Understanding the Links Between Cyanobacteria Physiology and Hydrodynamics may Help Find Adaption Strategies for Toxic Blooms

John Rueter
Portland State University

Let us know how access to this document benefits you.
Follow this and additional works at: https://pdxscholar.library.pdx.edu/esm_fac
Part of the Environmental Indicators and Impact Assessment Commons, and the Natural Resources Management and Policy Commons

Citation Details
Understanding the links between cyanobacteria physiology and hydrodynamics may help find adaptation strategies for toxic blooms.

John Rueter
Portland State University
Overview

• Impacts, problems & solutions
• Algal species/strains matter therefore differences in their physiology matters
• Examples
• Summary
• How can we find appropriate approaches?
There are multiple impacts on lakes

• Change due to drivers
 – Direct human use
 – Indirect, such as pollution
 – Climate change

• Result in problems
 – Lake health
 – Human use
Possible levels of actions

<table>
<thead>
<tr>
<th>Level</th>
<th>Description</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>Solution</td>
<td>Remove drivers</td>
<td>Reduce toxic algal blooms by intercepting P sources</td>
</tr>
<tr>
<td></td>
<td>Solve “in the pattern”</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Resilient outcome</td>
<td></td>
</tr>
<tr>
<td>Mitigation</td>
<td>Reduce impact</td>
<td>Decrease toxic algae temporarily</td>
</tr>
<tr>
<td>Adaptation</td>
<td>Avoid the impact or replace the resource</td>
<td>Post warnings to minimize human impact</td>
</tr>
</tbody>
</table>
Algal species or strains matter

• Therefore – differences in physiology matter to the problem
• Ecological
 – Trophic web
 – Seasonal dynamics
• Human health
 – Toxic vs. nuisance species/strains
Amount of algae

• Need to be clear about
 – Competitive exclusion
 – Bloom from growth
 – Accumulation from a variety of processes

Example:
• B is growing 2x as fast as A (.5 vs .2.5)
• Loss term is same for both (-.2)
• A starts at 100, B starts at 10
• B takes 10 days to exceed A
Species/strains physiological differences

• Can help identify possible mitigation strategies
 – Time scale of days
 – Space scale could be small, such as a single bay
• Can guide monitoring and detection programs
 – Predict dangerous accumulations on 5 day scale
 – Enough time for simple mitigation or adaptation

That’s the point of this talk.
Example 1: nutrients

- Nitrogen from APFA (N2-fixer) supports subsequent growth of MSAE
- Longer growing season can exacerbate this
- Delay onset of APFA or lessen the bloom size
Example 2: buoyancy and mixing

- Bobbi’s work
- Do different short term mixing regimes favor APFA or MSAE?
Example 3: viscosity
Sinking and floating rates very sensitive to viscosity

10°C increase → 17% increase sinking rate
High temperature favors buoyancy
Example 4: disrupting buoyancy control

- See Kit’s study later
- Combination of humic complexing compounds and ion composition
- 1 day exposure to 10% humics could disrupt buoyancy regulation and might lead to more diverse algal assemblage
Summary

• Might have to focus on mitigation rather than full solutions
 – Similar to climate change, because many of the same drivers
• Mitigation strategies might be able to exploit species/strains differences
• Strategies would be local and short duration
• They can be tested and modified
• Same understanding of short term processes can be used to refine predictions and improve adaptation strategies
Can smaller mitigation efforts lead to ultimate solutions?

• Sometimes they interfere
 – “The best is the enemy of the good.”

• What do you think?
 – Not likely
 • Cross scale projects don’t wor
 – Maybe
 • Socolow “wedges”
 – For sure
 • We can definitely design this.
Thank you