May 7th, 11:00 AM - 1:00 PM

Development of a Design Guideline for Pile Foundations Subjected to Liquefaction-Induced Lateral Spreading

Milad Souri
Portland State University

Arash Khosravifar
Portland State University

Let us know how access to this document benefits you.

Follow this and additional works at: https://pdxscholar.library.pdx.edu/studentsymposium

Part of the [Computer Sciences Commons](https://pdxscholar.library.pdx.edu/studentsymposium/computer-sciences-commons) and the [Engineering Commons](https://pdxscholar.library.pdx.edu/studentsymposium/engineering-commons)

https://pdxscholar.library.pdx.edu/studentsymposium/2019/Posters/7

This Event is brought to you for free and open access. It has been accepted for inclusion in Student Research Symposium by an authorized administrator of PDXScholar. For more information, please contact pdxscholar@pdx.edu.
Development of a Design Guideline for Pile Foundations Subjected to Liquefaction-Induced Lateral Spreading
Milad Souri, PhD Candidate (Expected Graduation 2020)
Advisor: Dr. Arash Khosravifar

Problem Statement
Past earthquakes confirmed that seismically-induced kinematic loads from soil lateral spreading and inertial loads from structure can cause severe damages to pile foundations. The research questions are:
- How to combine inertial and kinematic loads in design of pile foundations in liquefied soil?
- How the combination of inertia and kinematics changes with depth?
- How this combination is affected by long-duration earthquakes?
- How this combination affects inelastic demands in piles?

Background
Current design codes provide varying recommendations on the combination of inertia and kinematics.

Centrifuge Model
Five centrifuge tests were performed on pile-supported wharves in liquefied soils by Dickenson, McCullough and Schlechter, using the geotechnical centrifuge at UC Davis. (McCullough et al. 2001)

Interaction of Inertia and Kinematic
The comparison of recorded bending moments and estimated from LPILE in all five centrifuge tests, proposed below load combinations to estimate bending moments at different depths

Future Works
- Perform numerical analysis in FLAC2D and validate against centrifuge data
- Evaluate the effects of long duration earthquakes and pile inelasticity on the combination of inertial and kinematic demands
- Propose design guidelines for piles in liquefied soils

Acknowledgement
The authors would like to acknowledge Dr. Steve Dickenson (New Albion Geotechnical, Inc.), Dr. Nason McCullough (Jacobs), Scott Schlechter (GRI) for sharing the centrifuge tests data. Funding provided by NSF and DFI.