
Portland State University Portland State University 

PDXScholar PDXScholar 

Electrical and Computer Engineering Faculty 
Publications and Presentations Electrical and Computer Engineering 

2002 

Efficient Algorithms for Creation of Linearly-Efficient Algorithms for Creation of Linearly-

independent Decision Diagrams and their Mapping independent Decision Diagrams and their Mapping 

to Regular Layouts to Regular Layouts 

Marek Perkowski 
Portland State University 

Bogdan Jaroslaw Falkowski 
Nanyang Technological University, Singapore 

Malgorzata Chrzanowska-Jeske 
Portland State University 

Rolf Dreschler 
University of Bremen 

Follow this and additional works at: https://pdxscholar.library.pdx.edu/ece_fac 

 Part of the Electrical and Computer Engineering Commons 

Let us know how access to this document benefits you. 

Citation Details Citation Details 
Perkowski, Marek, Bogdan Falkowski, Malgorzata Chrzanowska-Jeske, and Rolf Drechsler. "Efficient 
algorithms for creation of Linearly-Independent Decision Diagrams and their mapping to regular layouts." 
VLSI Design 14, no. 1 (2002): 35-52. 

This Article is brought to you for free and open access. It has been accepted for inclusion in Electrical and 
Computer Engineering Faculty Publications and Presentations by an authorized administrator of PDXScholar. 
Please contact us if we can make this document more accessible: pdxscholar@pdx.edu. 

https://pdxscholar.library.pdx.edu/
https://pdxscholar.library.pdx.edu/ece_fac
https://pdxscholar.library.pdx.edu/ece_fac
https://pdxscholar.library.pdx.edu/ece
https://pdxscholar.library.pdx.edu/ece_fac?utm_source=pdxscholar.library.pdx.edu%2Fece_fac%2F183&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/266?utm_source=pdxscholar.library.pdx.edu%2Fece_fac%2F183&utm_medium=PDF&utm_campaign=PDFCoverPages
http://library.pdx.edu/services/pdxscholar-services/pdxscholar-feedback/?ref=https://pdxscholar.library.pdx.edu/ece_fac/183
mailto:pdxscholar@pdx.edu


Efficient Algorithms for Creation of Linearly-independent
Decision Diagrams and their Mapping to Regular Layouts

MAREK PERKOWSKIa,*, BOGDAN FALKOWSKIb, MALGORZATA CHRZANOWSKA-JESKEa and ROLF DRECHSLERc

aDepartment of Electrical and Engineering, Portland State University, Portland, OR 97207, USA; bSchool of Electrical and Electronic Engineering,
Nanyang Technological University, Nanyang Avenue, Singapore, Singapore 639798; cInstitute of Computer Science, University of Bremen,

28359 Bremen, Germany

(Received 20 January 2000; In final form 4 October 2000)

A new kind of a decision diagrams are presented: its nodes correspond to all types of nonsingular
expansions for groups of input variables, in particular pairs. The diagrams are called the Linearly
Independent (LI) Decision Diagrams (LI DDs). There are 840 nonsigular expansions for a pair of
variables, thus 840 different types of nodes in the tree. Therefore, the number of nodes in such (exact)
diagrams is usually much smaller than the number of nodes in the well-known Kronecker diagrams
(which have only single-variable Shannon, Positive Davio, and Negative Davio expansions in nodes). It
is usually much smaller than 1/3 of the number of nodes in Kronecker diagrams. Similarly to Kronecker
diagrams, the LI Diagrams are a starting point to a synthesis of multilevel AND/OR/EXOR circuits
with regular structures. Other advantages of LI diagrams include: they generalize the well-known
Pseudo-Kronecker Functional Decision Diagrams, and can be used to optimize the new type of PLAs
called LI PLAs. Importantly, while the known decision diagrams used AND/EXOR or AND/OR bases,
the new diagrams are AND/OR/EXOR-based. Thus, because of a larger design space, multi-level
structures of higher regularity can be created with them. This paper presents both new concepts and new
efficient synthesis algorithms.

Keywords: Decision diagrams; Technology mapping; Regular layout; FPGA mapping; Nonsingular
expansion; Multi-level synthesis

INTRODUCTION

It has been known for few years that the Linearly

Independent Logic (LI) [7–9,15,20,22,23,24,26,30] can

potentially create circuits that are superior in terms of the

number of gates, speed, area and testability to canonical

AND/EXOR circuits (both two- and multi-level) [10,11].

The concepts of LI logic have been also used for image

processing [16] and encoding [1]. Similarly to the Reed–

Muller (RM) logic [36–45] that is a special case of the LI

logic, the circuits realized using LI logic are obtained by

repetitive expansions of a logic function. Unlikely to RM

logic, however, where there are only three expansion types

for a variable; Shannon (S), Positive Davio (pD), and

Negative Davio (nD) [39], the LI logic uses more

expansion types for sets of variables, and the number of

such expansions is very high even for two variables.

The reason why the LI-logic-based circuits are most

often much smaller and never worse than RM-logic-based

circuits is simply because they include all canonical

AND/EXOR circuits as their special cases, operating in a

much larger design space. The circuits generated using LI

logic are obtained by expansions with respect to certain

nonsingular matrices representing “basis functions”.

These expansions are called therefore the nonsingular

expansions. Unfortunately, no efficient algorithms for the

calculation of all nonsingular expansions of LI logic have

been so far created. The approach from Ref. [26] only

outlined efficient approaches for limited types of

nonsingular expansions, but no detailed synthesis

algorithms were presented. Paper [7] presented a “fast

transform” method to find a single expansion for certain

polarities of variables, but still the problem of selecting the

best polarity (and thus, the best expansion) among all

polarities of two-variable nonsingular expansions was not

discussed. Therefore, although there exist fast transforms

(expansions), still no methods are known to select a good

one among a huge number of such transforms. (Applying

“fast” transforms successively for all possible polarities

would be extremely inefficient and thus have been not

ISSN 1065-514X print/ISSN 1563-5171 online q 2002 Taylor & Francis Ltd

DOI: 10.1080/10655140290009792

*Corresponding author. Tel.: þ1-503-725-5411. Fax: þ1-503-725-4882. E-mail: mperkows@ee.pdx.edu

VLSI Design, 2002 Vol. 14 (1), pp. 35–52



proposed.) In conclusion, LI logic despite having a high

potential as a powerful generalization of Reed–Muller

logic, has not been proven to be practically useful because

there were no efficient circuit minimization techniques

developed for it.

In this paper, we will develop a general approach to

create various types of LI circuits. However, the

algorithms for expansion selection will be restricted here

to pairs of variables in expansions, similarly to [7].

For the first time, however, it will be presented how

good-quality polarities of expansions can be found quite

efficiently. Second section will present the very idea of

expansions for groups of variables as the generalization to

well-known expansions. In the third section we introduce

the nonsingular expansions. We illustrate an example of a

LI Universal Logic Module with two control variables

(corresponding to a node of a tree) and present a theory

how to compute the expansion “data input functions” (DI

functions, for short) for such two-variable nodes. These

expansions are calculated repeatedly in the process of tree

creation. Fourth section introduces the LI Trees, and fifth

section introduces the LI Decision Diagrams and the LI

Forms. Sixth section presents approximate algorithms for

the generation of various types of LI Decision Diagrams

for multi-output functions. Seventh section describes

general principles of creating algorithms to select, for a

given set of expansion variables, good polarities (i.e. basis

functions) for nodes at a given level of the diagram. Eighth

section presents an example of such an exhaustive exact

algorithm for completely specified functions, and ninth

section presents an approximate algorithm for incomple-

tely specified functions. The algorithm becomes more

efficient when the function is weakly specified. Tenth

section concludes the paper.

NEW TYPES OF DIAGRAMS FOR

MULTI-VARIABLE EXPANSION NODES

Figure 1a shows a standard tree obtained for single

expansion variables in nodes. Every level corresponds to a

single variable, and every node denotes a single-variable

(standard) expansion: Shannon, Positive Davio or

Negative Davio. Figure 1b shows the new tree obtained

for pairs of expansion variables in levels. Every level

corresponds to a pair of variables, and the sets of variables

in levels are not overlapping. Every node is a two-variable

expansion. It can be shown using the methods outlined

below that the total number of such expansions for two

variables equals 840. Thus, there are 840 types of nodes in

the tree. We will call this tree a LI decision tree, because

LI logic is used to create all possible expansion types.

Obviously, as shown in the trees, the forms obtained

from flattening of the LI tree for four variables have at

most 16 terms (leafs), the same number of leafs as the

forms obtained from the standard tree. However, the

product terms are no longer products of literals, but of

arbitrary functions of two variables; for instance a single

term ðaþ bÞðc%dÞ corresponds to four product terms,

a�cd; ac �d; b�cd; bc �d; of the standard tree. Thus, the new

forms are three-level and not two-level, and have on

average a much smaller number of terms. However, these

forms allow to create circuits that are as regular as for the

standard forms, allowing to generalize the concept of a

PLA.

A simplified hierarchy of decision diagrams that

includes our new diagrams is shown in Fig. 2. It shows

BDDs with single-variables, one-node-type expansions as

the narrowest category, next the Kronecker Decision

Diagrams with single-variable, three types of node

expansions as a broader concept, next the two-variable

LI DDs with 840 node types for pairs of variables, and

finally, the LI Decision Diagrams with arbitrary sets of

variables in groups (arbitrary sizes of sets, overlapping or

not) as the broadest type of decision diagrams. In addition,

similarly as in standard diagrams, one may allow to have

any combination of expansion types in level nodes, thus

leading to “Pseudo-Kronecker type” of the LI diagrams.

“Mixed-variable” LI diagrams can have levels corre-

sponding to groups of variables of various sizes. Detailed

families of diagrams can be described similarly as it was

done in literature for single variables.

LI logic [20,26] allows to uniquely derive data

functions SFi for universal expansion modules from the

original function f ðx1; x2; . . .; xnÞ; assuming given sets of

LI functions (basis functions, LI functions) of m variables

ðm # nÞ: We will review these methods briefly below. We

create a 2m £ 2m matrix M with rows corresponding to

minterms (for a subfunction SF with m variables we have

2m rows). The columns correspond then to the basis

functions. A “1” in the intersection of a column i and row j

means that function i covers minterm j. Any subset of

columns should be LI with respect to EXOR operation (i.e.

columns are bit-by-bit exored). If a set of 2m columns is LI

then matrix M is nonsingular and there exists one and only

one matrix M21; inverse to M with respect to the exoring

FIGURE 1 Standard and multi-variable expansion trees.

FIGURE 2 Simplified hierarchy of decision diagrams.

M. PERKOWSKI et al.36



operation. In such case, the family of Boolean functions

corresponding to the columns will be called the “linearly

independent family of Boolean functions” (or a set of LI

Boolean functions, or a LI set, called also the basis

functions [3,24,26]). Here, we will call them LI functions,

for short. The matrix will be called a nonsingular matrix,

and the data input functions SFi will be called the DI

functions.

THE NONSINGULAR EXPANSION

To introduce the ideas of LI logic in a tutorial approach,

we will first present a simple example of a nonsingular

expansion.

Example 2.1 Given is function f(A,B,C,D ) from Fig. 3.

Let us assume that we want to find a certain expansion

of this function with respect to variables {A;B}: As the

first step, we create an auxiliary equation based of

standard Shannon expansion with respect to cofactors of

variables A, B. This expansion uses the standard cofactors:

f �A �BðC;DÞ; f �ABðC;DÞ; f A �BðC;DÞ; f ABðC;DÞ: All these

cofactors are calculated from the initial function

f ðA;B;C;DÞ: Thus we can write:

f ðA;B;C;DÞ ¼ �A �Bf �A �BðC;DÞ% �ABf �ABðC;DÞ%A �Bf A �BðC;DÞ

%ABf ABðC;DÞ

¼ �A �Bf ðA;B;C;DÞjA¼0;B¼0

% �ABf ðA;B;C;DÞjA¼0;B¼1

%A �Bf ðA;B;C;DÞjA¼1;B¼0

%ABf ðA;B;C;DÞjA¼1;B¼1

¼ �A �BðC þ DÞ% �ABðC%DÞ%A �BðC �DÞ

%ABð �CDÞ

(after inserting the values of cofactors (rows) of the Kmap

from Fig. 3).

Next, we will show how to find the nonsingular

expansion of this function for the given “basis functions

on variables” A and B. Here, we arbitrarily select basis

functions as: f AþB ¼ Aþ B; f �B ¼ �B; and f �A ¼ �A; and f 1 ¼

1: Now our goal is to find the unknown “data functions”

SFiðC;DÞ :

f ðA;B;C;DÞ ¼ðAþ BÞSFAþBðC;DÞ% �BSF �BðC;DÞ

% �ASF �AðC;DÞ%SF1ðC;DÞ
ð2:1Þ

Now, in order to calculate the equations of the unknown

functions SFiðC;DÞ from Eq. (2.1) as some functions on

variables C and D, we will compare the expansions for all

possible combinations of values of A and B. This will lead

to a set of linear logic equations, which after solving will

give the values to the unknown functions SFiðC;DÞ:
Thus comparing the two expansions for f ðA;B;C;DÞ

from Fig. 3 we have:

�A �BðC þ DÞ% �ABðC%DÞ%A �BðC �DÞ%ABð �CDÞ

¼ðAþ BÞSFAþBðC;DÞ% �BSF �BðC;DÞ

% �ASF �AðC;DÞ%SF1ðC;DÞ

By substituting in the above equation A ¼ 0; B ¼ 0; we

get the following Eq. 2.1.1 for cofactor f �A �BðC;DÞ :

ðC þ DÞ ¼ f �A �BðC;DÞ ¼ SF �B%SF �A%SF1 ð2:1:1Þ

By substitution A ¼ 0; B ¼ 1; we get the following

Eq. 2.1.2:

ðC%DÞ ¼ f �ABðC;DÞ ¼ SFAþB%SF �A%SF1 ð2:1:2Þ

By substitution A ¼ 1; B ¼ 0; we get the following

Eq. 2.1.3:

ðC �DÞ ¼ f A �BðC;DÞ ¼ SFAþB%SF �B%SF1: ð2:1:3Þ

By substituting A ¼ 1; B ¼ 1; we get the following

Eq. 2.1.4:

ð �CDÞ ¼ f ABðC;DÞ ¼ SFAþB%SF1: ð2:1:4Þ

The last four equations for cofactors f A iB jðC;DÞ can be

rewritten to the matrix form of equation:

0 1 1 1

1 0 1 1

1 1 0 1

1 0 0 1

2666664

3777775
SFAþBðC;DÞ

SF �BðC;DÞ

SF �AðC;DÞ

SF1ðC;DÞ

2666664

3777775 ¼
C þ D

C%D

C �D

�CD

2666664

3777775 ð2:1:5Þ

where we denoted:

f �A �BðC;DÞ

f �ABðC;DÞ

f A �BðC;DÞ

f ABðC;DÞ

2666664

3777775 ¼
C þ D

C%D

C �D

�CD

2666664

3777775

FIGURE 3 Function f ðA;B;C;DÞ to Example 2.1.

DECISION DIAGRAM 37



Denoting the vector of cofactors by FV and the vector of

data functions by CV, the matrix Eq. (2.1.5) can be

described in the short form:

M £ CV ¼ FV

Therefore, M21 £ FV ¼ CV which in full form is:

1 1 1 1

0 0 1 1

0 1 0 1

1 1 1 0

2666664

3777775
f �A �BðC;DÞ

f �ABðC;DÞ

f A �BðC;DÞ

f ABðC;DÞ

2666664

3777775 ¼
SFAþBðC;DÞ

SF �BðC;DÞ

SF �AðC;DÞ

SF1ðC;DÞ

2666664

3777775
Now, that the unknown data input functions SFi have

been found, they are substituted into the nonsingular

expansion (2.1) to create the expansion formula (2.2). The

coefficients SFiðC;DÞ are taken from the above vector CV.

From Fig. 3, the function F can be represented by a vector

FV T ¼ ½ðC þ DÞ ðC%DÞ ðC �DÞ ð �CDÞ�:

Thus vector CV is:

1 1 1 1

0 0 1 1

0 1 0 1

1 1 1 0

2666664

3777775
ðC þ DÞ

ðC%DÞ

ðC �DÞ

ð �CDÞ

2666664

3777775 ¼
SFAþB

SF �B

SF �A

SF1

2666664

3777775
Substituting and simplifying we obtain CV:

ðC þ DÞ%ðC þ DÞ%ðC �DÞ%ð �CDÞ

ðC �DÞ%ð �CDÞ

ðC%DÞ%ð �CDÞ

ðC þ DÞ%ðC%DÞ%ðC �DÞ

2666664

3777775 ¼
ðC þ DÞ

ðC%DÞ

ðC �DÞ

ðCÞ

2666664

3777775

Then, substituting values from CV to Eq. (2.1), the

Eq. (2.1) obtains the form:

f ðA;B;C;DÞ ¼ ðAþ BÞðC þ DÞ% �BðC%DÞ

% �AðC �DÞ%1ðCÞ
ð2:2Þ

Concluding, we were able to expand the original

function with respect to four basis functions on variables

A, B. We will call these functions (in our case, functions

Aþ B; �B; �A; and 1), the Linearly Independent Func-

tions, since the columns corresponding to them in matrix

M are LI with respect to the operation of EXOR-ing

columns.

Observe, that a unique expansion was possible because

the set of equations had exactly one solution, which is

equivalent to matrix M being nonsingular. Hence, the

name “nonsingular” used for our expansion.†

The nonsingular expansion with functional coefficients

from Example 2.1 is realized using an “universal logic

module” with control variables A, B (shown in Fig. 4). We

call it an universal logic module, because similarly to a

multiplexer with control inputs A and B, all functions of

two variables can be realized with this module using

constants on its data inputs.‡

This way, for the set of LI functions { �A; �B; ðAþ BÞ; 1}

there exists only one nonsingular expansion specified by

its matrix M21: The module from Fig. 4 is a generalization

of the universal modules: for Shannon Expansion (a

multiplexer), for positive Davio Expansion (an AND/EXOR

gate), and for negative Davio Expansion (an AND/EXOR/

NOT gate with inverted control variable).

Let us observe that formula (2.2) describes only one of

the 840 nonsingular expansions for the pair of variables A,

FIGURE 4 Universal nonsingular expansion module for basis functions from Example 2.1, applied to the function from Fig. 3. The data functions
SFAþB; SF �B; SF �A; and SF1 are from left, and the universal module for basis functions Aþ B; �B; �A; and 1 is shown in a dotted rectangle.

†Moreover, our method of solving this example can be generalized to arbitrary sets of LI functions. Such matrices can be nonsingular, or singular.
Expansions for singular matrices produce sets of solutions of data functions, the best of which are selected using some additional criteria. The method
does not require calculating matrix M.

‡Obviously, the solution from Fig. 4 is not minimal, even assuming the use of LI universal modules. This example has been created to clearly illustrate
all principles and matrix calculations. In general, we do not claim that our circuits are always best, only that they are not worse than those obtained from
Pseudo-Kronecker diagrams for single variables. The advantages of such circuits become clear for large functions, because of their highly regular
realizations with predictable timing, [12,14,25,28,31,32,35].

M. PERKOWSKI et al.38



B [7,24] and thus, 840 different universal modules. (All

these universal modules are similar and can be realized by

a single switchable universal module). In general, any set

of one, two, three, or four variables out of set {A,B,C,D}

can be selected for the first level expansion of a tree. So,

there are very many different trees representing successive

expansions. Even if the problem of fast calculating of a

single particular expansion was solved, the more

important problem remains: how to select the best one

of all the nonsingular expansions (or the best of

nonsingular expansions of certain kind). This problem is

difficult, because there are very many such expansions

[24]. Here our approach will be to modify some methods

known from the Reed–Muller (AND/EXOR) logic, which

is a special case of the LI logic. First, we will formally

define the representations of Boolean functions that will

be next used in functions’ optimization.

Now we will adopt the fundamental theorem of LI logic

to a special case of binary nonsingular matrix M. Let us

denote the vector of cofactors with respect to variables

{x1; . . .; xm} by FV. CV denotes the vector of coefficients

for some given canonical forms represented by non-

singular M. Given is an arbitrary LI set of 2m Boolean

functions fi of m variables. This set can be represented as a

2m £ 2m nonsingular matrix M with basis functions fi as

columns, i ¼ 0; . . .; 2m 2 1:

Theorem 1 Given is a function Fðx1; . . .; xm; . . .; xnÞ

such that the set of input variables {x1; . . .; xn} properly

includes the set {x1; . . .; xm}: There exists an unique

expansion

Fðx1; . . .xnÞ ¼f 0ðx1; . . .; xmÞSF0ðxmþ1; . . .; xnÞ

%f 1ðx1; . . .; xmÞSF1ðxmþ1; . . .; xnÞ

%. . .%f 2n21ðx1; . . .; xmÞSF2n21ðxmþ1; . . .; xnÞ

ð2:4Þ

where functions fi are the given basis LI functions of m

variables, and the coefficient functions SFi are the “data

input functions” of the remaining input variables and are

determined from the coefficient vector CV ¼M21 £ FV ,

where FVðxmþ1; . . .; xnÞ is a vector of all 2m cofactors of F

with respect to variables from the set {x1; . . .; xm}:

Proof Omitted. The proof is a formalization of the

general case of applying the method for solving the EXOR

logic equations, applied in the example. It is space

consuming but straightforward. The method as presented

in the example works for any basis LI functions as the

columns of a nonsingular matrix M.

We will call Eq. (2.4), the nonsingular expansion with

functional coefficients f iðx1; . . .; xmÞ; i ¼ 0; . . .2n21: This

is a unique expansion for the set of variables x1; . . .; xm and

the set of functional coefficients. Thus, the data input

functions on variables xmþ1; . . .; xn for given basis LI

functions of matrix M are uniquely determined by

expansion (2.4). This means that this expansion can be

used to create canonical trees. These trees are called LI

trees and will be introduced in the next section. Of course,

separation of input variables to sets {x1; . . .; xm} and

{xmþ1; . . .; xn} influences the final implementation cost.

The important problem of finding good sets is not

discussed here. A

LINEARLY INDEPENDENT TREES

Now when we understand that the basic concept of the

nonsingular expansion, we can build the theory around all

nonsingular expansions in exactly the same way as the RM

logic is created based on Shannon and Davio expansions:

we first introduce trees, then the decision diagrams

constructed from the trees, and finally the flattened forms

obtained from the diagrams. Thus, here we use the plan of

RM logic (which is a special case of the LI logic) to build

the entire body of LI structures, circuits and the respective

synthesis/optimization methods. The creation of diagrams

from trees is, however, more complex, so it is deferred to

the next section.

Let us recall that the (standard) Kronecker Tree has

levels that correspond to single (input) variables. Only one

of the three types of binary expansions (S, pD and nD) is

used in every level of the tree [41]. Kronecker Trees are

quite useful to obtain high-quality multi-level circuits by

replacing their nodes with respective gates (such as

multiplexer realizing the Shannon expansion node). They

can be also generalized to Pseudo–Kronecker Trees

[6,21,38] that lead to even better (i.e. smaller, faster)

circuits. The decision diagrams are next created from such

Kronecker or Pseudo-Kronecker trees by applying

reduction transformations to pairs of nodes of such trees.

It can be observed, however, that a powerful

generalization is possible when in the trees one way

allow to have nodes for sets of variables, instead for single

variables only. These sets of variables will be called

blocks. The concept of an “expansion tree” is now

generalized, and the tree is no longer a binary tree but has

multi-variable nodes (many children of a node rather than

just two). Moreover, arbitrary nonsingular expansions

are now allowed in the nodes. The number of such

expansions is very large, even for small blocks of grouped

variables. For instance, let us observe that in the case of

two successive levels of a (standard) Kronecker Tree,

there are three nodes for a pair of variables, and each level

can have S, pD or nD expansion. Thus, the total number of

expansions for a pair of variables in the Kronecker tree is

3·3 ¼ 9: In contrast, there are 840 various nonsingular

expansions for a pair of variables in a LI tree. (The total

number of expansions for a pair of variables on the top of

the Pseudo-Kronecker tree is 33 ¼ 27 because the

expansions can be mixed in levels.) These simple

calculations demonstrate the power of the concept of

expansions for pairs of variables.

The new type of a tree introduced here will be called the

Linearly Independent Kronecker Tree (LIKT). It is a

special case of a general LI Tree. A LI Tree is a tree that

DECISION DIAGRAM 39



uses any nonsingular expansions in nodes in a tree level,

and any orders of variables, possibly repeated.

Definition 2 The LI Kronecker Tree (LIKT) is a tree

with multi-variable expansion nodes, created as follows:

(1) The set of n input variables is partitioned into a set of

disjoint and nonempty subsets Sj, such that the union of

all these subsets forms the initial set. (This is a partition

of the set of input variables). The subsets are called

blocks. In the case that each block includes just a single

variable, the LIKT reduces to its special case of the

well-known Kronecker Tree. If there is only one block

that includes all variables, the tree reduces to the

special case of a nonsingular form [23,24,26]

(called also the LI form or the orthogonal form).

(2) The sets (blocks) are ordered, each of them

corresponds to a level of the tree.

(3) For every level, if the block involves a single

variable, the type S, nD, or pD expansion is selected

for all its nodes. If the block is multi-variable, one

nonsingular expansion polarity is selected for the

nodes of the tree at the tree level corresponding to

this block. For the block with n variables there are 2n

children nodes of a node.

In LIKTs created for paired input variables the set of all

input variables is thus partitioned to several disjoint

blocks, each corresponding to a level of the tree. For every

block with a single variable, the corresponding expansions

are for only three types: S, pD and nD. However, for a

block with two variables there are 840 nonsingular

expansions and 840 matrices M. Therefore, for the two-

variable nodes there are 840 types of nodes, called LI(2)

nodes (expansion types). Each of the expansion types has

four columns in matrix M, so that the expansion types will

be denoted by LI(2)-[n1,1,n2,1,n3,1,n4,1],. . .,LI(2)-

[n1,840,n2,840,n3,840,n4,840], or by their basis matrices M,

shown below. Thus, in LI(2)-[n1,i,n2,i,n3,i,n4,i] the number

nj,i is a natural number corresponding to the binary vector

of the j-th column of the i-th matrix M. This number is

read with the bottom row as the least significant bit. In this

way, the (expansion polarity) matrix

M ¼

1 0 1 0

1 0 0 1

1 1 1 1

1 1 0 1

2666664

3777775
is represented as a vector of four natural numbers, each

corresponding to one LI function, being a column of M,

starting from the left, and denoted by LI(2)-[15,3,10,7].

The name “polarity” comes from standard Reed–Muller

logic, where it describes a variable or its negation

consistently taken in an expansion. It has been generalized

there to three polarity matrices, corresponding to all non-

singular 0–1 matrices for a single variable: Shannon,

Positive Davio and Negative Davio. Here, the situation is

much more general, and the polarity for a group of

variables is a set of functions on these variables. It will be

called the “basis matrix”. Because, however, it plays the

same role as polarity in Reed–Muller logic, it can also be

called the “polarity matrix”. This way, there are as many

expansion types as basis matrices. All these matrices are

non-singular.

Definition 3 Linearly Independent Forms (LI Forms)

are obtained by flattening the LI Trees. Flattening has the

following stages:

1. Find all branches of the tree that lead to constant 1 in

terminal nodes.

2. For each such branch make an ordered product term by

multiplying the expressions from the edges in the

branch.

3. Make an EXOR of these terms.

In other words, flattening to LI forms corresponds to

using recursively the flattening rule aðb%cÞ ¼ ab%ac

and rules a%0 ¼ a; a·0 ¼ 0 and a·1 ¼ a of Boolean

algebra to the tree expressions. An example of LI Form

and how it was obtained by flattenings will be presented in

Example 5.3.

Observe, that there exist two combinational problems

that have to be solved for such trees: variable pairing and

pair ordering. In the more general case of trees with both

single-variable and pair-variable nodes, there exists also

the problem of partitioning to pairs and single variables.

These problems are not a subject of this paper.

LINEARLY INDEPENDENT DECISION

DIAGRAMS AND FORMS

Definition 4 (Reduced) LI Decision Diagrams (LI

DDs) are created from respective types of LI trees by:

(p1) combining isomorphic nodes of any kind, [5],

(p2) performing standard Ordered Kronecker Func-

tional Decision Diagram (OKFDD) transformations [5]

on S, pD and nD nodes,

(p3) performing generalizations of standard Ordered

Kronecker Functional Decision Diagram (OKFDD)

transformation [5] on multi-variable nodes. These

generalized transformations remove any node that

evaluates to its single argument.

Let us explain the transformations from (p3). We say

that a node evaluates to a single argument function Hi;

when after the following stages:

1. Substitute in the expression describing the expansion

of the node the data input functions being constants by

these constants.

2. (Constant propagation and Boolean simplification)

Simplify this expression using recursively standard

M. PERKOWSKI et al.40



Boolean algebra rules: A0 ¼ 0; A1 ¼ A; Aþ 0 ¼ A;
Aþ 1 ¼ 1; Aþ A ¼ A; ABþ �AB ¼ B:

the expression becomes Hi.

Observe that in this transformation only those multi-

variable nodes should be evaluated that their formulas

include as arguments some logic constants and/or repeated

signals Hi:
For instance, the following examples illustrate the

concept of evaluation:

Formula �a�bH1%�abH1%a�bH1%abH1 evaluates to H1

Formula �ab0%ab0%�bH2%bH2 evaluates to H2

Formula ab0%a0%b0%H3 evaluates to H3

The above method of creating the reduced LI DD is a

generalization of the standard RM logic simplification

rules for S, pD and nD nodes that are applied to create the

OKFDDs. Two nodes that evaluate to the same arguments

become isomorphic nodes and as such are combined in a

standard way known from the way how DDs are created

from trees in RM logic.

Definition 5 The Linearly Independent Kronecker DDs

are created from LIKTs as described in Definition 4.

Definition 6 The Linearly Independent Kronecker

Forms are the forms created by flattening of the LIKTs,

(or the Linearly Independent Kronecker DDs ), where the

flattening operation is defined in Definition 3.

The LI Forms are no longer realized in two-level

circuits, as is the case of the flattened circuits obtained

from AND/EXOR trees and circuits. The LI forms have

three levels: the first (from output) level are EXOR gates,

the second are AND gates and the third are arbitrary

Boolean functions defined on blocks of variables. The

problem of the best selection of these functions is the

subject of this paper. The LI Kronecker Forms can be

implemented in a three-level circuit called a LI PLA, with

ordered pairs of input variables for third level. An example

of such a LI PLA will be given in Example 5.3.

Example 5.1 Figure 5 shows an example of the LIKT.

The first level of the tree has Positive Davio expansion for

variable x1. It creates an expansion:

f ðx1; x2; x3; x4Þ ¼ f 0ðx2; x3; x4Þ%x1f 2ðx2; x3; x4Þ;

where f 2ðx2; x3; x4Þ ¼ f 0ðx2; x3; x4Þ%f 1ðx2; x3; x4Þ and

f 0ðx2; x3; x4Þ; f 1ðx2; x3; x4Þ are, respectively, the negative

and positive cofactors of f with respect to input variable x1

The second level has LI(2)-[15,3,10,7] expansion for

the set of LI functions on variables {x2,x4} and the third

level has Shannon expansions for variable x3.

The expansion of the node LI(2)-[15,3,10,7] is

described by the following formula:

f 0ðx2; x3; x4Þ ¼SFðf 0Þ1ðx3Þ%x2SFðf 0Þx2
ðx3Þ

% �x4SFðf 0Þ�x4
ðx3Þ

% ðx2 þ x4ÞSFðf 0Þðx2þx4Þðx3Þ ð5:1Þ

where notation SFðf iÞLIj
ðXÞ denotes data function SFLIj

;
with arguments from the set X of variables, applied to the

argument function f i: The function in the subscript is thus

a basis function of the expansion. SFLIj
is one of the data

input functions from the expansion basis matrix M,

corresponding to the basis function from its subscript. (In

our case, these are functions 1; x2; �x4; and x2 þ x4: Also, in

our case X ¼ {x3}). Formula (5.1) is a specialization of

the nonsingular expansion (2.4) applied to cofactor

function f 0ðx2; x3; x4Þ as Fðx1; . . .xnÞ; and with expansion

variables x2; x4 in the LI functions. Subfunctions SFi of the

remaining variable x3 are calculated for the cofactor

function f0 (so they are denoted as functions

FIGURE 5 Example of a LIKT with blocks {x1}; {x2; x4}; and {x3}:

DECISION DIAGRAM 41



SFðf 0Þ1; SFðf 0Þx2
ðx3Þ; SFðf 0Þ�x4

ðx3Þ; SFðf 0Þðx2þx4Þðx3Þ in this

particular LI(2)-[15,3,10,7] expansion).

Example 5.2 A LI Kronecker Decision Diagram created

from a LIKT corresponding to the expansion from

Example 2.1 (and the circuit from Fig. 4), is shown in Fig.

6. It was obtained by combining isomorphic nodes.

Now we will generalize LIKTs and LI Kronecker DDs

for multi-output functions and “pseudo” data structures. LI

“Pseudo” DDs generalize the Pseudo-Kronecker DDs [6,38].

LI Kronecker DDs for Multi-output Functions

Definition 7 A Single-Polarity Nonsingular Expansion

for a multi-output function is a vector of Nonsingular

expansions for its component single-output functions; all

of these expansions have the same polarity.

Definition 8 A Multi-Polarity Nonsingular Expansion

for a multi-output function is a vector of nonsingular

expansions for its component single-output functions,

each of them can have different polarity.

Thus, for LI Kronecker DDs for a two-input, three-

output function, the Polarity Vector of a Single-Polarity

Nonsingular Expansion is described by four natural

numbers (columns from matrix M, as before), and the

Polarity Vector of a Multi-Polarity Nonsingular Expansion

is described by 3·4 ¼ 12 natural numbers. Observe, that in

the special case of a multi-output Generalized Reed–

Muller (GRM) expansions (realized in multi-variable

nodes), Definition 7 is in accordance with the definition of

multi-output GRM forms from Ref. [47], which we will

call the single polarity GRMs. Definition 8 is in

accordance with the definition of multi-output GRM

forms from Ref. [4] which we will call the multi polarity

GRMs. Obviously, the minimal DD (or minimal form)

obtained with the expansions for multi polarity GRMs is

therefore smaller than the one with expansions for single

polarity GRMs. There are, however, some advantages of

considering single polarity GRMs. They include: faster

algorithms, and simpler circuits to create the polarity-

defining functions. In case of AND/EXOR forms, these

circuits are only invertors in the input level so that these

invertors practically do not count to the cost of the

realization. However, for general LI circuits, these circuits

constitute higher fractions of the total circuit costs, so it is

reasonable to assume that for some types of gate/layout

realizations the polarities (and their corresponding

circuits) are the same for each output function.

Definition 9 A single-output Kronecker DD is

specified by a Single-Output Polarity List

{½variableblock1; expansion polarity1�; . . .;

½variableblockr; expansion polarity�}

that associates polarities with blocks.

A multi-output Kronecker DD for a function with k

outputs is specified by a Multi-Output Polarity List

{½variableblock1; expansion polarity1;1; . . .;

expansion polarity1;v; . . .; expansion polarity1;k�; . . .. . .

½variableblockr; expansion polarityr; 1; . . .;

expansion polarityr.;v.; . . .; expansion polarityr;k�};

that associates polarities with blocks, for each output

function separately.

LI Pseudo-Kronecker DDs for Multi-output Functions

Definition 10 The LI Pseudo-Kronecker DD is defined

similarly as the LI Kronecker DD; the only difference is

FIGURE 6 A “mixed-variable” LI Kronecker Decision Diagram for function from Example 2.1. Level 1 corresponds to a pair of variables {A;B}; level
2 to a single variable C and level 3 to a single variable C. Because in every level expansion types are the same, this is a “Kronecker” type of diagram.

M. PERKOWSKI et al.42



that in every level, any combination of expansions can be

used.

For instance, in LIKDD the expansion LI(2)-[15,3,10,7]

is used in the entire level of variables’ block {x7; x8}; and in

LIPKDD expansions LI(2)-[15,3,10,7], LI(2)-[5,8,10,12],

and LI(2)-[3,5,8,15] are mixed in a level. An example of

LI DDs will be given in Example 5.3 below.

The relation between the LI Pseudo-Kronecker DD and

the LI Kronecker DD is exactly the same as the relation

between the Pseudo-Kronecker DD and the Kronecker

DD. Similarly, as the Linearly Independent Kronecker

Forms and the LI Kronecker Decision Diagrams, the LI

Pseudo-Kronecker Forms and the LI Pseudo-Kronecker

Decision Diagrams are defined as flattened forms of

respective DDs. Because in case of Pseudo-Kronecker

DDs every node can have a different polarity, Definition 7

does no longer apply to Pseudo-type representation of

multi-output functions. Polarity lists as for Kronecker

DDs are no longer created for Pseudo-Kronecker DDs

because of the total freedom of expansion selection for

their levels. The name LI DD will be generic to all kinds of

LI DDs (LI-Kronecker, LI Pseudo-Kronecker, LI Mixed,

LI Ordered, LI Free, etc. [29]).

Definition 11 By a Shared Ordered Linearly Indepen-

dent Decision Diagram (SOLIDD), we will understand an

LI Decision Diagram that is Shared and Ordered in the

same sense as BDDs are shared and ordered. A Shared

Linearly Independent Kronecker Decision Diagram

(SLIKDD) is a Shared LI Kronecker DD. A Shared

Linearly Independent Pseudo-Kronecker Decision Dia-

gram (SLIPKDD) is a Shared LI Pseudo-Kronecker DD.

A Shared Ordered Linearly Independent Pseudo-Kro-

necker Decision Diagram (SOLIPKDD) is an ordered

SLIPKDD.

After defining trees, diagrams, and LI PLAs, let us

illustrate them by one comprehensive example.

Example 5.3 Given is a six-input, two-output function G,

H(a, b, c, d, e, f ) from Fig. 7.

The respective LI Pseudo-Kronecker DDs for blocks

{a,b},{c,d},{e,f} is shown in Fig. 8.

A Reduced Shared, Ordered LI Pseudo-Kronecker

Decision Diagram created from this diagram is shown in

FIGURE 7 Six-input, two-output function to Example 5.3.

FIGURE 8 A LIPKT for blocks {a; b}; {c; d}; {e; f } to Example 5.3.

DECISION DIAGRAM 43



Fig. 9. To enable the reader to analyze the final solutions,

in this diagram we show the internal gate-level structure of

nodes corresponding to the expansions from Fig. 8.

The multi-level circuit obtained from the SOLIPKDD

after the propagation of constants is shown in Fig. 10.

Observe for instance the node with output signal g from

Fig. 9. It has two data inputs being constants 0, so it is

transformed to the gate-level circuit from Fig. 10.

The circuit is drawn in a way that enables the reader to

observe the effect of propagation of constants. Let us note,

that the two EXOR gates that have c and d as inputs can be

factored out, and also the two OR gates with c and d as

inputs can be factored, thus saving two gates. The three-

level LI PLA for the flattened SOLIPKDD (after

constants propagation) is shown in Fig. 11. Again, it can

be observed that several operators on variable pairs are

repeated, thus can be factorized, which would lead to a

circuit with less gates. But the PLA regularity would be

lost. Observe, that the regular array from Fig. 11 can be

directly mapped to fine grain FPGAs such as those from

Concurrent Logic/ATMEL [2], Motorola or Xilinx 6000

series. The circuit can also be easily mapped to any

architecture with 6-input lookup tables.

From now on, we will assume that each block has only
two variables. The respective representations will be

called Double-variable LI trees, Double-variable

Decision Diagrams, and Double-Variable LI Forms,

respectively. Although in this paper we discuss LI

diagrams for only two variables in each block, all

concepts and algorithms can be expanded to blocks of

arbitrary size, but the algorithms would become less

efficient. Also, in this paper we will consider the LI

circuits designed according to Definition 7 (we developed

also similar methods for the circuits realized using

Definition 8).

ALGORITHMS FOR THE GENERATION OF

SOLIKDDS AND SOLIPKDDS

Now, that the concept of SOLIKDDs and SOLIPKDDs

and the methods for their creation have been explained, we

FIGURE 9 A LI Shared and Ordered Pseudo-Kronecker Decision Diagram (SOLIPKDD) for blocks {a; b}; {c; d}; {e; f } to Example 5.3. It is drawn
with the expansion nodes substituted by their respective universal module circuits, in order to explain how the final circuit from Fig. 10 can be obtained
from such a diagram.

M. PERKOWSKI et al.44



will turn to generating trees with good expansion type

selections for their nodes. We will outline the general

algorithms and in the next sections we will discuss

approaches to the most important step of selecting the

expansion polarities for levels or for individual nodes of LI

diagrams. In our considerations, for multi-output func-

tions the algorithms will generate a shared diagram (a

Directed Acyclic Graph or DAG) which can be in

particular case a forest of trees.

Property 1 In case of SLIKDDs, the order of blocks in

the expansions has no influence on the cost of the flattened

form that would be found from this diagram.

The same property exists for Kronecker DDs, where the

order of expansion variables does not influence the cost of

Kronecker expressions obtained from their flattening.

Therefore, the minimum form can be found by

investigating all LIKDDs for arbitrary order of blocks.

In contrast, it is not so for the pseudo-Kronecker LI

representations, for which all possible permutations of

blocks should be calculated in order to find the minimum

LI Pseudo-Kronecker Form, thus running the algorithm

repeatedly for all possible orders of blocks. Which is,

however, not practical for large functions.

While creating a multi-output function of LIKT, the

diagrams for all single-output functions are created

together, level-by-level from their roots (outputs). In

every level, all possible expansions of a block are applied

(or some of their subsets) in order to select the best one.

Each level of the multi-output diagram corresponds to a

block with two elements. Thus, for a two-variable block,

the total of 840 nonsingular expansions are generated in

the exhaustive method which will be described in “Basic

principles of efficient algorithms for the selection of the

best nonsingular expansion polarity” section. While

FIGURE 10 A multi-level circuit to Example 5.3 obtained from the LI Shared and Ordered Pseudo-Kronecker DD after substituting circuits of
universal modules to nodes of the diagram and propagation of constants.

FIGURE 11 A three-level LI PLA for Example 5.3 obtained from the
SOLIPKDD from Fig. 9. Large circles denote two-input gates. Small
cross in a circle denote an OR gate, and large cross an EXOR gate. Small
circle in the large circle denotes an AND gate, and small circle outside
large circle denotes an invertor.

DECISION DIAGRAM 45



calculating the cost function for each expansion, the total

cost of nodes of the next level is calculated as the sum of

costs of every node in the next level. The best

expansion found by the “Polarity Selecting Algorithm”

for a level is next applied to all nodes from the level of the

multi-output diagram. The next-level nodes that corre-

spond to the same Boolean function are combined to

single nodes.

The local optimization algorithm to create the

SOLIKDD for multi-output function is the following.

Algorithm 1. Generation of the SOLIKDD for

Multi-output Function

1. The set of input variables is partitioned to pairs and

single elements (several variable pairing algorithms

are known from the literature). In examples below,

it is assumed here that all blocks have two elements.

Make an ordered list of blocks.

2. Take the first block.

3. Use one of the algorithms from the next section to

calculate the best polarity of the expansion for this

level of the diagram. Single polarity definition is used

for polarity creation.

4. Apply this expansion to all nodes from this level,

combine all the isomorphic nodes at the next level

(tautology check-see Definition 4).

5. Repeat steps 3 and 4 for all remaining blocks from the

list of blocks.

This algorithm is a straightforward generalization of the

algorithm from Ref. [42]. We do not discuss the variable

pairing and variable ordering problems. The algorithm can

also be easily further extended to incompletely specified

multi-output functions and to diagrams with inverted

edges. Because of a variety of applications, we developed

several algorithms to be used in step 3. They are

exhaustive or not, for complete and incomplete functions,

and for either all nonsingular expansions or only for some

of their subfamilies.

The algorithm to create the SOLIPKDDs is very similar

to the one presented above. The only difference is in step

3. At each level, the best expansions for each intermediate

function (each node of the SOLIPKDD) are chosen

separately. So at every level of the diagram, any

combination of expansion-node types becomes now

possible. These diagrams are no longer canonical, so

they cannot be used for function representation in

verification processes, but are applicable in circuit

synthesis. This way the Local Optimization SOLIPKDD

Algorithm for Pseudo Diagram is created (not presented

here), which finds the best expansion polarity. The

difference is that in the Local Optimization SOLIKDD

Algorithm, the search is among all polarities for all nodes

of the level of the tree together, and for SOLIPKDD the

search is performed among all polarities but for each

node of the level separately.

BASIC PRINCIPLES OF EFFICIENT

ALGORITHMS FOR THE SELECTION OF THE

BEST NONSINGULAR EXPANSION POLARITY

The most difficult step of the LIDD generation algorithms

is how to choose a good polarity. In this section, we

consider that problem and propose a solution. Of course,

in general one can select any particular polarity of a

nonsingular expansion and next create a diagram for these

expansion types. Also, one can create a prespecified

Multi-Output Polarity List and next expand according to

it (Such list described polarities for variables in a format

shown in “Linearly independent decision diagrams and

forms” section). The function representation could be thus

calculated for these expansion types as it was illustrated in

“The nonsingular expansion” section. If there exists a fast

transform, it should be applied, instead of inverting matrix

M [7]. However, the quality of such an approach cannot be

very good because of the random nature of selecting these

polarities (Observe that this is an analogous problem as the

one known by the name “polarity selection problem” in

the area of Functional Decision Diagrams and Fixed

Polarity Reed–Muller Forms. It is, however, more

difficult to solve in LI logic, because there are many

more polarities). Therefore, other methods for finding

good expansions must be looked for, unless for some

reasons the good polarities can be guessed. Let us then

look again to the Reed–Muller logic for an analogy.

One of the interesting and popular concepts of Reed–

Muller logic are the butterfly diagrams that allow to

create all Fixed Polarity RM expansions by transforming

iteratively the function under optimization from one

polarity form to another polarity form, and doing this just

by incremental exoring of some terms from the forms.

This way, all forms of certain type are systematically created

without even creating their matrices M and without

calculating their inverse matrices M21: Gray-code ordering

of polarities is usually used. In another similar approach, we

applied the concept of Gray-code ordering of all GRM

polarities in an algorithm to find the exact minimum GRM

form [47]. Below we will demonstrate that such methods are

also applicable to LI logic.

Property 2 In matrix M, as well as in matrix M21; any

column can be replaced by a linear combination of itself

with other columns and the matrix remains nonsingular,

thus it is a base of a new expansion.

On the basis of Property 2, a new polarity expansion can

be obtained using the Basic Rule (BR), given below, to

certain selected columns (i.e. basis functions).

Property 3 Given is the following rule.

Rule BR:

f 1ðx1; x2ÞSF1ðx3; . . .; xnÞ%f 2ðx1; x2ÞSF2ðx3; . . .; xnÞ

¼ ½f 1ðx1; x2Þ%f 2ðx1; x2Þ�SF1ðx3; . . .; xnÞ%f 2ðx1; x2Þ

� ½SF1ðx3; . . .; xnÞ%SF2ðx3; . . .; xnÞ�

M. PERKOWSKI et al.46



where f1(x1,x2) and f2(x1,x2) are arbitrary LI function, and

SF1(x3,. . .,xn) and SF2(x3,. . .,xn) are corresponding to them

data input functions (DI functions). Any nonsingular

expansion formula can be obtained by a repeated

application of Rule BR to pairs of LI and DI functions:

½f 1ðx1; x2Þ; f 2ðx3; . . .; xnÞ�; ½f 3ðx1; x2Þ; f 4ðx3; . . .; xnÞ�:

This way, rule BR describes simultaneous EXOR-ing of

columns in matrix M and corresponding columns in M21.

(It is easy to verify that this rule is true, using simple

Boolean manipulation and comparing its left and right

sides). Observe, that although rule BR assumes pairs of

variables in functions f1 and f2, it is a general synthesis rule

for functions with arbitrary numbers of variables.

By repeated applications of rule BR all possible

expansions can be found starting from one initial

expansion, the canonical SOP/ESOP expansion with

disjoint cofactors as basis functions. The methods based

on the rule BR will be therefore a fundament of several

very general optimization methods of LI logic. But a

question remains. “Which pairs of columns to select and

how long to continue the application of rule BR?”

These are the possible approaches in LI logic to find

good (best) expansions based on rule BR.

A1 Find all nonsingular expansions for a function. This

problem is important theoretically because it is a

generalization of problems such as “find the best

FPRM form”, or “find the best KRM form”, which

are classic problems in RM logic. It should be solved

in order to create exact algorithms and enumerate all

best solutions. However, practically this approach is

of less importance, since the number of all

nonsingular expansions is very high.

A2 To find not all but as many as possible sequences of

nonsingular expansions, but such sequences that can

be created in very efficient way. This would allow to

create efficient multi-level minimizers for those

function bases that correspond to some sets of

nonsingular expansions for which such sequences

can be found.

A3 To find all nonsingular expansions for some limited

special families of expansions (such families are

defined by matrices M having some special proper-

ties). This is exactly the approach developed by

many researchers for past 40 years in Reed–Muller

logic (AND/EXOR logic), which is a proper subset

of the general LI Logic. For instance, this was done

for Fixed Polarity RM forms, and Kronecker RM

forms, which restrict basis functions to ANDs of

certain sets of literals. Also, we proposed different

families of special functions for the general LI logic

as well [7,23,24,26,35]. They are of interest to create

highly regular PLA-like structures with short

connections for submicron technologies. There

exist classes of expansions which are practical for

synthesis using Fine Grain FPGAs, but for which fast

transforms do not exist. Many fast transforms were

identified for various LI classes [7], unfortunately for

some of them the applications are not yet known to

us. For all these special families, we would be able

now to build butterfly diagrams based on rule BR.

Our future research goal is to find such families with

some interesting and useful properties.

From the point of view of A2 and A3 above, another

important observation is that until now, the following

classes of LI subfamilies have been of interest in general

LI Logic:

C1 Those for which both fast forward and fast inverse

recursive transforms exist [7]. This is the easiest

class of families to create efficient algorithms based

on butterfly concepts. The open problem however

remains; “is this a practically useful class for current

technologies and gate libraries?” We plan to

investigate the properties of circuits created using

the approach from Ref. [7].

C2 Those for which only the fast forward recursive

transforms exist. This is a wider class than class

C1, so there exists a better chance that such

transforms exist for the interesting families of

expansions. Similar research plans as in C1 can be

formulated.

C3 Families that are important practically, such as those

used in Generalized AND/OR/EXOR PLAs and can

be mapped to Motorola, ATMEL or XILINX Fine

Grain FPGAs and other FPGAs. Even if general

FIGURE 12 An initial segment of a Butterfly Diagram to create
nonsingular expansions for all LI functions of a,b.

DECISION DIAGRAM 47



solutions will be not found, it is worthy to find

specific solutions for limited number of input

variables in a block, for instance for two or three

variables.

C4 The family of all nonsingular expansions. Even

for two variables, this family includes very many

expansions that have no fast recursive transforms.

Points A1–A3 and C1–C4 above delineate a large body

of theory and algorithms that can be developed for various

special applications of LI logic. The next two sections will

illustrate two approaches based on the butterfly diagram

concepts.

EXHAUSTIVE ALGORITHM BASED ON THE

PRE-COMPUTED BUTTERFLY DIAGRAM FOR

COMPLETELY SPECIFIED FUNCTIONS

Even if in general there exists no recursive method to

define a universal Butterfly-like diagram for an arbitrary

LI matrix or if such a method is not known, a generator of

a specific diagram can be created once for all for a set of

variables with certain selected cardinality and for any

given set of expansion polarities. This pre-computed

diagram can be stored in the computer memory, and next,

it can be applied to a given function to calculate all

respective expansions together with their costs. We will

call this a “pre-computed Butterfly diagram”. It can be

used to find the best polarity for a block in the Algorithm

1. The algorithm goes through all polarities, calculates

the cost of each circuit corresponding to the polarity,

and returns the polarity with the minimum cost. As

an example, let us discuss the method applied to a

single-output function Fðx1; x2; x3; . . .xnÞ ¼ Fða; b; c; . . .Þ:
The set of all polarities is created as levels (rows) in a

butterfly-like diagram from Fig. 12(for the lack of space,

only first few levels are shown). Small k-maps correspond

to some LI functions f ðx1; x2Þ ¼ f ða; bÞ and functions

x(x1,x2,. . ., xn), y(x1,x2,. . .,xn), z(x1x2,. . .,xn), n(x1,x2,. . .,x2)

correspond to the original cofactors x ¼ Fa¼0,b ¼ 0 ¼

¼ Fa¼0,b ¼ 0 ¼ SF00(x3,. . .,xn), y ¼ SF01(x3,. . .,xn), z ¼

SF10(x3,. . .,xn), n ¼ SF11(x3,. . .,xn). (see the top row of

the diagram). EXOR-ing the LI functions according to

BR rule is shown here graphically on Karnaugh maps.

EXOR-ing of the respective DI functions is shown

on formulas that stand on the right sides of the

respective Kmaps to illustrate clearly the principle of

this method.

Thus, the first row corresponds to expansion on standard

cofactors:

�a�bx%�aby%a�bz%abn

with cost ¼ 8þ costðxÞ þ costðyÞ þ costðzÞ þ costðvÞ;
where costðxÞ is a literal cost (complexity, total number

of literals) of functions x in the expansion, etc.

The second row is:

�a�bx%�aby%az%abðz%vÞ

with cost ¼ 7þ costðxÞ þ costðyÞ þ costðzÞ þ costðz%nÞ;
where costðz%vÞ is a cost of function z%v and is

calculated only once, together with function z%v:
Comparison of expansion formulas from the first and

second rows shows clearly how the second expansion

formula is created from the first one by applying rule BR

to the last two columns:

�a�bz%abv) az%abz%abv ¼ az%abðz%vÞ

where z%v ¼ zðx1; . . .; xnÞ%vðx1; . . .; xnÞ is a new function

calculated by EXORing functions z and v.

While applying the BR rule, the simplification rule

X%X ¼ 0 is used as well. For instance, it can be observed

that, between rows 4 and 5 in Fig. 12, the law

ðx%yÞ%ðy%zÞ ¼ ðx%zÞ is applied. In addition, the DI

functions SFiðx3; . . .; xnÞ are repeating in the EXOR

formulas in the levels of the diagram and do not have to be

computed repeatedly in the diagram, whenever their

EXOR formulas such as x%z%v are created. Thus, the

generator of the diagram for all nonsingular

expansions for pairs of variables can be created once

and stored in the memory. The generator for the part

shown in Fig. 12 is:

REPEAT 2 times {BR(col3,col4),BR(col2,col3),

BR(col1,col2)}

Next, the values of EXOR-sums of subsets of functions

f iðx3; . . .; xnÞ which are calculated one for the given

function Fðx1; . . .; xnÞ; can be just inserted for any

particular initial cofactors also calculated only once.

Thus the number of executions of EXOR operation on

subsets of cofactors

xðx1; x2; . . .; xnÞ; yðx1; x2; . . .; xnÞ; zðx1; x2; . . .; xnÞ;

vðx1; x2; . . .; xnÞ

is essentially decreased, because all repeated EXOR-ings

have been now supressed. To obtain high speed of the

EXOR-ing operation, the cofactors can be represented as

BDDS, KFDDS, cube arrays, bit sets, or using any other

efficient representation. Observe that because of general-

ity of BR rule, this method can be applied with no

change to functions of arbitrary size and only functions

x, y, z and v represented by BDDs, will have more

variables.

FIGURE 13 The Kmap to explain the operation of the Non-Exhaustive
Polarity Selection Algorithm.

M. PERKOWSKI et al.48



NON-EXHAUSTIVE ALGORITHM BASED ON

DYNAMIC CREATION OF BUTTERFLY

DIAGRAM FOR INCOMPLETELY SPECIFIED

FUNCTIONS

While the algorithm from “Exhaustive algorithm based on

the pre-computed butterfly diagram for completely

specified functions” section can be applied to find the

minimum cost expansion for small completely specified

functions, below we will explain a faster approximate

algorithm, similar to the Exhaustive Algorithm, for finding

a good expansion for multi-output functions. It works

especially efficiently with strongly unspecified functions.

The first observation is that the operations of EXOR-ing

on functions f iðx3; . . .; xnÞ can be done on incompletely

specified functions as well. It must be, however, taken into

account, that when a do not care value “ 2 ” is EXOR-ed

with a constant, the values of x and x%y become

constrained. It means that if x ¼ 2 and y ¼ 0 then the

same value should be taken for x and x%y; which means, 0

for both, or 1 for both. The choice of any of these two

possibilities is arbitrary, but it is not possible to just write

do not care symbols as x and x%y; because this would

mean the possibility of selecting 0 for one of those do not

cares, and 1 for another do not care in next stages.

Similarly if x ¼ 2 and y ¼ 1 then the opposite values

should be taken for x and x%y; which means 0 for x and 1

for x%y; or 1 for x and 0 for x%y: In all other cases

the values are not constrained and the standard rules

0%0¼1%1 ¼ 0,1%0 ¼ 1,1% 2 ¼ 20% 2 ¼ 2% 2 ¼

2 should be taken. These rules are used for EXORing any

functions, otherwise the application of BR is the same as in

“Exhaustive algorithm based on the pre-computed

butterfly diagram for completely specified functions”

section.

To illustrate the operation of this Approximate

Algorithm, assume function f ða; b; c; dÞ from Fig. 13.

The calculation of the first few levels of the butterfly

diagram is shown in Fig. 14. The square Kmaps

correspond to LI functions and the long-width rectangles

to the data functions SFiðx3; . . .; xnÞ (in this particular case,

the data functions are SFiðc; dÞ). In the top row of the

diagram the rectangular Kmaps correspond to the

cofactors with respect to variables a, b of the map from

Fig. 13 (i.e. to the rows of the Kmap).

In contrast to the algorithm from “Exhaustive algorithm

based on the pre-computed butterfly diagram for

completely specified functions” section, in this algorithm,

FIGURE 14 The initial segment of the calculation of the levels of the Butterfly for an incompletely specified function in the Non-Exhaustive Polarity
Selection Algorithm. Arrows show the selection of columns for BR rule.

DECISION DIAGRAM 49



the levels are not pre-computed, but the rule BR is applied

to the dynamically selected pairs of functions (i.e. pairs of

columns). At every level, the selection is done in such a

way that, using the above EXOR-ing rules for incomplete

functions within Rule BR, as many as possible of the

functions SFiðx3; . . .; xnÞ (the long rectangles) will have

only symbols 0 and -, which means, as many as possible of

these functions will be equivalent to function 0. In general,

when it is not possible to create zero-functions

SFiðx3; . . .; xnÞ; the choices must be done in such a way

that the functions SFiðx3; . . .; xnÞ will have the smallest

total cost. Observe that this algorithm can be used without

any modification assuming pairs of variables in nodes, but

arbitrary total number of variables.

Concluding, the above non-exhaustive algorithm to find

a good expansion does not visit all possible LI polarities to

select the best one but terminates when the curve of best

solution cost until now versus the solution number

becomes flat for a prespecified number of generated

solutions. This value is selected experimentally. The

quality of the final solution may suffer, but the algorithm

becomes much faster. Using this algorithm in step 3 would

allow the SOLIKDD generating Algorithm 1 from

“Algorithms for the generation of SOLIKDDS and

SOLIPKDDS” section to be applied to larger functions.

CONCLUSIONS

We introduced new concepts of LI Decision Diagrams and

shown that they include previously known BDDs, KFDDs

and other diagrams. We expect that the LI Decision

Diagrams, LI PLAs and LI factorized circuits will find

application in Boolean function representation and

multi-level logic synthesis with arbitrary gates

(AND/OR/EXOR base). The presented methods can be

applied to both completely specified and incompletely

specified functions; single-, and multi-output. Both

Kronecker-like and Pseudo-Kronecker-like generaliz-

ations have been shown. Further generalization to Free

LI, Forms and DDs are also possible along the line of the

approach to free diagrams presented in [13]. Generaliz-

ations to Mixed, Ordered, Free and other LI represen-

tations following the methods presented in Ref. [29] are

also possible.

This paper opens several new interesting research

questions in LI Logic. A particularly important open

problem is to define generic recursive butterfly diagrams

to create all expansion polarities of certain practical types

and for arbitrary numbers of variables. A very practical

application of the methods presented and outlined here is

for the optimization of various types of lattice diagrams

FIGURE 15 Part of a diagram showing setting of individual basis functions in universal modules.

M. PERKOWSKI et al.50



[14,17,19,25,31,32], such as regular lattices with two,

three and especially four inputs/outputs from a node. All

methods can be applied to new Xilinx FPGAs, as well as

to similar lookup-table architectures. The new represen-

tation and algorithms developed in this paper can be used

in the first stage of logic synthesis — the “technology

independent, EXOR synthesis” phase, which is next

followed by the “EXOR-related technology mapping”

[10,35,38,42,46], not discussed here.

We have programmed the algorithms to create SOLI-

PKDDs and related lattice diagrams and we obtained

circuits of small sizes, regular layouts, predictable timing

and high testability for functions with tens of inputs and

outputs, [18]. Figure 15 shows a regular layout generated.

The advantage of our multi-level synthesis method

versus standard approaches for fine grain FPGAs is that

our method produces netlists with short and regular

connections, which simplifies the phase of technology

mapping, placement and especially routing. Our circuits

are also highly testable [33,34,46–48]. None of the known

approaches has these desirable attributes. The algorithm

complexity issues and the discussion of experimental

results for FPGA mapping and regular layouts will be

discussed in a separate paper.

Acknowledgements

This research has been supported in part by the NSF grant

MIP-9629419.

References

[1] Adams, K., Campbell, J., Maguire, L. and Webb, J. (1999) “State
assignment techniques in multiple-valued logic”, Proc. ISMVL’99,
220–224.

[2] Concurrent Logic Inc.(1991) “CLI 6000 series field programmable
gate arrays”, Prelim. Inform., Review 13.

[3] Davio, M., Deschamps, J.P. and Thayse, A. (1978) Discrete and
Switching Functions (McGraw Hill, New York).

[4] Debnath, D. and Sasao, T. (1995) “GRMIN: a heuristic
simplification algorithm for generalised Reed – Muller
expressions”, Proc. Reed–Muller ’95 95, 257–264.

[5] Drechsler, R., Sarabi, A., Theobald, M., Becker, B. and Perkowski,
M.A. (1994) “Efficient representation and manipulation of
switching functions based on Ordered Kronecker Functional
Decision Diagrams”, Proc. Design Automat. Conf., 415–419.

[6] Drechsler, R. (1997) “Pseudo Kronecker expressions for symmetric
functions”, Proc. VLSI Design Conf., 511–513.

[7] Falkowski, B.J. and Rahardja, S. (1995) “Family of fast transforms
for GF(2) orthogonal logic”, Proc. Reed–Muller’95, 273–280.

[8] Falkowski, B.J. and Rahardja, S. “Fast transforms for Orthogonal
Logic”, Proc. of IEEE Inter. Symp. on Circuits and Systems (28th
ISCAS), Seattle, Washington, USA, May 1995, 2164–2167, IEEE,
Los Alamitos, California.

[9] Falkowski, B.J. and Rahardja, S. (1997) “Classification and
properties of fast linearly independent logic transformations”,
IEEE Trans. Circuits Syst.—II: Analog Digital Signal Process.
44(8), 646–655.

[10] Froessl, J. and Eschermann, B. (1991) “Module generation for
AND/XOR-fields (XLAs)”, Proc. IEEE ICCD ’91, 26–29.

[11] Green, D.H. (1991) “Families of Reed–Muller canonical forms”,
Int. J. Electr. February(2), 259–280.

[12] Helliwell, M. and Perkowski, M. (1988) “A fast algorithm to
minimize multi-output mixed polarity generalised Reed–Muller
forms”, Proc. IEEE/ACM DAC, 427–432, Paper 28.2.

[13] Ho, P. and Perkowski, M.A. (1994). “Free Kronecker decision
diagrams and their appllication to ATMEL 6000 FPGA mapping”,
Proc. Euro-DAC’94 with Euro-VHDL’94, September 19–23,
Grenoble, France, pp. 8–13, IEEE, Los Alamitos, California.

[14] Chrzanowska-Jeske, M., Wang, Z. and Xu, Y. (1997) “Regular
representation for mapping to fine-grain”, Proc. Int. Symp. Circuits
Syst., ISCAS ’97 4, 2749–2752.

[15] Perkowski, M., Dysko, P. and Falkowski, B. (1990). “Two learning
methods for a tree search combinatorial optimizer”, Proc. of the
IEEE Intern. Phoenix Conf. on Computers and Comm., Scottsdale,
Arizona, 606–613, IEEE, Los Alamitos, California.

[16] Katiyar, P., Study of Using Logical Transforms for Texture
Analysis, http://exodo.upr.clu.edu/pkumar/proposal.html.

[17] Lindgren, P., Drechsler, R. and Becker, B. (1999) “Synthesis of
Pseudo-Kronecker lattice diagrams”, Proc. ICCD ’99, 307–310.

[18] Mishchenko, A. and Perkowski, M., “Highly testable Linearly
Independent Lattice Diagrams and their application to regular
layout generation”, to be submitted.

[19] Mukherjee, A., Sudhakar, R., Marek-Sadowska, M. and Long, S.I.
(1999). “Wave steering in YADDs: a novel non-iterative synthesis
and layout technique”, Proc. Design Automation Conference (36th
DAC), New Orleans, LA, 466–471, IEEE, Los Alamitos,
California.

[20] Perkowski, M. and Johnson, P. (1991). “Canonical multi-valued
input Reed–Muller trees and forms”, Proc. 3rd NASA Symp. on
VLSI Design, Moscow, Idaho, 11.3.1–11.3.13, IEEE, Los Alamitos,
California.

[21] Perkowski, M.A. (1992) “The generalized orthonormal expansion
of functions with multiple-valued inputs and some of its
applications”, Proc. ISMVL ’92, 442–450.

[22] Perkowski, M., Csanky, L., Sarabi, A. and Schaefer, I. (1992). “Fast
minimization of mixed-polarity AND/XOR canonical networks”,
Proc. IEEE Intern. Conf. on Computer Design, ICCD ’92, Boston,
October 11–13, 32–36, IEEE, Los Alamitos, California.

[23] Perkowski, M. (1993) “A fundamental theorem for exor circuits”,
Proc. Reed–Muller ’93, 52–60.

[24] Perkowski, M., Sarabi, A. and Beyl, F. (1993) “XOR canonical
forms of switching functions”, Proc. Reed–Muller ’93, 27–32.

[25] Perkowski,M. and Pierzchala, E. (1993). New Canonical Forms for
Four-Valued logic, Report, EE Dept., PSU.

[26] Perkowski, M., Sarabi, A. and Beyl, F. (1995) “Fundamental
theorems and families of forms for binary and multiple-valued
linearly independent logic”, Proc. Reed–Muller ’95, 288–299.

[27] Perkowski, M., Ross, T., Gadd, D., Goldman, J.A. and Song, N.
(1995) “Application of ESOP minimisation in machine learning and
knowledge discovery”, Proc. Reed–Muller ’95, 102–109.

[28] Perkowski, M., Jozwiak, L. and Drechsler, R. (1997) “A canonical
AND/EXOR form that includes both the generalized Reed–Muller
forms and Kronecker Reed–Muller forms”, Proc. Reed–Muller
’97, 219–233.

[29] Perkowski, M.A., Jozwiak, L. and Drechsler, R., “New hierarchies
of AND/EXOR trees, decision diagrams, lattice diagrams,
canonical forms, and regular layouts”, Proc. of Reed–Muller ’97
Symposium, Oxford University, UK, September 1997, 115–132.

[30] Perkowski, M.A., Jozwiak, L., Drechsler, R. and Falkowski, B.
(1997). “Ordered and shared, linearly independent, variable-pair
decision diagrams”, Proc. First International Conference on
Information, Communications and signal Processing, ICICS ’97,
Singapore, 9–12 September, Session 1C1: Spectral Techniques and
Decisions Diagrams, 261–265.

[31] Perkowski, M.A., Chrzanowska-Jeske, M. and Xu, Y. (1997)
“Lattice diagrams using Reed–Muller logic”, Proc. RM ’97,
61–72.

[32] Perkowski, M.A., Pierzchala, E. and Drechsler, R. (1997) “Ternary
and quaternary lattice diagrams for linearly-independent logic,
multiple-valued logic and anolog synthesis”, Proc. ICICS ’97,
269–273, September 10–12, Singapore.

[33] Sarabi, A. and Perkowski, M.A. (1992) “Fast exact and quasi-
minimal minimisation of highly testable fixed-polarity AND/XOR
canonical networks”, Proc. DAC ’92, 30–35.

[34] Sarabi, A. and Perkowski, M. (1993) “Design for testability
properties of AND/EXOR networks”, Proc. Reed–Muller ’93,
147–153.

[35] Sarabi, A., Song, N., Chrzanowska-Jeske, M. and Perkowski, M.A.
(1994). “A comprehensive approach to logic synthesis and physical
design for two-dimensional logic arrays”, Proc. Dac ’94, San
Diego, 321–326, IEEE, Los Alamitos, California.

DECISION DIAGRAM 51



[36] Sasao, T. (1995) “Representation of logic functions using EXOR
operators”, Proc. Reed–Muller ’95, 11–20.

[37] Sasao, T. (1992) “Optimization of multiple-valued AND-EXOR
expressions using multiple-place decision diagrams”, Proc. IEEE
22nd ISMVL, 451–458.

[38] Sasao, T., Hamachi, H., Wada, S. and Matsuura, M. (1995)
“Multi-level logic synthesis based on Pseudo-Kronecker decision
diagrams and local transformation”, Proc. Reed–Muller ’95,
152–160.

[39] Sasao, T., eds, (1993) Logic Synthesis and Optimization (Kluwer
Academic Publishers, Dordrecht).

[40] Sasao, T. (1993) “An exact minimisation of AND-EXOR
expressions using BDDs”, Proc. Reed–Muller ’93, 91–98.

[41] Sasao,T. (1995). “Representation of logic functions using EXOR
operators”, Proceedings IFIP WG 10.5 Workshop on Applications of
the Reed Muller Expansion in Circuit Design, Reed Muller ’95,
August 27–29, Makuhari, Chiba, Japan, 11–20.

[42] Schaefer, I. and Perkowski, M. (1993) “Synthesis of multi-level
multiplexer circuits for incompletely specified multi-output boolean
functions with mapping multiplexer based FPGAs”, IEEE Trans.
CAD 12(11), 1655–1664.

[43] Schaefer, I. and Perkowski, M. (1992) “Multiple-valued
input generalised Reed–Muller forms”, IEE Proc., Pt.E 139(6),
519–527.

[44] Schaefer, I. and Perkowski, M.A. (1991) “Multiple-valued
input generalised Reed–Muller forms”, Proc. IEEE ISMVL ’91,
40–48.

[45] Song, N. and Perkowski, M. (1993) “EXORCISM-MV-2:
minimisation of exclusive sum of products expressions for
multiple-valued input incompletely specified functions”, Proc.
ISMVL ’93, 132–137.

[46] Tsai, Ch. and Marek-Sadowska, M., “Logic synthesis for
testability”, private information.

[47] Zeng, X., Perkowski, M., Dill, K. and Sarabi, A. (1995)
“Approximate minimization of generalized Reed–Muller forms”,
Proc. Reed–Muller ’95, 221–230.

[48] Zeng, X., Perkowski, M., Wu, H. and Sarabi, A. (1995) “A
new exact algorithm for highly testable generalized partially-
mixed-polarity Reed–Muller forms”, Proc. Reed–Muller ’95,
231–239.

Authors’ Biographies

Marek Perkowski has his PhD in Automatic control from

the Technical University of Warsaw, Warsaw, Poland. He

served on the faculties of Technical University of Warsaw

and University of Minnesota. Currently he is professor

of Electrical and Computer Engineering at Portland

University, Portland, Oregon. He has been a visiting

professor at the University of Montpellier, France, and

Technical University of Eindhoven, The Netherlands. He

was also a summer professor and consultant at Wright

Laboratories of US Air Force, GTE, Intel, Cypress,

Sharp, and other high technology and EDA companies.

Dr Perkowski was the general chair of International

Symposium on Multiple-Valued Logic, 2000, the Vice-

Chair for Technical Activities of IEEE Technical

Committee on MVL, the Chair of Fourth Oregon

Symposium on Logic, Design, and Learning, 2001 and

Program Chair for Americas, ISMVL 2002. His recent

research interests include spectral decision diagrams,

functional decomposition, intelligent robotics, walking

robots, robot theatre, axiomatic morality, and all

applications of logic synthesis outside circuit design.

Bogdan J. Falkowski received the MSEE degree from

Technical University of Warsaw, Poland and the PhD

degree in Electrical and Computer Engineering from

Portland State University, Oregon, USA. His industrial

experience includes research and development positions at

several companies. He then joined the Electrical and

Computer Engineering Department at Portland State

University. Since 1992 he has been with the school of

Electrical and Electronic Engineering, Nanyang Techno-

logical University in Singapore where he is currently an

Associate Professor. His research interests include VLSI

systems and design, switching circuits with the use of

spectral methods and has published three book chapters

and over 150 refereed journal and conference articles in

this area. He is a senior member of the IEEE, member of

international advisory committee for International Con-

ference on Applications of Computer Systems and was

technical chair for IEEE International Conference on

Information, Communication and Signal Processing held

in December 1999 in Singapore.

Malgorzata Chrzanowska-Jeske received her MS in

Electrical Engineering degree from the Technical

University of Warsaw, Warsaw, Poland and PhD degree

in Electrical Engineering form Auburn University,

Auburn, Alabama. She has served on the faculty of the

Technical University of Warsaw. Poland, and as a design

automation specialist at the Research and Production

Center of Semiconductor Devices, Warsaw. Currently, She

is a professor of Electrical and Computer Engineering at

Portland State University in Portland, Oregon. Her

research interests include logic and layout synthesis of

VLSI circuits and systems, FPGA synthesis and

architecture, and design automation and testing for deep

sub-micron technology. She is a member of the IEEE

Circuits and Systems Society VLSI Systems and

Applications Technical Committee, a senior member of

the IEEE, and a member of Eta Kappa Nu.

Rolf Drechsler received his diploma and Dr Phil. Nat.

degree in computer science from the J.W. Goethe-

University in Frankfurt am Main, Germany, in 1992 and

1995, respectively. He was with the Institute of Computer

Science at the Albert-Ludwigs-University of Freiburg im

Breisgau, Germany from 1995 to 2000. He later joined the

Corporate Technology Department of Siemens AG,

Munich and is now with the University of Bremen. He

published three books at Kluwer Academic Publisher one

on BDD-techniques co-authored by Bernd Becker, one on

using evolutionary algorithms in VLSI CAD, and recently

one on formal verification of circuits. His research

interests include verification, logic synthesis, and

evolutionary algorithms.

M. PERKOWSKI et al.52


	Efficient Algorithms for Creation of Linearly-independent Decision Diagrams and their Mapping to Regular Layouts
	Let us know how access to this document benefits you.
	Citation Details

	43087 35..52

