
Portland State University Portland State University

PDXScholar PDXScholar

Electrical and Computer Engineering Faculty
Publications and Presentations Electrical and Computer Engineering

9-1998

An Efficient and Effective Approach to Column-An Efficient and Effective Approach to Column-

Based Input/Output Encoding in Functional Based Input/Output Encoding in Functional

Decomposition Decomposition

Michael Burns
Portland State University

Marek Perkowski
Portland State University

Stanislaw Grygiel
Portland State University

Lech Jozwiak
Technical University of Eindhoven

Follow this and additional works at: https://pdxscholar.library.pdx.edu/ece_fac

 Part of the Electrical and Computer Engineering Commons

Let us know how access to this document benefits you.

Citation Details Citation Details
Published as, Michael Burns, Marek Perkowski, Lech Jozwiak, and Stanislaw Grygiel, "An Efficient and
Effective Approach to Column-Based Input/Output Encoding in Functional Decomposition," Proceedings
of 3rd International Workshop on Boolean Problems, pp. 19-29, September 17-18, 1998.

This Post-Print is brought to you for free and open access. It has been accepted for inclusion in Electrical and
Computer Engineering Faculty Publications and Presentations by an authorized administrator of PDXScholar.
Please contact us if we can make this document more accessible: pdxscholar@pdx.edu.

https://pdxscholar.library.pdx.edu/
https://pdxscholar.library.pdx.edu/ece_fac
https://pdxscholar.library.pdx.edu/ece_fac
https://pdxscholar.library.pdx.edu/ece
https://pdxscholar.library.pdx.edu/ece_fac?utm_source=pdxscholar.library.pdx.edu%2Fece_fac%2F184&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/266?utm_source=pdxscholar.library.pdx.edu%2Fece_fac%2F184&utm_medium=PDF&utm_campaign=PDFCoverPages
http://library.pdx.edu/services/pdxscholar-services/pdxscholar-feedback/?ref=https://pdxscholar.library.pdx.edu/ece_fac/184
mailto:pdxscholar@pdx.edu

AN EFFICIENT AND EFFECTIVE APPROACH TO

COLUMN-BASED INPUT/OUTPUT ENCODING IN

FUNCTIONAL DECOMPOSITION

Michael Burns, Marek A. Perkowski Lech Jozwiak
Stanislaw Grygiel

Department of Electrical Engineering Faculty of Electronics Engineering
Portland State University Technica.l University of Eindhoven

Portland, OR 97207 MB 5600 Eindhoven
USA The Netherlands

Abstract

Encoding in Curtis-style decompositions is the process of assigning codes to g1'OUpS of compatible columns
(or cubes) so that the binary logic descriptions of the predecessor (md successor sub-functions can be creatl::d
for further decomposition. In doing so, the sub-functions created are functionally equivalent to the set of care
values specified in the original fUTlction. In this paper an input/output encoding olgorithm DC.-ENC i.~ presented
that is designed to achieve the simpliest total complexity of the predece.~sor and succe.~S01· sub-functions, and 10
increase the total numbel' of don't cares fOl' their further utilization in subsequent decomposition steps of these
sub-functions.

1. INTRODUCTION. THE ENCODING PROBLEM IN FUNCTIONAL DECOMPOSITION.

One of the most promising approaches of modern logic synthesis is general functional decomposition [L 7,
20, 11J. Together with our collaborators, we developed decomposers TRADE [27J, LUTSYN [26J and GUD
binary), FRED [11, 121 (multi-valued functions), and finally GUD-MV lued) for multivalued functions and
relations [20, 13, 14J. Observe, that unlikely to TRADE that uses cubes and FRED and most recent decomposers
that use BDDs (Pedram et al, Scholl [23], Wurth et al), Gun and GUD-MV use a new data structure,
based on BDD-encoded or bit-set-encoded labeled rough partitions [13, 14] (Karnaugh maps are used
below only for easier explanation). This new data structure allows to realize algorithms tuned to multi-valued
relations and don't cares, which would be difficult to implement in BDD-based approaches.

Don't cares have many interesting applications in decomposition, including symmetries and regular struc
tures [21, 9, 11, 12J but in this paper we will focus on just one aspect of creating an effective and efficient.
decomposer: the Binary Encoding Problem. We focus our applications on regular VLSI layout for sub-micron
techologies and Machine Learning, therefore we do not assume the same size of all bound sets. Although our
approach accounts for encoding to vectors of arbitrary values v (e.g. as required by the decomposer from [12]),
for simplicity it is presented here for v 2 only.

The most important problem of the functional decomposition is finding the sets of input variables for sub
functions t.hat result in high-quality hierarchical decompositions (sub-functions are recursively decomposed to
next-level sub-functions, F(A, B) = H(A, G(B)), where G;{B) are single-output functions from the predecessor
block G, IG(B)I < IBI and B is the bound set). For solving this problem the column incompatibility or
compatibility graph is used in the Curtis-style functional decomposition [27, 17, 20J. Each group of compatible
columns found based on such graph is then encoded with the same code. Variolls encoding;; of function G lead
to various realizations of functions G and H, each WiUl various numbers and locations of don't cares. 'fhe
encoding should reduce some quality measures of bol.h the predeceHsor and the successor sub-functi()Ils, making
use of these don't cares. Some spedal classes of functions Gi (symmetric, monot.onic, et.c.) can be used for
encoding [9, 21, 11, 12J, but. here our interest. is on general functions llsed ill G. Observe, thaL the problem
is difficult. Firstly, our final goal is not a two-level decomposition, but a. multi-level decomposition. Secondly,
unlike in the FSM state encoding, the encoding sub-process in functional decomposition is repeated very many
times in the entire hierarchical decomposition process. It must be very fast, but also produce high quality results.

F

abttde C, C l c) C. C, C6 C 7 C •

.. I 1 0 0 - I I -
II 0 - 0 0 0 1

I
~

1
I-

0
'--

0

I

I
'-

II

I.
I 0 1 - -
I

--

I I I ' I
__~

0
__

_~. _w· ow • .

: C 1

; • II F~
SI S2 54 54 51

52
53 S3 51

S4 c) d)

S4

a)

51 S2 S3 54
TTG~ {{C"C"C. };{C 2 .C S }; {c' ••C, };/Cl,C.,C"C.}} Input Cover Set

b)

Fig. 1. Function used to Illustrate Encoding of Disjoint vs. Nondisjoint Cover Sets

The" Encoding Problem for Decomposition" can be simplified as the "Input Encoding Problem" or the
"Output Encoding Problem". Input Encoding is the process of selecting code..8 for classes of the cover set Ha
[17] so that the complexity of the successor sub-function is minimized. The cover sel ITa is a partition of care
rnintermssllch that ITa . IT(A) ~ ITF, and Da ~ IT(B), in decompositioll f' = H(A, G(B)), where A is the
free sel, and B is the bound set of input variables. U(B) is the partition of minterms induced by a bound set,
and DF is t.he output partition of the function on the set of its care minterms. Examples of some input encoding
approaches are found in Wan [27], M urgai [19], and Brayton [4]. Output Encoding is t.he process of selecting codes
for classes of the cover set ITa so that the complexity of the predecessor sub-function is minimized. Example
of an output encoding approach can be found in Saldanha. [22]. Encoding approaches referred to as combined
input/output encoding aim at concurrent simplification of the predecessor and successor sub-functions. Examples
of the combined input/output encoding can be fonnd in Devadas [7], Saldanha [22], Volf [26], and Selvaraj [24].
The input/output encoding approaches are typically more difficult to design but have a potential to produce the
predecessor and successor functions with much smaller combined complexity.

In Curtis decompositions, the primary goal is typically to minimize, in a number of steps, the tolal complexity
of the hierarchical multi-level realization of a given function. This complexity can be expressed a.., a DFC or
Decomposed Function Cardinality, which is the total cost of blocks, where the cost of a (binary) block with 11

inputs and m outputs is 2n * tn, [20] (we use DFC because our research is mostly on decompositions for VLSI
layout generation and Machine Learning; most authors are interested in FPGAs and use the total number of
Look-Up table blocks as the cost function; for instance, XC3000 CLB of Xilinx has a DFC cost of 25 = 32).
Thus, one of the main goals of our implementation of generalized Curtis decomposition is to preserve or even
increase don't cares for the successive decomposition steps [20].

An important criterion for determining what type of encoding is best for a Curtis decomposition, is the ratio
of relative complexities of the predecessor and successor sub-functions (see Fig Id for the schematic view of
Curtis decomposition - G is the predecessor and H is the successor block (sub-function». Unfortunately, it is
difficult to assess the relative complexities of the sub-functions, especially, when they are nearly of the same size
(in terms of the numbers of inputs and outputs). However, when the predecessor sub-function is much larger
than the successor sub-fullction, one can reason that the predecessor will have a greater potential for further
simplifications. For example, if the predecessor sub-function ha.., 20 inputs and 3 outputs and the successor
sub-function ha.<; 4 inputs and 3 outputs, then it would be obvious that the predecessor would have a greater
potential for further simplification in terms of DFC (i.e. DFC=(2:w *3) vs. DFC=(24 * 3)) . Conversely, if
the successor is much larger than the predecessor, then there is a greater pol,ential for furl.her simplification of
the successor sub-function. Therefore, the input encoding approach should be used ill this case. The output
encoding approach should be applied when the predecessor is much larger than the successor. Finally, when they
are roughly of equal size, then the combined input/output encoding should be used. An interesting characteristic
of the new DC..ENC approach presented in this paper is that it will behave at times like each of the three types
of encoders based on a helilistic cost function. Also, the more don't cares - the better the approach works.

In different applications of decomposition, different obj~ctives have to be optimized. However, only three
primary encoding objectives are used in the DC_ENC encoding approach (ENC-oding to increase Don't
Care sets) presented in this paper. These three primary encoding objectives are used to achieve the overall
desired goal of obtaining a multi-level decomposition which has the minimum total complexity of all logic blocks

(or DFC). The first oby"ective is to minimize the Hamming distances between the columns in the
Karnaugh map of the successor sub-function for a given bound set B and free set A. The second
oby"ective is t.o minimize the Hamming distances between the codes assigned to adjacent cells in the
Karnaugh map of the predecessor sub-function. The third objective is to maximize the number of'
don't cares produced in the predecessor sub-function. The order of importance of these objectives varies
depending on the sizes of the sub-functions. If t.he successor sub-fundion is much larger than the predecessor
sub-function, then the first objective is more importa.nt. If the reverse is true, then the last. two objectives are
more important. If the predecessor sub-function is much larger than the successor sub-function, then opt.imizing
a combination of the last two objectives will most, likely lead to a.n overall decomposition resulting in a lower
DFC. Each of the three objectives mentioned ra'mlLs in a separate set of en<~oding constl'aints.

The encoding problem that is solved by the DC_ENC encoding method is formulated as follows. Given a
set of various encoding constraints, use the minimum nnmber of binary variables (bits) to encode all columns
in a Karnaugh map, such that at least 75% of the encoding constraints are satisfied. The optimal percentage
and types of constraints to satisfy to achieve the overall goal of minimum DFC diff of course from function
to function. The goal is to dynamically find the exact or near exact percentage of constraints t.o satisfy on a
fun<:tion-by-function basis. The value of 75% was selected here for illustration, based on the following rationale.
The size of a constraint is the number of symbols in the constraint. Each symbol is assigned a unique code. If
the number of bits that differ in the symbol codes is minimal, then more bits are required to assign eodes to
symbols in large constraints than in small constraints. In each of several example decompositions the number of
large constraints was very small in comparison to the number of small constraints, Therefore, 75% was chosen
as a heuristic cut-off value.

One of the most important characteristics of the DC_ENC algorithm is its ability to take advantage of
the overlap in compatible classes of columns to "produce" don't cares in the predecessor sub-function.
We found on circuit realizations that in many decomposed benchmark functions these don't cares can greatly
simplify the complexity of the predecessor sub-function. The DC_ENC algorithm inv~lves: (1) selection of
suitable cover sets, (2) heuristics to optimize the quality of the encoding at low computational cost, (3) multiple
constraint satisfaction using an edge-weighted connection graph, and (4) use of Hamming distances to aid in
the code assignments which result in simpler functions. Below, we will explain the main ideas of our approach,
they can be implemented in various ways in a program. Our program, DC-ENC is only one realization of these
ideM, and there is no space here to go to technical det.ails. Understanding of state assignment and encoding
theories [1, 6, 8, 10, 16, 19, 22] as well as the decomposition theory [11, 12, 13, 14, 20, 25] is very useful t.o
understand our implement.ation details [3], but we hope that. this presentation is sufficiently self-contained t.o
explain the main ideas of our work, even to people who do not work ill encoding and decomposition.

2. DEFINITIONS, NOTATIONS, AND TERMINOLOGY FOR DECOMPOSITION ENCODING

Unless otherwise stated, a set which contains column indexes will be considered to be the same as a set which
contains colurnns(i.e., column will be short for column index). Similarly, for sets containing cubes, symbols,
classes, etc., the word "index" will be not included. The purpose for this is to avoid t.he OVer-llSf' of the word
"index". However, where it will be necessary to distinguish between the element's index and the cont.ents of
the element, then appropriat.e darification will be made. A cover set is a set of subsets of columns t.hat cover
all columns. A disjoint cover set (a partition) is a cover set in which no column is an element of more than
one subset. A nondisjoint cover set is a cover sct which contains some subsets of columns where at least
one column is an element of more than one subset. Hamming Distance between two code words(or vectors
of variables) is defined as the number of positions (variables) in which these code words differ. A Symbol is a
(multi-va.lue) label representing a. set of mutually compatible elements; the elements in each set are either cubes
or columns. Symbols are used to denote the individual sets(or classes) within a given cover set. A set of columns
corresponding to a particular symbol may be referred to as a symbol set or symbol class or symbol group.
For simplicity, a symbol set within the cover set is simply referred to as a symboL A Hypercube of dimension n
is an n-dimensional binary sub-space, i.e. a set of 2" vertices, where each vertex has exactly n edges with 11 other
vertices. No vertex in a hypercube is connected to the same set of edges as any other vertex in the hypercube.
A Supercube of a certain set of cubes is defined a.~ the smallest cube containing all the O-dimensional cubes
(minterms) contained in this set of cubes.
Example 1: The supercube of cubes 000, 001, aJld Oll is 0 - -.
A k-cube is a snpercube of 21< bit, vectors where the number k indicates the uumber of don't cares in the cube.
Example 2: For the bit vectors 00, 01,11, and to, the resulting k-cube (2-cube) is ". -".

A Face is a k-dimensional sub-space of the n-dimellsional binary space, where k ::; 11. Typically, a face refers
to k-dimensional sub-cube of an n-dimensional cube. A Column Constraint (as defined for the purpose of this

http:importa.nt

paper) is a set(or group) of symbols in the cover set to which a particular column is compatible.
Example .'3: The form of a constraint. for a certain column C. is (SI ,53, S7) - see Fig. 1 for an example.

A Face Embedding Constraint is a constraint which specifies that a certain set of symbols has to be
assigned to one face of a binary n-dimensional cube, without any other symbol sharing the same face. A face
embedding const.raint is said to be satisfied if all the codes assigned to the symbols in the constraint occupy
a single face in an n-dimensional cube and no other symbols are placed in this face. When a face embedding
constraint is satisfied, it is possible that some codes of the face remain unused.
Example 4: For a three dimensional cube (- - -) the face embedding constraint for column Ci is (SI, S3, 84),

Symbol SI encoded with ODD. S3 with 001, 84 with 011 and no symbol is assigned to 010 (unused code), with the
set of symbols in the constraint of column Ct is said to satisfy the face embedding constraint, because the codes
assigned to each of the symbols are contaIned in a single face(Le., 0 - -) of the given three dimensional cube, and
no other symbols are placed in this face.

A Hypercube Embedding Constraint is a special face embedding constraint containing exactly 2k sym
bols. Like a face embedding constraint, a hypercube embedding constraint is said to be satisfied if all the codes
assigned to the symbols ill the constraint occnpy a single face in an n-dimensional cube and no other symbols
are placed in this face but all codes of the face are used.
Example 5: For the hypercube embedding constraint (81,84 , S3, 87) for column C; and the code assignments:
000 =8 1 • 001 =83, 011 =8 4 , 010 =S7, thus (0 - -) is the supercube of the codes in the constraint. Remaining
symbols, not included in the constraint, are the following: 110 = S2. 111 S5, 101 S6. The hypercube
embedding constraint is satisfied because the supercube contains only codes contained in the constraint.
Example 6: Given the hypercube embedding constraint (81) 8 4 • S3. S7) for column, and the following code assign
ments: 000 =SI, 101 =8 3 , 011 =84 , 010 =S7, therefore (- - -) is the supercube of the codes in the constraint.
Remaining symbols not in the constraint: 110 = 8 2 ,111 = 85 , 001 =86 . The hypercube embedding constraint
is not satisfied, because the supercube of the codes assigned to the symbols of the constraint includes the codes
of symbols which are not contained in the constraint.

The Function Cost Ratio (FCR) is an approximate measure of the relative sizes of the predecessor and
successor fuud.ions in a Curtis-style decomposition. It is defined as follows: FCR = Costl GDFc/HDFc.
GDFC is the DFC of the predecessor sub-function G. HDFc is the DFC of the successor sub-function H.
Overlap Ratio Ro is a measure of the "overlap" of columns in symbols(or classes) of ITG. Columns are said
to "overlap" if they are compatible with more than one symbol in the cover set ITG. Ro is defined as follows:
Ro =CO/CT. Co =Number of columns which are compatible with more than one symbol in ITG. CT =Total
number of columns (excluding columns of all don't cares).
Example 7. For function from Fig. 1: Co = 2, CT = 8, Ro =2/8 = 1/4.

3. FUNDAMENTALS OF THE COLUMN-BASED ENCODING

In the Curtis style decomposition, the encoding process follows the column minimization phase [20, ;jJ. The
columu minimizal.ion process consists in covering all columns wit.h the (quasi) minimum number of cliques of
columns. The set of sllch subsets of columns will be called cover set fIc;. The primary input. dal,a to the encoding
process are: the function to be decomposed, the cover set lIG. and the column multiplicity (the cardinality of
ITG)' In the column-based encoding, the cover set ITG is composed of subsets (cliques eCs) conta.ining columns.
Though encoding approaches can be diverse and quite complicated, most column-based encoding approaches
share the two following primary steps: the assignment of codes to the symbols(or classes) in the cover set ITG,
and the assignment of codes to each column corresponding to the symbol codes of the symbols to which a certain
column is compatible.

In Figure 1, the Karnaugh map is shown of an example function and an input cover set is used to illustrate
the column-based encoding of disjoint and nondisjoint cover sets. Below each column of the Karnaugh map for
function F a list of symbols is given to which a certain column is compatible. The question arises, what is the
advantage of the encoding with nondisjoint cover sets over the encoding with disjoint cover sets? The primary
advantage is t.hat there are additional optional codes which may be assigned to columns. If there are more codes
to choose by the nondisjoint cover sets, then why ever use the disjoint cover sets? The answer is that many
encoding approaches (like those in which graph coloring or clique partitioning are used for cohwlIl minimization
[20J) assume that the input cover set is disjoint (a partition), and therefore, they cannot handle the overlap in
nondisjoint cover sets. In Section A an example is presented of the column-based encoding for the disjoint cover
sets. In Section B an example is presented of the column-based encoding for the nondisjoint cover sets.

Sl S2 S3 S4
ITa = {{c I ,C S , C 8 } ; {c 2, C S }; {c 6, C 7 } ; {c 3 ,C 4 ,C S ,C 8 } } Input Cover Set

a)

Encoding of columns with disjoint codes

ITa = {{c I ,C S , C 8 }; {c 2

g1g2 H
ab 00 01 11 10

O~

1

0

1

o
81=00

1 I 0 I 82=01

o I 1 I 1 I 83=11
84=10

1 I 0

SI S2 S3 S4

c)

}; {c 6 ,C d ; {c 3 ,C 4 }} Disjoint Cover

b)~
c G

de~ 0 I

) C I C 2

C 4 C 3
r~~ ~-~ +--
C s C 6

) C 8 C 7

oo~
I 01 S4 S4

I II ~':>4 S3

lol~ I S3

d) e)

c G
de~ 0

00 I00 I 01

01 kT.0
11 00)1

10 00 I I I

1)

Columns Removed from Input cover set to form final cover sets for encoding.

Encoding of columns with~oint codes

ITG= {{CI,C S ,Cg};{c 2 }; {c6,cd;{C 3 ,C 4 ,C S ,C8}} Nondisjoint Cover

glg2 H g) G

ab
e c G

-~ ~~~ :~-

1 1 1 0
~-~

0 - 1 0
~~~~ ~~- -~ ~- ~~ 

1 0 1 1 
I------

1 1 0 1 

cd 
"- o de 

"-

TO 

Sl S2 S3 S4 

I( 

OOIC I 

I 
01 C 4 

I IlICs 

10 I C8 

00 I SI I S2C 2 

C 3 01 I S4 I S4 

I I S3C 6 

S3C 7 

i) j) 

Fig. 2. Encoding of Disjoint vs. Nondisjoint Cover Sets 

c G 
d~ 0r----'----1 

00 I 00 I 01 

01 I 10 I 10 

II~II 

10 I -0 I 11 

k) 



A. Encoding of the Disjoint Cover Sets 

To create a disjoint cover set it is necessary to remove all instances of each column from every subset(symbol) 
of IIG except for one of them. In general, many various cover sets may result from removing columns from the 
symbols of IIG to make it a disjoint cover set. For the input cover set shown ill Figure 2a, there are only two 
columns that are elements of more than one symbol. Column Cs can be assigned to one of the three symbols 
of fiG. Column C8 can be assigned to one of the two symbols of fiG. In total, there are six possible disjoint 
cover sets (i.e., there are six disjoint cover sets which can be produced by removing columns C5 and Cs from all 
bllt one symbol). For simplicity, columns Cs and C8 are arbitrarily removed from all symbols except for one. 
In Figure 2b the disjoint cover set is shown t,hat is produced by removing columns Cs and G's from all but olle 
symbol of the input cover set. 

The cover set select.ed det,ermines what column types will be ill the sub-function H. Each of the column 
types in the sub-function H is obtained by performing the ullion on all columns contained in each of the symbols. 
In Figure 2c, different column types are shown in the sub-function H corresponding to the disjoint cover set 
selected. The actual position of the column types in the Karnaugh map of sub-function H are not known until 
the codes(glg2) have been assigned to each of the symbols. 

In Figure 2d the cells of the sub-function G are shown with column labels corresponding to each vector of 
input variables of the bound set of function F. In Figure 2e the cells of the sub-function G are shown containing 
the symbols in fiG to which a certain column ill function F is compatible. Observe that by making the input 
cover set disjoint, column C5 may only be assigned to symbol Sl (shown circled) because it is no longer an element 
of the subsets corresponding to symbols S2 and S4. Similarly, column Cs may only be assigned to symbol SI 
because it is no longer an element of the subset corresponding to symbol S4. 

Finally, codes for each symbol have to be assigned. Because the column multiplicity is four, two bits are 
required to encode each of the foUl' symbols in fiG, Ideally, Llle codes should be a..'>signed to simplify both 
sub-functions simultaneollsly. However, because the purpose of this section is merely to show the ba..'1ics of the 
column-ba..9ed encoding, the codes for each symbol are chosen arbitrarily. The codes assigned to the symbols are 
shown in Figure 2c as values of the variables 9192 at the top of the corresponding columns. 

The assignment of codes to columns in function F is performed by assigning the code of each symbol to every 
column that is an element of that symbol. In the cells of the Karnaugh map in Figure 2f the codes for each 
column are shown. This completes the encoding process for the disjoint cover sets. In Figure 1c and Figure Id 
the block diagrams of the original function F and the sub-functions G and H of its Curtis decomposition are 
presented. Note, that the codes g1g2 assigned to columns correspond to the out.puts of the sub-functions G and 
inputs to the sub-functions H. 

B. Encoding of the Nondisjoint Cover Sets 

The primary difference between the encoding of the nondisjoint vs. disjoint cover sets is that the columns 
may be now assigned with the combined symbol codes(supercube of codes) in some instances. For example, if 
the codes assigned to the symbols are the same a..9 they were in the disjoint ca..'le (i.e., Sl =00, S2=01, 83=11, 
and S4=1O), then column C5 could be assigned codes 0- or -0, as well a..'! 00, 01! or 10. 

A column can only be assigned a combined symbol code if the sllpercllbe of the symbol codes does not contain 
any codes of symbols to wh ich the column is f10t compatible. For example, column C5 can't use the optional 
code 0- unless it is an ele'ment of the two symbols with symbol codes 00 and 01. Similarly, column C5 can't use 
the optional code -0 unless it is an element, of the two symbols wit.h symbol codes 00 and 10. Also. we can't 
assign with the combined symbol codes of symbols 82 = 01 and 84 10 because t,hey diff'er by more than 
one bit. The combined code of symbols 82 and .','4 result.s in code"- -". This code also includes the code of 
symbols Sl =00 and 83 =11, and symbol 83 is not among the acceptable code assignments for column C5 · 

In Figure 2g a nondisjoint cover set is shown which allows columns Cs and Cs to receive don't cares in their 
codes. In Figure 2j combinations of symbols are shown (circled) to which columns C5 and Cs were assigned. 
Assigning columns and C8 to the combined codes of symbols 81 (Le., 00) and S4 (i.e., 10) results in the 
combined code -0. The resulting column codes are shown in Figure 2k. Why not give column the combined 
code of symbols Sl=OO, S2=01, and S4=10? The combined code of symbols Sl, S2, and S4 is "- -". This code 
includes the code of symbol S3 which is not among the acceptable code a.c;signments for column Cs. For this 
reason, column C5 was removed from symbol S2 in the initial cover to form the final cover set shown in Figure 2g. 
This completes the encoding process for the example of the nondisjoint cover sets. The block diagram for the 
decomposed sub-functions G and H is the same as for the disjoint case. Using the same function, we explained 
how columns can be encoded using the disjoint and llondisjoint cover sets. We also explained how don't cares 
can be introduced into the codes of the predecessor sub-function when the encoding method utilizes the overlap 
in nondisjoint cover sets. Often, these extra don't cares can greatly reduce the complexity of the predecessor 

http:select.ed


sub-function. The more don't cares, the higher the overlap, the more choices of subsets of symbols, 
the better the codes and the more don't cares in G and H. 

4. GENERAL OUTLINE OF OUR NEW ENCODING ApPROACH 

Though there are many different general selection strategies possible, the strategy described below is simple 
and effective. Therefore, we adapted it as the primary strategy for use in the DC..ENC program (there are 
other strategies [12,27,24]). The main purpose ofthe selection strategy is to evaluate whether some conditions 
are sa.tisfied for the DC..ENC to be effective. If so, the DC_ENC encoding program would be called. Otherwise, 
a different encoding program would be selected. 

The selection criterion is based on the evaluation of the Function Cost Ratio (FCR) and the overlap ratio 
(Ra). The following IF-THEN-ELSE statement is t,he proposed heuristic, which determinf'~" if the DC_ENC 
encoding is used. 

(Ro> 1/5 and FCR?: 1/2) 

then use the DC..ENC encoding app1'Oach, 

else 

use all alternative encoding approaches. 


The above IF-THEN-ELSE statement will be referred to as Rule# l. Basica.lly, Rule# 1 states two conditions 
to be satisfied before the DC..ENC encoding approach is used. The first condition specifies that there must be 
a sufficient overlap of columns in the symbols of JIG. Why it is so? If there is no overlap, then the DC_ENC 
encoding approach can't utilize overlap to produce don't cares in the codewords. The second condition specifies 
that the predecessor sub-function must be roughly equal to or larger than the successor sub-function in terms 
of inputs and outputs(DFC). Why? Because the DC..ENC tends to simplify the predecessor sub-function 
more than the successor sub-function. For some functions, DC..ENC may actually simplify the predecessor 
sub-function at the cost of making a more complex successor sub-function(i.e., DC..ENC produces don't cares 
in the G block in such a way that Hamming distances may increase in block Il). When the two conditions 
above are satisfied, then the DC..ENC program can greatly simplify the complexity of the predecessor block by 
introducing don't cares in the codes assigned to columns. 

Unfortunately, due to the differences in each decomposition, it is not known exactly when the overlap is suf
ficient for the DC..ENC to be effective. However, based on the experience acquired solving numerous examples, 
our current recommendation is to use a different encoder if Ro < 1/5. Future work may include more benchmarks 
testing to refine this value, and/or to find other criteria to determine if and when the DC..ENC is effective. 

The function cost ratio (FCR) provides quite rough estimate of the ratio of complexity and/or size of sub
function G relative to sub-function H. Ranges of the FCR ratio are used to make decisions in the general 
encoding strategy introduced by lIS. The following set of ranges for the FCR ratio is considered: Range 1: 
FCR::::: 1/6, Range 2: 1/6 < FCR ::::: 1/2, Range 3: 1/2 < FCR::::: 2, Range 4: 2 < FCR ::::: 6, 
Range 5: PCR> 6. These ranges are used for two purposes. The first purpose is to determine whether or 
not one of the two conditions necessary for using the DC..ENC is satisfied (IF-THEN-ELSE statement above). 
The second purpose is to determine values t.o assign to two parameters, X and U, used in the cover set select,ioll 
process. The values assigned to X and U are used heuristically to determine how a cover set should be sdected 
in order to provide more efficient encoding for the larger of the two sub-functions in a decomposition. PCR is 
used to determine values for these parameters and the parameters affect the covel' set selection process. Once the 
DC..ENC algorithm has been selected, the cover set selection is performed. The cover set selection is a heuristic 
process of forming an enhanced cover set according to the value of the cost function ratio FeR. 

The next step is the encoding, It belongs to the family of hypercube embedding algorithms (One of the 
known methods for the hypercube embedding is implemented in MUSTANG[8]; later, an improved approach 
named JED! was introduced[16]; yet another approach, M"U SErlO], produced slightly better results than either 
MU STANG or JED!). However, our approach differs significantly from them. While the known approaches 
create an arbitrary graph taking into account all constraints, and next embedd (heuristically and non-optimally) 
this graph to a hypercube, we COllstruct the Edge Weighted Connection Graph (EWCG) with special proper
ties. The construction process takes possibly only a subset of constraints, but guarantees that EWCG is next 
algorithmically and quickly embeddedable in a hypercube such that all constraints used to create EWCG are 
satisfied. (This is a general approach to encoding problems that may find also other applications). 

Thus, the stages of our algorithm are: (1) evaluation of FCR and Overlap Ratio; (2) seJection of encoding 
algorithm; (3) cover set selection; (4) incremental creation of EWCG; (5) resolve conflicts between objectives; 
(6) if (constraint satisfaction and objectives completed) go to (7), else if more bits required add one bit to Code 
Word size and go to (3), else to to (4); (7) Embedd EWCG to a hypercube; (8) Assign Supercube of Symbol 
Codes to corresponding Columns. 



<:QSt. 

F.l~ i • TRADE MISll _~~.l SCH Ll'ti JOZ" OZb PS t.IUI~ 

Sxpl 
9_yQ,l 
(,Dul 
d\lk.:t 
cx&p 
flil ... 
Q,linxl 
Q,li••x' 
r:ni_ex3 
rdts3 
rd73 
rd.,. 
••02 
rDot 
.1\1:1 
.. 1\14 
(,Up 
~lip 

7';~ 
7/2 

"~I'·a/6. 
8/a 
8/7

,o/a 
14/l< 

'/3
7/3 
8/4 

10/4 

*'S 
10/3 
14/8 
10/'
9/' 

'96 
6<0 

80 
4&16 

372.., 
84a 

1)81& 
120 
3'0 
808

U", 

384...
••

,4'8 
3720

3.' ,oa 
m 

4'10""

••..~ 
87' 
818 

~.2 

40U 

~ 
:1'00 
'iiiO 
-;'iO

".,3. 
3028 

84

'8. 
3'. 
468 

~~!)~l 
34'.(100) 

".(8) 
25&{a) 

7••(24) 

160col 
..6(8) 

no(,s) 

10.6(33) 

416(13) 

;:~f:l 

'OJ(ll) 

160(') 
'~'(7) 

078(18) 
'12(18) 

18"(61) 

612(18) 

320PO) 

304( lP) 

136(46) 
""(116) 

' ...(118) 

.

33O",) 

'88(1.) 

75'(4<) 
">«114) 

18'4(114) 

-~. 

2M 
104 
70 

:.)aoe 
2104 

177 
'ill" 
39'

17« 
IiO 
Iii 
171 
ffi 
400 

3461) 

461 

r;!:~l 
[,..) 

[1l,.••0) 
['08.0J 

[10.1J 
[8.0) 

[10 •••0) 
[llle.O] 

[1.<] 
[13.,) 
[3,.6) 
[47.,] 
[M.O) 

[l~'6: I 
53 

Table 1 
Comparison of Decomposers on selected binary benchmarks 

The EWCG is constructed in such a way as to obtain a set of weighted constraints which will be used to 
maximize the number of don't cares produced in the G sub-function, minimize the Hamming distances between 
cofactors in the H sub-function, and minimize the Hamming distances between the codes assigned to the cells of 
the Karnaugh map in the G sub-function. When conflicts occur by trying to satisfy certain sets of constraints 
concurrently, then iome evaluations are made using certain cost function to determine what action should be 
taken to resolve the conflicts. If 75% of all constraints can not. be satisfied together in the EWCG, then an 
additional code bit is added and the process of constructing the EWCG is repeated. 

Once the EWCG is constructed by sa.tisfactioiJ of at. least 75% of constraints then the EWCG is ernbedclt:d 
on a hypercube of dimension n, where n is encoding length. Finally, the assignment. of the supel'cubes of the 
symbol codes to the columns in the input function is performed. Basically, each column is assigned to the largest 
combination of 2k symbol codes to which the column is compatible. For example, if column Cl is compatible 
with codes 00, 01, and 11, then it could be assigned either 00, 01, 11,0-, or -1. The algorithm would select either 
column code 0- or -1. However, it could not be assigned the code"- -" because that code includes a symbol code 
to which C1 is not compatible (i.e. code 10). 

Table 1 shows the result ()f comparison of PSU's and other decomposers on some benchmarks (recall that in 
contrast to othel·s, we do not ha.ve a fixed number of inputs to a block). Observe that DFC allows to compare 

course only approximately) decomposers that decompose to various types and sizes of blocks. In Table, 
PSU is the Portland State University Decomposer of multi-valued relations [13, 14, 20]. Stci is the binary 
decomposers from Freiberg (Steinbach). All the functions in the table are binary and are taken from the set. of 
MCNC benchmarks. TRADE is a decomposer developed at Portland State University; MISII at University 
of California, Berkeley; SCH is the Mulop-dc decomposer from Freiburg (Scholl) [23J; JOZ is from Technical 
Univ. of Eindhoven (Jozwiak) [15] (JOZs is systematic and JOZh heuristic strategy); and LUB is the Demain 
program from Warsaw/Monash (Luba and Selvaraj) [25]. The final cost value is computed as a sum of the 
costs of DFCs of single blocks of the result of the decomposition. For our program there is also execution time 
given (DECstation 5000/240, 64 MB of memory, user time in seconds) to show that the decomposition task can 
be performed in a reasonable amount of time. Numbers in parentheses are numbers of 5-input CLBs (Jozwiak 
reports only 4-inpuL CLBs). The underlined results are the best DFC values for a given benchmark. Our version 
of clip is different (9,5), and we cannot find some of the benchmarks used by other authors. 

This table, as well as other result, show that further work is needed to create a decomposer that would always 
find the minimum DFC solution known. 

5. CONCLUSIONS 

Unlike some other encoding approaches which optimize exclusively the input encoding or only the output 
encoding,. the approach presented in this paper allows to satisfy multiple constraints and objectives for input 
and output encodings concurrently. The method of cover seL selection which is used to enhance our encoding 
approach aims to increase the number of don't cares in the predecessor sub-function G while minimizing the loss 
of don't cares in the successor sub-function H. This is achieved by selecting for the cover set the compatible 
classes with large overlap. This eTlcoding approach has the following properties thaI. make it particularly suitable 
for decomposition approach in Knowledge Discovery and Data Minining applications: [1] it minimizes UFC and 
creates many don't cares, [2] it is applicable to relations (not only functions, as it was discussed here), [3] it can 
be easily extended from only binary encodings, to the encodillgs with multi-valued variables or signals [Il, 12]. 



It can significantly reduce the resulting complexity of the predecessor logic, when IBIIIAI ? 1 and functions 
are highly unspecified. The condition IBI/IAI? 1 is by no means all exact cut-off value. It only indicates when 
the potential for utilizing the overlap of classes is large. The potential for the overlap of classes in the cover 
set. increases as the ratio IBI/IA] increases. It also increases with the number of columns which are compatible 
with multiple classes in the cover set. Moreover, if the functions are not. at least partially unspecified, then 
no overlap is present in the cover set. No overlap in the cover set means no potential for don't cares in the 
codes of columns without increa."ling the number of the encoding bits. For almost completely specified functions 
or when IBIIIAI « 1 the presented encoding approach may result in little or no benefit over some ot.her 
encoding approaches. However, it should be stressed that any function (even a completely specified 
function) can be transformed into a highly unspecified function by performing the nondisjoint 
decomposition, 01' by decomposing into 7'elations [20, 11, 12, 25). Therefore, the primary criterion 
for determining whether there are appropriate conditions for application of this encoding approach 
is: IBI/IAI? 1. Benchmark examples of the DC..ENC approach illustrate how a significant number of don't 
cares can be introduced into the sub-function G as a result of the column encoding with codes of multiple symbols. 
Multiple constraint satisfaction can be accomplished by application of a relatively simple set of heurist.ics to the 
edge-weighted connection graph. 

REFERENCES 
[1] 	 P. Ashar, S. Devadas, and A. Newton, "Sequential Logic Synthesis," Kluwer Academic Publishers. 1992. 
[2] 	 K.A. Bartlett, RI<. Brayton, G.D. Hachtel, R.M. Jacoby, C.R. Morrison, R.L. Rudell, A.L. Sangiovanni- Vincentelli, and A.R. 

Wang, "Multilevel Logic Minimization Using Don't Cares," lEEE Tr. GAD, Vol. 7, pp. 723-740, June 1988. 
[3] 	 M. Burns, "Encoding for Functional Decomposition," EGE PSU Report, 1998. 
[4] 	 R. K. Brayton, G. D. Hachtel, and A. L. Sangiovanni-Vincentelli, "Multilevel Logic Synthesis," Proc. IEEE, Vol. 78, No.2, pp. 

264-300, February 1990. 
(5] 	 M. J. Ciesielski, S. Yang, and M. Perkowski, "Multiple-Valued Minimization Based on Graph Coloring," Proc. IGGD'89, pp. 

262 - 265, October 1989. 
[6] 	 M. Ciesielski, and J. Shen, "A Unified Approach to Input-Output Encoding for FSM State Assignment," Proc. DAG, pp. 

176-181,1991. 
[7J S. Devadas, A.R. Wang, A.R Newton, and A. Sangiovanni-Vincentelli, "Boolean Decomposition in Multi-Level Logic Opti

mization." Proc. IGGAD, pp. 290-293, 1988. 
[8J 	 S. Devadas, H-K. T. Ma, A.R. Newton, and A. Sangiovanni-Vincentelli, "MUSTANG: State assignment of finite state machineR 

targeting mlllti-levellogic implementations," Proc. leGAD, Vol. 7, pp. 1290-1300, December 1988. 
[9] 	 B.T. Drucker, C.M. Files, M.A. Perkowski and M. Chrzanowska-Jeske, "Polarized Pseudo-Kronecker Symmetry and Synthesis 

of 2x2 Lattice Diagrams," Proc. IGGIMA '98, pp. 745 - 755. 
[10] 	 X. Du, G. Hatchtel, B.Lin, and A.R. Newton, "MUSE: A MUltilevel Synlbolic Encoding Algorithm for State assignment," 

IEEE Tr. GilD, Vol. 10, pp. 28-38, 1991. 
[11] 	 C. Files, R. Drechsler, and M. Perkowski, "Functional Decomposition of MVL Functions using Multi-Vahled Decision Diagrams," 

Proc. ISMVL'91, pp. 27 - 32. 
[12J C. Files, and M. Perkowski, "An Error Reducing Approach to Machine Learning using Multi-Valued Functional Decomposition." 

Proc. ISMVL, May 1998. 
[13J 	 S. Grygiel, M. Perkowski, M. Marek-Sadowska, T. Luba, and L. Jozwiak, "Cube Diagram Bundles: A New Representation of 

Strongly Unspecified Multiple-Valued Funcl.ions and Relations," Proc. ISMVL '91, Canada. 
[14] 	 S. Grygiel, and M. Perkowski, "New Efficient Representa.tion of Multi-Valued Functions, Relations and Non-Deterministic 

Finite State Machines," Proc, IGCD'98. 
Jozwiak, L, "Efficient Logic Synthesis for FPGAs with Functional Decomposition Based on Information Relationship Measures," 
Proc. Euro·l,,ficro '98. 

[16] 	 B. Lin, A.R. Newton. "Synthesis of Multiple-Level Logic From Symbolic High-Level Description La.nguages," IFIP IlLSl. pp. 
187-196, August 1989. 

[17J 	 T. Luba, M. Mochocki, and J. Rybnik, "Decomposition of Information Systems Using Dec:i~ion Tables:' Bull. Polish Acad. 
Sci., Techn. Sci., Vol. 41, No.3, 1993. 

[18] 	 R. Murgai, N. Shenoy, RIC Brayton, and A. Sangiovanni-Vincentelli, "Improved Logic Synthesis Algorithm for Table Look Up 
Architectures," Proc. [CGAD, pp. 564-567, 1991. 

[19J 	 R. Murgai, R. Brayton, and A. Sangiovanni-Vincentelli, "Optimum Functional Decomposition Using Encoding," DAG, p. 
408-414,1994. 

[20] 	 M. Perkowski, M. Marek-Sadowska, L. Jozwiak, T. Luba, S. Grygiel, M. Nowicka, R. Malvi, Z. Wang, and J.S. Zhang, 
"Decomposition of Multiple-Valued Relations," Proc. ISAfVL'91, pp. 13-18. 

[21] 	 M. Perkowski, M. Chrzanowsk.a-Jeske, and Y. Xu, "Multi-level Programmable Arrays for Sub-Micron Technology Based on 
Symmetries," Proc. IGGlMA '98, pp. 707 - 720. 

[22J A. Saldanha, T. Villa, R Brayton, and A. Vincentelli, "A Framework for Satisfying Input and Output Encoding Constraints," 
Proc. DA G, p. 170-175, 1991. 

[23J Ch. Scholl, "Multi-output Functional Decomposition with Exploitation of Don't Cares," Proc. Dil TE'98, France. 
[24] 	 H.s. Selvaraj, "FPGA-Based Logic Synthesis," Ph.D. Dissertation, Warsaw University of Technology, 1994. 
[25] 	 H,S. Selvaraj, M. Nowicka, T. Luba, "Non-Disjoint Decomposition Strategy in Decomposition-Based Algorithms and Tools," 

Proc. IGGIMA '98, pp. 34 - 42. 
[26] 	 F.A.M. Volf, "A Bottom-up Approach to Multiple-Level Logic Synthesis for Look-Up Table Based FPGAs," Ph.D. Thes'" 

Technical Univel'sity Eindhoven, The Netherlands, 29 September 1997. 
[27'] 	 W. Wan, and M.A. Perkowski, "A New Approach to the Decomposition of Incomplet.ely Specified Functions based on Graph

Coloring and Local Transformations and Its Application to FPGA Mapping," Proc. EURO·DA C '92, Sept. 7-10, Hamburg, 
1992, pp. 230 - 235. 


	An Efficient and Effective Approach to Column-Based Input/Output Encoding in Functional Decomposition
	Let us know how access to this document benefits you.
	Citation Details

	tmp.1414529466.pdf.4Q4T0

