
Portland State University Portland State University 

PDXScholar PDXScholar 

Electrical and Computer Engineering Faculty 
Publications and Presentations Electrical and Computer Engineering 

12-2011 

Decomposition of Reversible Logic Function Based Decomposition of Reversible Logic Function Based 

on Cube-Reordering on Cube-Reordering 

Martin Lukac 
Tohoku University 

Michitaka Kameyama 
Tohoku University 

Marek Perkowski 
Portland State University 

Pawel Kerntopf 
Warsaw University of Technology 

Follow this and additional works at: https://pdxscholar.library.pdx.edu/ece_fac 

 Part of the Electrical and Computer Engineering Commons 

Let us know how access to this document benefits you. 

Citation Details Citation Details 
Lukac, Martin, Michitaka Kameyama, Marek Perkowski, and Pawel Kerntopf. "Decomposition of reversible 
logic function based on cube-reordering." Facta universitatis-series: Electronics and Energetics 24, no. 3 
(2011): 403-422. 

This Article is brought to you for free and open access. It has been accepted for inclusion in Electrical and 
Computer Engineering Faculty Publications and Presentations by an authorized administrator of PDXScholar. 
Please contact us if we can make this document more accessible: pdxscholar@pdx.edu. 

https://pdxscholar.library.pdx.edu/
https://pdxscholar.library.pdx.edu/ece_fac
https://pdxscholar.library.pdx.edu/ece_fac
https://pdxscholar.library.pdx.edu/ece
https://pdxscholar.library.pdx.edu/ece_fac?utm_source=pdxscholar.library.pdx.edu%2Fece_fac%2F180&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/266?utm_source=pdxscholar.library.pdx.edu%2Fece_fac%2F180&utm_medium=PDF&utm_campaign=PDFCoverPages
http://library.pdx.edu/services/pdxscholar-services/pdxscholar-feedback/?ref=https://pdxscholar.library.pdx.edu/ece_fac/180
mailto:pdxscholar@pdx.edu


FACTA UNIVERSITATIS (NIŠ)

SER.: ELEC. ENERG. vol. 24, no. 3, December 2011, 403-422

Decomposition of Reversible Logic Function Based on
Cube-Reordering

Martin Lukac, Michitaka Kameyama, Marek Perkowski,
and Pawel Kerntopf

Abstract: We present a novel approach to the synthesis of incompletelyspecified
reversible logic functions. The method is based on cube grouping; the first step of the
synthesis method analyzes the logic function and generatesgroupings of same cubes
in such a manner that multiple sub-functions are realized bya single Toffoli gate. This
process also reorders the function in such a manner that not only groups of similarly
defined cubes are joined together but also don’t care cubes. The proposed method is
verified on standard benchmarks for both reversible and irreversible logic functions.
The obtained results show that for functions with a significant portion of don’t cares
the proposed method outperforms previously proposed synthesis methods.

Keywords: Reversible Logic Synthesis, Toffoli Gates, Cube Reordering, Incom-
pletely Specified Functions

1 Introduction

Reversible Logic Synthesis has been quite actively pursued over approximately
the last ten years, mainly due to the fact that quantum computing is naturally a
reversible computational system [1] and due to the possibility of building a quantum
computer in close future.

Manuscript received Jule 20, 2011. An earlier version of this paper was presented at the Reed
Muller 2011 Workshop, May 25-26, 2011, Gustavelund Conference Centre, Tuusula, Finland.

M. Lukac and M. Kameyama are with Graduate School of Information Sciences, Tohoku Uni-
versity, Sendai, Japan (e-mail:lukacm@ecei.tohoku.ac.jp). M. Perkowski is with Depart-
ment of Computer and Electrical Engineering, Portland State University,Portland, OR, USA (e-mail:
mperkows@ee.pdx.edu). P. Kerntopf is with Institute of Computer Science, Warsaw University
of Technology, Warsaw, Poland and Department of Theoretical Physics and Informatics, University
of Lodz, Lodz, Poland (e-mail:p.kerntopf@ii.pw.edu.pl).

Digital Object Identifier: 10.2298/FUEE1103403L

403



404 M. Lukac et. al.:

The reversible logic has been recently gaining some popularity due to the pos-
sibility that the quantum computer will be soon realized.

The realization of the quantum computer is motivated by the fact that the cur-
rent technology is approaching the Moore’s limit of transistor integration and the
size of a single transistor will soon approach the size of a single elementary particle.
At that level, quantum laws are predominant and thus they must be integratedin the
design and in the computational paradigms. The reversible logic is well situatedto
be implemented in quantum technology because quantum technology is naturally
reversible. Thus it is reasonable that the reversible logic is increasing in popularity
and that more and more synthesis and design methods are being developed.

he reversible logic synthesis of incompletely specified functions takes as input
a function that contains don’t cares in its Karnaugh Map (KMap) and generates a
reversible circuit. Up to now few approaches have been proposed forsolving prob-
lem (as opposed to the fully specified reversible functions). For instance[2] used an
ESOP based synthesis where for each cube a single multiple-control Toffoli (MCT)
gate was generated. Another approach was proposed more recently [3] where the
authors applied BDD (with modified nodes) as the synthesis method of reversible
circuits (each node of the BDD was treated as a reversible expansion). Also in
[4] several incompletely specified functions are synthesized using an evolutionary
automated logic synthesizer.

In this paper we examine a simple heuristic used for the synthesis of reversible
logic circuits. In this approach the circuit is analyzed at the level of overlapping
control bits allowing to minimize the number of redundant logic gates. This is
performed while the circuit is being designed only with Toffoli (CCNOT) gates. In
general a function withn inputs require a certain amount of ancilla bits to make
the function reversible. Depending on the algorithms the amount of ancilla bits
can be either minimal - maximumn - or can be much larger. In the proposed
algorithm, the circuits constructed always have at maximumn−1 ancilla bits and
when compared to methods where more than two control bit Toffoli gates areused
the amount of ancilla bits is the same. Finally the proposed method is suitable for
such implementations as the Linear Nearest Neighbor (LNN) model of quantum
circuits as most of the gates are Toffoli gates acting on neighboring bits.

The paper is organized as follows. Section 2 introduces the basic principles of
reversible logic circuits. In Section 3 each step of the proposed synthesismethod
is introduced and explained. Section 5 describes the experiments and the results.
Section 6 concludes this paper.



Decomposition of Reversible Logic Function Based on Cube-Reordering405

2 Reversible Logic Basics

Most of developed design methodologies are based on reversible logic gates such
as Toffoli or Fredkin gates. The most common is using Toffoli gates [5, 6](Fig. 1)
however other less popular approaches using for instance Fredkin gates have been
proposed [7,8].

a • x

b • y

c z

(a) Pictorial representation of
the Toffoli gate

abc xyz
000 000
001 001
010 010
011 011
100 100
101 101
110 111
111 110

(b) Truth table of the
Toffoli

abc xyz
000 000
010 010
100 100
110 111
001 001
011 011
101 101
111 110

(c) Reordered truth table
of the Toffoli gate

Fig. 1. The Toffoli gate

Fig. 1 shows the truth table (Fig. 1(b)) of the Toffoli gate and its pictorial
representation (Fig. 1(a)). Observe, that the gate is reversible because the mapping
F : I →Oallows one to compute the inverse mappingF−1 : O→ I ; the implemented
logic is bijective. The reason that the Toffoli gate is popular in the reversible logic
synthesis approaches is the fact that it is the universal reversible gatewith the small-
est number of variables. This can be also seen when the rows of the truth table are
reordered properly: the reordering is performed so that the two bitsa andb become
the data inputs and the output bit c is the result carrying the output. This can be
seen in the Table 1(c). Observe that the reordered Toffoli gate becomes a controlled
NAND gate and controlled AND gate (of thea andb variables) for different values
of the c control variable (Figure 1(c)). Thus the Toffoli gate can be seen as the
direct implementation of the universal irreversible NAND gate, although in fact, it
is something more than NAND - it embeds NAND.

The algorithm developed in this paper uses only Toffoli gates and the Feynman
gate. The Feynman gate is shown in Fig. 2. The Feynman gates are in two variants;
Feynman gate with positive control bit is shown in Fig. 2(a) and Feynman gatewith
negative control bit is shown in Fig. 2(b) [9].

Because the Toffoli gate has two control bits the binary combination of two
variables allows to define four different Toffoli gates. These Toffoligates have
controls on the adjacent bits but each type of Toffoli gate has controls according to



406 M. Lukac et. al.:

•

(a) (b)
Fig. 2. The two types of Feynman gates used

the possible combination of two bit values. These four types are shown in Fig. 3.

• •
• •

(a) (b) (c) (d)
Fig. 3. The four types of Toffoli gates used

Each Toffoli gate from Fig. 3 is controlled by 11, 01, 10, and 00 respectively.

3 Proposed Cube-Reordering (CR) Algorithm

The algorithm studied in this paper is based on very simple principles:

• Eliminate redundant cubes of Toffoli gates connected in series represented as
a SOP logic form

• Synthesize circuits only from two controlled bit Toffoli gates

• Restore bit values only if necessary

• Design circuits in a hierarchical manner

Because the main strategy for minimizing and designing reversible circuits of this
algorithm is the re-ordering of the input vectors (cubes) the algorithm is called
Cube-Reordering (CR) algorithm. To illustrate the points mentioned above the
following example is used.

Example 3.1 Let’s look at the definition of the function called 4gt11 (a logical
detector of an integer greater than 11 encoded on 4 bits). This function is given
in Table 1 which specifies only theonesof the function. Assume that the output
bit is set to value 0, then only four minterms need to be designed using logic gates
to satisfy the specifications. This is because only for outputs of the desiredlogic
function have value 1.

The first observation that can be made is that all four minterms are defined for
the same values on the bitsab . Thus one can start to create a Toffoli gate and



Decomposition of Reversible Logic Function Based on Cube-Reordering407

Table 1. The definition of the function 4gt11.

abcd f

1100 1
1101 1
1110 1
1111 1

adding a single ancilla bit as shown in Fig. 4. Observe that there aren−1 ancilla
bits in Fig. 4. As will be seen later, this is the initial configuration of the circuit;
for each input bit after the second one one ancilla bit is added. These ancilla bits
are used to route the output of the above Toffoli gates if needed. For instance, the
first ancilla bit in Fig. 4 is used to represent theab term.

f

0

b

a

ab
0

0

0

0

b

a

d

c c

d

Fig. 4. The first step in the proposed synthesis method.

The next step start by observing that for the input valuesab there are all four
combinations of the cd bits, in particular ¯cd̄, c̄d, cd̄ andcd. One can reorder the
input minterms with the goal of minimizing the number of required control bits;
this means that we order the Toffoli gates defined on the bitsd andc in natural
binary order 00, 01, 10 and 11. This is shown in Fig. 5. Later it will be shown how
such natural order is used to remove adjacent Toffoli gates.

0

b

a

0

f0

0

0

b

a

c

d

c

d

Fig. 5. The second step in the proposed method. All gates are built on the ordered set of all input
minterms.

Observe, that the bitscdcan be replaced by don’t cares as they are covering all
combinations of values: 00+01+10+11= −−. This can be seen in the dashed



408 M. Lukac et. al.:

square in Fig. 5. Thus variablescd can be skipped and the ancilla bit inserted
during the first step becomes the output of the synthesis, as shown in Fig. 6.

f

0

0

b

a

0

0

0

b

a

c

d d

c

Fig. 6. The circuit of function4gt11re-
alized on the bit-array including all ini-
tial bits.

b

a

0

b

a

f

d

c

d

c

Fig. 7. The final circuit obtained by our
method.

This simplified circuit then can be further modified to satisfy some technologi-
cal constraints (for instance the LNN model) as well as the unused ancilla bitscan
be removed. The final circuit is shown in Fig. 7. Observe that at this levelthe
cost of the synthesized circuit (5 elementary quantum gates) is lower than the one
reported in the RevLib benchmarks (7 gates) [7,10,11].

The cost function used in this paper is based solely on the cost of the Toffoli
gates; a two-control bit Toffoli gate has a cost of 5 and any Feynman gate has a cost
of 1 [10]. In the used cost function any additional gates such as SWAP gates or the
single bit NOT gates are not taken into account when calculating the cost.

From Example 3.1 one can observe a multi-level ordering. Because we arere-
stricting the proposed method only to use two-bit controlled Toffoli gates, theorder-
ing is based on a two bit patterns of the input bits. Thus in general for any reversible
circuit of an incompletely specified function the method orders all bits in a two by
two manner starting on from the top most bits and ending on the lowest ones. The
ordering is as described above a natural order but is augmented by the don’t cares so
that the input cubes follow the order given by−−,−0,−1,0−,1−,00,01,10,11.

Example 3.2 To understand better the proposed method a more complex example
function with eleven input variables and three output variables is shown in Table 2.
The format of definition is a PLA format; each column specifies the value of output
bitso0 to o2 for a cube defined on input bits a to k. This function has in its definition
some don’t cares that are denoted byd in the Table 2.

Before continuing we introduce an encoding of pairs of values of adjacent bits.
This means that for every two adjacent bits and starting from the top of the function
definition Table 2 we assign a pair of identical values to the adjacent bits in the
particular column using the encoding shown in Table 3.



Decomposition of Reversible Logic Function Based on Cube-Reordering409

Table 2. The function specification

a 1 d d d d d d d d d
b d 1 1 1 1 1 1 1 1 1
c d d d d d d d d d d
d d 0 0 0 0 0 0 0 0 0
e d 0 0 0 0 0 0 0 0 0
f d 0 1 0 0 0 0 0 0 0
g d 0 1 0 0 0 0 0 0 0
h d 1 0 0 1 0 1 0 1 0
i d 1 0 0 1 0 1 0 1 0
j d 0 0 0 1 1 0 0 1 1
k d 1 1 1 1 1 0 0 0 0

o0 1 1 1 1 0 0 0 0 0 0
o1 0 0 0 0 1 1 1 1 0 0
o2 0 0 0 0 0 0 0 0 1 1

Table 3. Encoding of the incompletely defined two-bit cubes.qt stands for top bit andqb is the
bottom bit for any two adjacent bits in a quantum circuit.

qt qb encoding

0 0 2
0 1 3
1 0 4
1 1 5
0 d 6
1 d 7
d 0 8
d 1 9
d d 10

The resulting encoding of Table 2 is shown in Table 4. Observe that the
encoding is done two by two bits and thus the encoding is identical for two bits in
each pairs ab, cd, ef, gh, ij and k.

Following the steps described in the previous example, one starts by ordering
the input vectors (columns) two bits by two bits, from the topmost down to the
bottom one. First the two top most bits are ordered, and then recursively the bits
below are reordered. The ordering uses natural order of the encoding and thus
ultimately the input vectors are ordered in groups, where each group of adjacent
input vectors has a common Toffoli gate. Conversely, each adjacent Toffoli gate is
placed in natural increasing order of is control input variables.

In other words, ordering each pair of bits creates groups of minterms with com-
mon two bits. Then, for each group of input minterms having common upper bits,
a reordering is performed two-by-two bits resulting in the Table 5. Observethat
in Table 5 the first column is a single group because it has the two topmost bits



410 M. Lukac et. al.:

Table 4. The function from Table 2 encoded by two bit control types.

a 7 9 9 9 9 9 9 9 9 9
b 7 9 9 9 9 9 9 9 9 9
c 10 8 8 8 8 8 8 8 8 8
d 10 8 8 8 8 8 8 8 8 8
e 10 2 3 2 2 2 2 2 2 2
f 10 2 3 2 2 2 2 2 2 2
g 10 3 4 2 3 2 3 2 3 2
h 10 3 4 2 3 2 3 2 3 2
i 10 4 2 2 5 3 4 2 5 3
j 10 4 2 2 5 3 4 2 5 3
k d 1 1 1 1 1 0 0 0 0

o0 1 1 1 1 0 0 0 0 0 0
o1 0 0 0 0 1 1 1 1 0 0
o2 0 0 0 0 0 0 0 0 1 1

different from the rest of the input minterms. For the group of minterms with the
top most bits encoded by 9, bits e and f creates a two new subgroups with values 2
and 3. Next, for the bits e and f having 2 as encoding, the bits g and h creates two
new groups with values of encoding 2 and 3. Recursively applying this approach
creates the Table 5.

Table 5. The function from Table 2 ordered and encoded by two bit control types.

a 7 9 9 9 9 9 9 9 9 9
b 7 9 9 9 9 9 9 9 9 9
c 10 8 8 8 8 8 8 8 8 8
d 10 8 8 8 8 8 8 8 8 8
e 10 2 2 2 2 2 2 2 2 3
f 10 2 2 2 2 2 2 2 2 3
g 10 2 2 2 2 3 3 3 3 4
h 10 2 2 2 2 3 3 3 3 4
i 10 2 2 3 3 4 4 5 5 2
j 10 2 2 3 3 4 4 5 5 2
k d 1 0 1 0 1 0 1 0 1

o0 1 1 0 0 0 1 0 0 0 1
o1 0 0 1 1 0 0 1 1 0 0
o2 0 0 0 0 1 0 0 0 1 0

The next step after the Table 5 has been created is to methodically remove
any redundant Toffoli gates. This process creates the so calledactivation table; the
table represents the activation of new Toffoli gates. This table is constructed using
the pseudo-code shown in Algorithm 1.

The Algorithm 1 traverses the encoded and reordered Table 5 from leftto right
and from top to bottom. Initially, theactivation tableis initialized to all values



Decomposition of Reversible Logic Function Based on Cube-Reordering411

Algorithm 1 Pseudo-Code for the creation of theActivation Table
1: Initialize activation Table T to all values be -10
2: for each input bit Ido
3: B = 10
4: for each input minterm Jdo
5: if bi j ! = 10 then
6: if bi j ! = B then
7: B = bi j

8: if B == 0 then
9: Ti j = c

10: else
11: Ti j = n
12: end if
13: else
14: Ti j = −
15: end if
16: end if
17: end for
18: end for

being 10 (don’t care) (line 1) and to the size equal to the table defining the original
function (in this case 11×10 - we ignore the output bits for the simplicity). Starting
in the top left corner of Table 5 (line 2) the temporary variable is set to 10 (line
3). Then traversing each line in the table (variable), each time that the temporary
variableB is not equal to the current value - skipping don’t cares (line 5) - (indexed
by i and j) (line 6), the new value is written toB (line 7). At the same time, in
theactivationtable it is written eitherc (positive control bit) orn (negative control
bit). Also observe that when a don’t care is encountered nothing is writtenin the
corresponding location of theactivationtable (Table 6) but when the value of at the
i j th location in the function table is equivalent toB a don’t care sign ”-” is written
in the activation table (line 14).

The Table 6 is the result of the process described above and in the Algorithm 1.
The reason this table is calledactivation tableis because each time a letter is written
to a location, it represents the fact that a new Toffoli gate has to be inserted - a new
gate is activated. The result of this process is a number of letters corresponding to
positive and negative control bits of the required Toffoli gates.

The final step is to decide how to place and how to count the Toffoli gates from
Table 1. For more complex circuit the proposed method offers two possibilities.
Making the assumption (as in [3]) that ancilla bits are available in arbitrary num-
bers, for each group of cubes one ancilla bit can be introduced into the circuit. To
be more precise, each time a Toffoli gate is created an ancilla bit can be inserted



412 M. Lukac et. al.:

Table 6. The reversible cascade specified by the required control changes - theactivation table.
(Table T)

a c
b c - - - - - - - -
c
d n - - - - - - - -
e n - - - - - - - -
f n - - - - - - - c
g n - - - - - - - c
h n - - - c - - - n
i n - - - c - - - n
j n - c - n - c - n
k c n c n c n c n c

o0 1 1 0 0 0 1 0 0 0 1
o1 0 0 1 1 0 0 1 1 0 0
o2 0 0 0 0 1 0 0 0 1 0

a •
b •
c
d
0 •

e

0 •

f

0 •
g

0 •

h
0 •

i
0 • •

j •

0 • •

0 • •

k • •

o 0

o 1

o 2

Fig. 8. The five first columns of the resulting circuit created from Table 6by a direct mapping to
Toffoli gates with one ancilla bit per inserted Toffoli gate.

where required. This ancilla bit insertion results in the fact that no Toffoligate has
to be repeated because each Toffoli gate output bit is different. In such case a partial
result (the first five columns of Table 6) is shown in Fig. 8.

Continuing in this manner for all groups of two bit until the bottom of the
reversible cascade, one obtain a realization of the reversible function that could in



Decomposition of Reversible Logic Function Based on Cube-Reordering413

a •
b •
c
d
0 •

e

0 •

f

0 •
g

0 •

h
0 •

i
0 • • • •

j • •

0 • • • •

k • •

o 0

o 1

o 2

Fig. 9. The five first columns of the resulting circuit created from Table 6by a direct mapping to
Toffoli gates with the restoration of the ancilla bits for later usage.

the worst case require 2n ancilla bits. This naturally is not acceptable, however for
functions that have a high number of don’t cares this approach generates results
that are less costly in the number of gates as well as in the number of ancilla bits
compared with any previously presented approach.

On the other hand, it is possible to design the circuit with a linear number of
ancilla bits with a certain number of additional Toffoli gates that have to be inserted.
This means that besides each input variable bit we insert an ancilla bit that will be
used as the output of a Toffoli gate generating an intermediate result. The additional
Toffoli gates are required because these ancilla bits are reused by Toffoli gates in
the later stages of the circuit and thus the ancilla bit must be restored to its initial
value. This means that in the worst case the number of ancilla bits added isn−1.
The result of this approach after the first level of cube reordering is shown in Fig. 9.
The number of the ancilla bits in this case is equal ton

2 but the number of gates is
given byh∗2 (h is the number of ’c’ and ’n’ elements on the topmost position in
every column in Table 6).

To summarize the proposed method can be used to design circuits in the fol-
lowing ways:

1. Design circuit with the number of Toffoli gates equal tok−h wherek is the
total number of ’c’ and ’n’ elements in the Table 6. Thus from Table 6 one
can design a circuit with exactly 26− 1 = 25 Toffoli gates. This includes
one CNOT gates in the first column. The number of ancilla bits is equal to
k− j where j is the number of control bits in the Toffoli gate at the bottom of



414 M. Lukac et. al.:

each column. Thus the circuit realizing the function from Table 6 requires
10−1 = 9 ancilla bits

2. Design circuit with number of gates equal to(k−h)∗2 and with the number
of ancilla bits equal at maximum to the number of input bits; in the case of
the Table 6 the maximal number of ancilla bits is thus 11.

4 Cost Reduction and Variable Reordering

Among the several improvements that are possible to the proposed approach, in
this section we present two heuristics.

Variable reordering is a well known method in the Boolean function minimiza-
tion and has been widely used in various aspects including [12–18]. The principle
consists of swapping a set of variables in the function. This process often results
in more optimal function representation and thus allows a considerable cost reduc-
tion in the final function realization. The variable reordering algorithm usedin this
paper is illustrated by the pseudo-code for algorithm 2.

Algorithm 2 Pseudo-Code for theVariable Reorderingheuristics
1: configurations = number of input vectors * number of inputs
2: ordering = new array(sizeof(variables))
3: BestCost= worst cost
4: Best Order= {}
5: for i = 1 to configurationsdo
6: Costi = evaluate(orderingi)
7: if Cost< BestCostthen
8: BestCost= Costi
9: Best Order= orderingi

10: end if
11: orderingj = changeordering(orderingi)
12: end for

Lines 1 and 2 in the pseudo-code 2 initialize the number of tested variable
permutations calledconfigurationsand the array storing the current variable order-
ing respectively. Line 3 and 4 initialize theBestCostto a maximum value (always
overshooting even the worst possible cost of the circuit) andBestOrder to an empty
set respectively. TheBestCostvariable holds the cost of the circuit calculated from
the number of gates and theBestOrdervariable holds the ordering of the variables
corresponding to the best cost. Here the worst possible cost of a given circuit is es-
timated as the number of control inputs× number of input vectors; an input vector
is each input cube specified in the input file. In this paper the selection of variables
to swap is a random process because the best known variable order is not known.



Decomposition of Reversible Logic Function Based on Cube-Reordering415

The best possible ordering of the vectors in this case is such that will generate the
circuit with minimal number of Toffoli gates, e.g. such ordering that would allow
to eliminate as many as possible of Toffoli gates. The random variable ordering
however does not always generate the same results and thus in the testing process
the evaluation of the variable reordering was performed multiple times in order to
confirm the best result.

The cost reduction heuristic is based on the following principles:

1. remove all Toffoli gates that are not required

2. replace adjacent Toffoli gates by CNOT gates whenever possible.

Principle (1) means that as shown in Example 3.2, Toffoli gates used to realize a
particular input vector (cube) use a certain amount of the available ancilla bits. Each
time a given ancilla bit is required by another following input vector the ancilla bit
must be restored to the initial value so it can be re-used.

Principle (2) is used to minimize adjacent Toffoli gates when such gates does
not depend on previous variables. For instance, Figure 10 shows where two Toffoli
gates can be replaced by one CNOT gate.

0

b

a

0

f

c

d

0

b

a

0

f

c

d

0

0

0

b

a

c

d

abc̄d̄ abc̄d abcd ab̄c̄d̄(a)

(b)

0

0

0

b

a

c

d

abc̄d ab̄c̄d̄abcdabc̄d̄

β
α

Fig. 10. Example of minimizing Toffoli array by CNOT substitutions

Figure 10 shows a circuit implementing the functionf = abc̄d̄⊕abc̄d⊕abcd⊕
ab̄c̄d̄. Figure 10(a) is a direct mapping using only Toffoli gates. Figure 10(b)
shows how certain Toffoli gates can be directly replaced by CNOT gates.The Tof-
foli gates that can be directly replaced are only those that are either on thebeginning
or at the end of the product term. We call these Toffoli gates the free Toffoli gates.
Observe that literals in such terms are also such literals that are the first to change in



416 M. Lukac et. al.:

the hierarchy of the variables. The gates that are considered to be at thebeginning
of a product term are the Toffoli gates in the dashed boxes labeledα . The gates
considered to be at the end of a product term are the Toffoli gates labeled β .

In more details, the principle (2) can be directly formalized as follows. Let
x0, . . . ,xk be a set of variables on adjacent k wires; starting form the top wire and
ending on the k-th wire. Let a product term be given on the k variables asx0 . . .xk

and being created by a set of Toffoli gates as shown in previous examples. Then to
invert k-th variable to obtainx0 . . . x̄k one can use the following rule

x0 . . . x̄k = x0 . . .xk⊕x0 . . .xk−1 (1)

Thus in Figure 10 starting by the termabc̄d̄ one can obtainabc̄d by a sin-
gle CNOT gate as shown in Figure 10(b) - Toffoli gate labeledβ . This particu-
lar replacement rule is used as the major cost improvement to the original cube-
reordering algorithm. Also observe that because of such rules the original natural
order might not always be the best ordering for minimizing the adjacent cubes.

b
1a 0

0

1

0 0

1 0

b
1a 0

0

1

0

0

0

1

b
1a 0

0

1 0

01

0

b
1a 0

0

1

0

0

1

0

⊕b̄⊕b

⊕a

⊕ā

⊕ā⊕ b

⊕ā⊕ b̄

⊕a⊕ b̄

⊕a⊕ b

Fig. 11. Diagram showing EXOR relation between the various forms of the Toffoli gates

Figure 11 shows the logical relations that are the base for the Toffoli to CNOT
transformations. Observe that a single product term term be moved on a K-map
using the EXOR operation. This corresponds to the fact that one can change a
Toffoli gate output (product term) to any adjacent product terms by a single CNOT
gate. Thus, whenever there are two Toffoli gates that differ in single control bit, the
second Toffoli gate can be replaced by a CNOT gate as shown in Figure 10.

The property described in eq. 1 implicitly restrict the usage of the CNOT gates
to only the free Toffoli gates. The free Toffoli gates thus represent such gates
that can be replaced by single CNOT gates. In particular this means that fortwo
adjacent product terms each built from a set ofm Toffoli gates and with commonl



Decomposition of Reversible Logic Function Based on Cube-Reordering417

top-most Toffoli gates, the first Toffoli gate that has different one ofthe control bit
can be replaced by a CNOT gate. This is effectively the case of the Toffoli gates
labeledα andβ in Fig 10. The most important about this property is the fact that in
the presented circuit structure the replacement rule removes two Toffoli gates. This
is because Toffoli gates with the control bits located on the same bits will generate
the output on the same ancilla bit. In such case it is necessary to first restore the
ancilla bit - by applying one Toffoli gate - and then apply the next Toffoli gate. In
such case, both Toffoli gates are replaced by a CNOT gate.

5 Experiments

Table 7 shows the results of the synthesis method for the benchmarks from the
RevLib web-site. The table compares the obtained results to the best reported re-
sults in the repository and as can be seen that our algorithm performs quite well
for the incompletely specified functions. In fact for the benchmarks that includes
functions with a high number of don’t cares the algorithm outperforms the best
currently reported results.

Because the method currently only supports single output functions, the bench-
marks presented include only single output reversible functions. The functions in
Table 7 are all such that even if the defined function is defined with more than
single output bit, at any given time for any given input only a single output bit is
flipped.

The first three columns of the Table 7 are the name, the number of inputs (I) and
the number of outputs (O) of the benchmark function respectively. The next column
B.P.R.R., is the best previously reported result and the final four columns represent
the proposed method and various improvements made to the original CR algorithm.
Each result reporting column contains three sub-columns; each representing the
number of gates (G), the quantum cost (C) and the number of ancilla bits (A)in the
designed circuit, respectively.

The column labeled ’Method 1’ represents the results of the CR synthesis al-
gorithm assuming no Toffoli gate repetition for variable restoration. This results in
a very large amount of ancilla bits. This corresponds to the approach shown in the
Fig. 8. The ancilla bits have not been counted because the method is very wasteful.
The results of method 1 are used as the lowest bound on the number of required
gates. Method 2 is using the same principle of design as method 1 but the number
of Toffoli gates is doubled (each ancilla bit is restored after being used). Using



41
8

M
.L

uk
ac

et
.

al
.:

Table 7. Preliminary results of the proposed methods

F. Name I O
B.P.R.R. Method 1 Method 2 Method 3 Method 4

G C A G C A G C A G C A G C A

9symml 12 8 129 14193 N.A. 296 1486 N.A. 592 2992 11 577 2885 11 565*6 2831 11
add6 12 8 229 6455 N.A. 1215+31 6106 N.A 2430+31 12212 11 2297 11485 11 2195+51 11026 11
adr4 12 8 55 727 N.A. 212 1060 11 424 2120 11 378 1890 11 290+42 1492 11
alu1 12 8 32 228 N.A. 26+3 133 7 52 266 4 32+3 163 11 19+7 102 11
apex5 117 88 2909 10394 1025 2526+79 12709 N.A. 5052+79 25418 118 4497+26 22537 118 4409+70 22115 118
apex4 39 3 5376 237963 N.A. 1212+10 6070 N.A. 2024+10 12140 38 2395+10 11975 38 2381+7 11912 38
apla 10 12 80 3438 N.A. 74 370 N.A. 148 740 10 106 530 10 106 530 10
C17 5 2 9 99 N.A. 5+2 27 0 5+2 27 0 5+2 27 0 4+2 22 0
C7552119 5 16 80 1728 N.A. 44 220 N.A. 88 440 3 84 420 3 56 280 3
clip 9 5 174 6731 N.A. 517+5 2590 N.A. 1034+5 5175 8 979 4895 8 798+35 3980 8
cm150a 21 1 53 1096 N.A. 64+1 321 N.A. 128+1 641 20 109+1 546 20 109+1 546 20
cm151a 19 9 33 888 N.A. 60+1 301 N.A. 120+1 601 18 78 390 18 78 390 18
cm152a 11 1 16 252 N.A. 24 120 N.A. 48 240 10 38 190 10 30 150 10
cm163a 16 13 39 756 N.A. 61+21 326 N.A. 122+21 631 15 86+29 459 15 38+18 128 15
cmb 16 4 18 910 N.A. 47+27 262 N.A. 94+27 497 15 52+2 262 15 43+28 243 15
frg1 28 3 212 15265 N.A. 427+2 2137 N.A. 854+2 4170 27 581+2 2907 27 579+3 2898 27
frg2 143 139 3724 12468 1219 10190+24051190 N.A. 20380+240102380+240142 19485+10597530 142 19027+33495469 142
max46 9 1 107 5444 N.A. 253 1265 N.A. 506 2530 8 487 2435 8 419 2095 8
misex1 8 7 55 982 N.A. 33+17 182 N.A. 66+17 347 7 50 260 7 32+10 170 7
misex3 14 14 1752 199177 N.A. 6355+422 32197 N.A. 12710+422 63972 13 12595 62975 13 8113+281 40846 13
mux 21 1 35 1078 N.A. 182 910 N.A. 364 1822 20 293 1465 20 286+3 1433 20
pm1 4 10 35 377 N.A. 40 40 3 40 40 3 40 40 3 40 40 3
ryy6 16 1 44 4292 N.A. 161 805 N.A. 322 1610 15 281 1405 15 281 1405 15
seq 41 35 5990 19362 1617 6027+426 30561 N.A. 12054+426 60696 40 11700+1 58501 40 11238+23256422 40
sqrt8 8 4 40 622 N.A. 60+7 307 N.A. 120+7 607 7 92+2 462 7 92+2 462 7
sym9 9 1 28 108 12 344 1720 N.A. 688 3440 8 651 3255 8 621+28 3133 8
sym10 10 1 194 25866 N.A. 1800 9000 N.A. 3600 18000 9 3591 17955 9 3591 17955 9
t481 16 1 21 237 N.A. 1440 7200 N.A. 2880 14400 15 2801 14005 15 2783+9 13924 15
tial 14 8 1041 56203 N.A. 2637+4 13189 N.A. 5274+4 26374 14 5143 25715 14 5031+56 25211 14
x2 10 7 38 625 N.A. 29+22 167 N.A. 58+22 312 9 44+8 228 9 22+19 129 9



Decomposition of Reversible Logic Function Based on Cube-Reordering419

Method 2 the number of the ancilla bits is at maximum equal to the number of
input bits because for each Toffoli gate the ancilla bit used is recycled after being
used. Method 3 is the optimized method of removal of the redundant Toffoli gates.
The method 3 corresponds to the example described in Fig. 9. Finally the column
’Method 4’ shows the results obtained when the results of the method 3 have been
improved using the variable reordering and the Toffoli to CNOT rewriting rules as
shown in Section 4.

From Table 7 it can be seen that our method performs relatively well when used
to design circuits with a high number of don’t cares. Also, because of the simple
representation of the function the method can be used to design circuits with even
a very large number of bits. The benchmarks are represented using three different
methods.

Observe that as expected the improvements obtained when using the mini-
mization depends on the type of function. This can be seen when looking at the
range of the provided cost reduction. This amount can be calculated as the ra-

tion rr = 1−
Costmethod4
Costmethod3

with values ofCostmethod4 andCostmethod3 being taken from

the sub-columns 3 of columns showing the results of Method 4 and Method 3 re-
spectively. The minimum of improvement is 0 as can be seen for the benchmark
function pm1or cm150aand the maximum is given for the functionx2 with im-
provement of 0.43. The improvement brought by the reordering of the variables
and the gate replacement indeed improved the circuit cost even below the expected
minimal circuit cost calculated form the initial variable ordering by method 1.

The observation of these results brings out an interesting point. In fact as it can
be expected, the natural ordering of cubes (on which the CR algorithm is based)
can be clashing with some of the replacement techniques used to minimize the
reversible circuits. For instance, having two adjacent cubes that differin a single
variable might not be the natural order but can be easily minimized using the CNOT
substitution rule. Thus an optimal algorithm would require to take all such issues
in the scope and the result would indeed be much more minimized circuits.

Finally, it can be pointed out that the method 1 represents also only the upper
bound of the complexity of the designed circuits. This can be seen on the circuit
shown in Fig. 12. This circuit when designed using the method 1 has 26 gatesbut
when designed using method 2 it only has 29 gates. This is because not all garbage
bits are reused and thus do not have to be restored for later usage. Thisalso means
that a smart strategy for the removal of the Toffoli gates will lead to circuits that
in some cases are much cheaper and in some other case slightly cheaper thanthe
costs shown in Table 7 (Method 3). The improvement brought by the minimization
techniques of the circuit from Figure 12 is shown in Figure 13.



420 M. Lukac et. al.:

a

b

c

d

0
0
0
00
0
0
0
0

e

0

f

0

g

0

h

0

i

j

k

l

Fig. 12. Example of alu realized by the proposed method with the cost 25∗5+4∗1 = 129 and with
four added ancilla bits for intermediary results.

a

b

c

d

0
0
0
00
0
0
0
0

e

0

f

0

g

0

h

0

i

j

k

l

Fig. 13. Alu from Figure 12: circuit cost is minimized by heuristics described in Section 4 resulting
in a final cost of 19∗5+7∗1 = 102

6 Conclusion

In this paper we presented an approach to the synthesis of incompletely specified
reversible functions. The approach is based on a simple heuristic that regroup simi-
lar cubes and order the circuit in a left-to-right and top-to-bottom order.This allows
to eliminate redundant Toffoli gates and thus to minimize the circuit cost.

The natural next step in the development of the algorithm is a generalization
to multi-output functions. Also the algorithm currently orders only the inputs and
thus a more general method of combining the output and input ordering will be
also implemented. The current gate counting is still not-optimal. This is because in
most of the cases the input vector can be realized in such manner that only certain



Decomposition of Reversible Logic Function Based on Cube-Reordering421

ancilla bits must be reused for the realization of a given input. This is due to thefact
that not all ancilla bits that are used for the realization of a certain input cube are
also used for mutually exclusive input cubes and thus can be used multiple times
for a single input vector. In fact as it can be expected an exact method minimizing
the circuits to their bare minimum will come close to circuits designed by method 1
(the lower bound of the number of gates) because if the ordering is properly done,
in most cases ancilla bits will be used by only mutually exclusive cubes. This is
true in the case of the completely defined functions, where the same cubes can be
combined and each ancilla bit is used by a single Toffoli gate for each data input.
Finally, the long-term future work consists in improving the proposed algorithm
by heuristics and more sophisticated methods for Toffoli gates elimination suchas
template replacement and high level input and output data pattern detection.

Acknowledgments

P. Kerntopf was supported in part by the Polish Ministry of Science and Higher
Education under Grant 4180/B/T02/2010/38.

References

[1] R. P. Feynmann, “Quantum mechanical computers,”Optic News, vol. 11, pp. 11–20,
1985.

[2] K. Fazel, M. Thornton, and J. Rice, “ESOP-based Toffoli gate cascade generation,” in
IEEE Pacific Rim Conference on Communications, Computers and Signal Process-
ing, pp. 206 – 209, 2007.

[3] R. Wille, D. Große, D. Miller, and R. Dreschler, “Equivalence checking of reversible
circuits,” in Proceedings of the Inetrnational Symposium on Multi-Valued Logic,
pp. 324–330, 2009.

[4] M. Lukac, Quantum Logic Synthesis and Inductive Machine Learning. PhD thesis,
Portland State University, 2009.

[5] D. M. Miller, D. Maslov, and G. W. Dueck, “Synthesis of quantum multiple-valued
circuits,” Journal of Multiple-Valued Logic and Soft Computing, vol. 12, no. 5-6,
pp. 431–450, 2006.

[6] D. Maslov, G. W. Dueck, and D. M. Miller, “Techniques for the synthesis of re-
versible Toffoli networks,”ACM Transactions on Design Automation of Electronic
Systems, vol. 12, no. 4, p. 42, 2007.

[7] D. Maslov, G. W. Dueck, and D. M. Miller, “Synthesis of Fredkin-Toffoli reversible
networks,”IEEE Transactions on VLSI, vol. 13, no. 6, pp. 765–769, 2005.

[8] H. Thapliyal and H. Arabnia, “Reversible programmable logic array (RPLA) using
fredkin, feynman gates for industrial electronics and applications,” inProceedings of
the International Conference on Computer Design, pp. 70–76, 2008.

[9] D. Maslov, G. Dueck, D. Miller, and C. Negrevergne, “Quantum circuit simplification
and level compaction,”IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, vol. 27, no. 3, pp. 436–444, 2008.



422 M. Lukac et. al.:

[10] R. Wille, D. Große, L. Teuber, G. W. Dueck, and R. Drechsler, “RevLib: An online
resource for reversible functions and reversible circuits,” in Int’l Symp. on Multi-
Valued Logic, pp. 220–225, 2008. RevLib is available at http://www.revlib.org.

[11] R. Wille and D. Große, “Fast exact Toffoli network synthesis of reversible logic,” in
Int’l Conf. on CAD, pp. 60–64, 2007.

[12] M. Fujita, Y. Matsunaga, and T. Kakuda, “On variable ordering of binary decision
diagrams for the application of multi-level logic synthesis,” in Proceedings of the
conference on European design automation (EURO-DAC), pp. 50–54, 1991.

[13] B. Bollig and I. Wegener, “Improving the variable ordering of OBDDs is NP-
complete,”IEEE Transactions on Computers, vol. 45, no. 9, pp. 993–1002, 1996.

[14] D. Sieling, “The nonapproximability of OBDD minimization,” Information and
Computation, vol. 172, pp. 103–138, 2001.

[15] R. Drechsler, “Evaluation of static variable orderingheuristics for MDD construc-
tion,” in Proceedings of the 32nd International Symposium on Multiple-Valued Logic,
pp. 254 – 260, 2002.

[16] O. Grumberg, S. Livne, and S. Markovitch, “Learning to order BDD variables in
verification,”Journal of Artificial Intelligence Research, vol. 18, pp. 83–116, 2003.

[17] D. Miller, D. Y. Feinstein, and M. Thornton, “Qmdd minimization using sifting for
variable reordering,”Journal of Multiple-valued Logic and Soft Computing, pp. 537–
552, 2007.

[18] M. Rice and S. Kulhari, “A survey of static variable ordering heuristics for
efficient bdd/mdd construction,” tech. rep., Bourns College of Engineering,
http://www.cs.ucr.edu/ skulhari/StaticHeuristics.pdf, 2008.


	Decomposition of Reversible Logic Function Based on Cube-Reordering
	Let us know how access to this document benefits you.
	Citation Details

	7Lukac.dvi

