 Z0                   Z1 
           B0       B1        B0        B1 
A0    0.01    0.19    0.06    0.14 
A1    0.17    0.31    0.03    0.10 
                                                                          (c) q(Z|AB), conditional distribution for ABZA:Z 
(b) p(Z|AB), conditional distribution                where q(ABZ)   = p(B|AZ) p(A) p(Z) 
      for ABZ & ABZA:B                                             and      q(Z|AB) = q(ABZ) / q(AB) 

                 Z0                    Z1         Z0                Z1 
           B0        B1        B0        B1                B0        B1        B0        B1 
A0    0.11    0.58    0.89    0.42     A0    0.21    0.74    0.79    0.26 
A1    0.83    0.75    0.17    0.25     A1    0.74    0.64    0.26    0.36  
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of general or specific graphs. Such nesting is a desirable feature, so future extensions of 

this work could enhance the algorithm by enabling it to develop sequentially with each 

new graph being hierarchically nested. Given data, such an extension would allow statis-

tical significance tests to be performed at each incremental step of lattice generation. Ad-

ditionally, the current algorithm produces the exhaustive lattice, but searching the ex-

haustive lattice to find best candidate graphs is inefficient, so algorithms to efficiently 

search the joint lattice for best candidate graphs would be a useful extension. 

Another promising extension of this work would be to develop hybrid RA-BN gen-

eral graphs [13] for neutral systems to further extend the expression of the joint RA-BN 

neutral system lattice developed in this paper. Such hybrid graphs could incorporate di-

rected edges to encode BN V-structures with loops and hypergraphs found in RA. Other 

possible extensions of this work could explore the application of Bayesian networks to 

hypergraphs [56] and under appropriate conditions to certain types of cycles [57].  

6.2. Directed Systems 

This paper develops the RA augmented directed system lattice (Figure 7), which is 

an extension of the conventional RA directed system lattice (Figure 5). While the conven-

tional RA directed system lattice encompasses all prediction graphs in the BN directed 

system lattice (under the restriction that DVs in BN models are not parent variables in V-

structures), the RA conventional directed system lattice did not include naïve Bayes 

graphs. Doing so, as shown in Figure 7, increases the number of general graphs from nine 

in the conventional RA lattice to 12 in the augmented lattice, and the number of specific 

graphs from 19 to 31. The augmented RA directed system lattice thus offers more candi-

date graphs, and this allows for the possibility of more accurate or simpler and thus more 

generalizable RA prediction models. Augmentation of the conventional RA directed sys-

tem lattice was inspired in part by the BN directed system lattice developed in this paper. 

Future extension of this work could examine whether BN graphs with predictions 

equivalent to RA models but with fewer degrees of freedom than RA predictive equiva-

lents (because of independence constraints among the IVs) offer any advantage in calcu-

lations of statistical significance. If so, such BN graphs might replace their RA equivalents 

in the augmented directed system RA lattice. A related statistical issue that should be ex-

plored is how to compare augmenting directed RA models whose natural reference is 

A:B:…, the neutral system independence reference, with conventional directed systems 

models whose natural reference is AB…:Z, i.e., a reference that has an IV component that 

joins together all IVs in a single relation.  

This paper develops the BN directed system lattice of prediction graphs for four var-

iables (Figure 16), reducing the number of possible specific graphs from 185 in the BN 

neutral system lattice to 18 in the BN directed system lattice—a significant compression 

of the BN neutral system lattice when prediction of a single DV is the goal. This paper also 

shows that all of the graphs in the BN directed system lattice (where this lattice disallows 

graphs where the DV is a V-structure parent) are equivalent in their predictions to RA 

graphs, although many of them have fewer degrees freedom than their RA-equivalent 

counterpart. The augmented RA directed system lattice thus encompasses all of the BN 

directed system general graphs in terms of prediction, and offers additional predicative 

graphs, those including loops, that are not in the BN lattice. However, the restriction that 

disallows BN graphs where the DV is a V-structure parent might be relaxed, so a future 

extension of this work could consider expanding the BN directed system lattice to include 

such unusual BN predictive graphs. An additional extension could be to develop an algo-

rithm to generate the BN directed system lattice of general and specific graphs for any 

number of variables allowing for efficient search of the BN lattice for graphs that uniquely 

predict a single DV. 
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Appendix A 

The contents of this Appendix are the work of other researchers and are included 

here to allow this paper to be understood in a self-contained way. 

Appendix A.1. RA Loop Detection Procedure 

In the RA graphs of Figures 1 and 4, graphs that do not have loops are highlighted in 

bold, while graphs that have loops are non-bold. Graphs without loops are fitted algebra-

ically, whereas graphs with loops are fitted using iterative proportional fitting. To deter-

mine if a graph has a loop, the following procedure is performed: 

Given the set of relations of a specific graph: 

1. Remove all variables that are unique to any individual relation 

2. Remove any relation that is equal to or embedded in any other relation of the (re-

maining) set 

3. Repeat 1 and 2 until either 

a. No variables remain, in which case there are no loops, or 

b. The remainder is unalterable by steps 1 or 2, in which case there are loops 

For example, in Figure 4, graph G7, illustrated by specific graph ABC:ABD does not 

have a loop. Krippendorff’s loop detection algorithm [11] produces the following results. 

First, removing variables unique to both ABC and ABD removes C from ABC and D from 

ABD. What remains is AB:AB, for which the second AB is redundant and thus removed, 

leaving AB. Then, removing the variables unique to AB removes both A and B, leaving 

the null set, and thus this specific graph does not contain a loop. 

By contrast, in Figure 4, graph G8, illustrated by specific graph ABC:AD:BD, does 

have a loop. Krippendorff’s loop detection algorithm [11] produces the following results. 

First, removing variables unique to one relation removes C from ABC. What remains is 

AB:AD:BD. There is no redundant relation, i.e., no relation that is repeated or embedded 

in another relation. There are also no variables unique to one relation. Therefore, nothing 

further can be removed; because the remaining set is unalterable, the specific graph has a 

loop. 

Appendix A.2. D-Separation Procedure  

The following provides the procedure for determining all independencies for a BN 

[55] 

Step 1. List all possible independence statements for a given BN.  

Step 2. For each independence statement, construct the ‘ancestral graph’ [58] for the vari-

ables mentioned in the independence statement.  

Step 3. ‘Moralize’ the ancestral graph by adding an undirected edge between two nodes 

if they have a common child. 

Step 4. ‘Disorient’ the moralized, ancestral graph, by making all edges undirected.  

Step 5. Delete the givens (nodes) and any of their edges from the independence statement 

being tested. 
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Step 6. Read the answer to the independence statement question from the remaining 

graph, if the variables are disconnected in the remaining graph, the answer to the inde-

pendence statement is in the affirmative.  

The following provides examples of the D-separation procedure for BN12 and BN9*:  

Example 1 

Step 1. List all possible independence statements for a given BN. For four variables, 

Table 2 is the complete list.  

Step 2. For each independence statement, construct the ‘ancestral graph’ [58] for the 

variables mentioned in the independence statement.  

An ancestral graph of the probability expression includes all nodes listed in the inde-

pendence statement that is being tested and all parents, grandparents, great-grandpar-

ents, etc., of those nodes. 

BN12 and the independence statement (A ⊥ B | D) will be used as an example 

throughout the remaining procedure (Steps 2–5, Figures A1–A5). 

 

Figure A1. Step 2, create the ancestral graph. 

 

Figure A2. Step 3, moralize the ancestral graph. 

 

Figure A3. Step 4, disorient the moralized, ancestral graph. 
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Figure A4. Step 5, delete the givens. 

 

Figure A5. Example, full D-separation procedure for independence statement (C ⊥ D|A, B). 

Step 3. ‘Moralize’ the ancestral graph by adding an undirected edge between two 

nodes if they have a common child. 

Step 4. ‘Disorient’ the moralized ancestral graph by making all edges undirected.  

Step 5. Delete the givens from and any of their edges. In the continuing example, D 

is the ‘given’ (A ⊥ B | D), thus D and its connected edges to A, B, and C are removed. 

Step 6. Read the answer to the independence statement question from the remaining 

graph, if the variables are disconnected in the remaining graph, the answer to the inde-

pendence statement is in the affirmative. In this example, the independence statement be-

ing tested is the assertion that A and B are independent given D. This assertion is false 

because A and B are connected in the remaining graph; thus, they are not conditionally 

independent given D. 

Example 2 

Consider a second example, using BN9*. The independence statement being tested 

here is the assertion: C independent of D given A and B (C ⊥ D|A, B). Figure A5 shows 

all steps in the procedure for this example, affirming C and D are indeed independent 

given A and B. 
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Figure A6. Joint RA-BN lattice of 4 variable general and specific graphs. 
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G20

G12

G13

G1

G6

G2

BN3

BN8 BN9*

BN10 BN11* BN13 BN14*BN12

BN17BN16* BN18

BN19

BN20

BN15*

BN2*

BN1

BN4*

BN5* BN6 BN7

BN1

BN5

G10

BN10

BN11*

BN14*

BN16*

BN19

BN20

BN18

BN4

ABCD:A:B

ABCD:A:C

ABCD:A:D

ABCD:B:C

ABCD:B:D

ABCD:C:DBN3

BN8

ABCA:B:ABDA:B

ABCA:C:ACDA:C

ABCB:C:BCDB:C

ABDA:D:ACDA:D

ABDB:D:BCDB:D

ACDC:D:BCDC:D

BN9 ABC:ABD:AD:BD

ABC:ACD:AD:CD

ABC:BCD:BD:CD

ABD:ABC:AC:BC

ABD:ACD:AC:CD

ABD:BCD:BC:CD

ACD:ABC:AB:BC

ACD:ABD:AB:BD

ACD:BCD:BC:BD

BCD:ABC:AB:AC

BCD:ABD:AB:AD

BCD:ACD:AC:AD

BN2*

ABC:ABDA:D

ABC:ABDB:D

ABC:ACDA:D

ABC:ACDC:D

ABC:BCDB:D

ABC:BCDC:D

ABD:ABCA:C

ABD:ABCB:C

ABD:ACDA:C

ABD:ACDC:D

ABD:BCDB:C

ABD:BCDC:D

ACD:ABCA:B

ACD:ABCB:C

ACD:ABDA:B

ACD:ABDB:D

ACD:BCDB:C

ACD:BCDB:D

BCD:ABCA:B

BCD:ABCA:C

BCD:ABDA:B

BCD:ABDA:D

BCD:ACDA:C

BCD:ACDA:DBN7

BN6

ABCDAB:C

ABCDAB:D

ABCDAC:B

ABCDAC:D

ABCDAD:B

ABCDAD:C

ABCDBC:A

ABCDBD:A

ABCDBD:C

ABCDCB:D

ABCDCD:A

ABCDCD:B

BN12

BN13

BN15

ABCDA:B:C

ABCDA:B:D

ABCDA:C:D

ABCDB:C:D

ABCA:B:CD
ABCA:C:BD
ABCB:C:AD
ABDA:B:CD
ABDA:D:BC
ABDB:D:AC
ACDA:C:BD
ACDA:D:BC
ACDC:D:AB
BCDB:C:AD
BCDB:D:AC
BCDC:D:AB

ABCA:B:AD
ABCA:B:BD
ABCA:C:AD
ABCA:C:CD
ABCB:C:BD
ABCB:C:CD
ABDA:B:AC
ABDA:B:BC
ABDA:D:AC
ABDA:D:CD
ABDB:D:BC
ABDB:D:CD
ACDA:C:AB
ACDA:C:BC
ACDA:D:AB
ACDA:D:BD
ACDC:B:BD
ACDC:D:BC
BCDB:C:AB
BCDB:C:AC
BCDB:D:AB
BCDB:D:AD
BCDC:D:AC
BCDC:D:AD

BN17 ABCA:B

ABCA:C

ABCA:D

ABCB:C

ABCB:D

ABCC:D

Lattice of Four Variable General and Specific Bayesian Network Graphs
20 General Graphs, 185 Specific Graphs

BN4b BN5cBN5b BN5d

BN9b BN11b BN14b BN15b BN16b

BN2b BN2c

*equivalent general structures with additional unique edge orientations

AB:AC:BD
AB:AC:CD
AB:AD:BC
AB:AD:CD
AB:BC:CD
AB:BD:CD
AC:AD:BC
AC:AD:BD
AC:BC:BD
AC:BD:CD
AD:BC:BD
AD:BC:CD

ABCD:AB:AC

ABCD:AB:AD

ABCD:AB:BC

ABCD:AB:BD

ABCD:AC:AD

ABCD:AC:BC

ABCD:AC:CD

ABCD:AD:BD

ABCD:AD:CD

ABCD:BC:BD

ABCD:BC:CD

ABCD:BD:CD

Joint RA -BN Four Variable Lattice of General and Specific Graphs
30 General Graphs, 238 Specific Graphs
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