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GEOMETRIC APPROACH TO

CONVEX SUBDIFFERENTIAL CALCULUS

October 6, 2015

BORIS S. MORDUKHOVICH1 and NGUYEN MAU NAM2

Dedicated to Franco Giannessi and Diethard Pallaschke with great respect

Abstract. In this paper we develop a geometric approach to convex subdifferential calculus in

finite dimensions with employing some ideas of modern variational analysis. This approach allows

us to obtain natural and rather easy proofs of basic results of convex subdifferential calculus in full

generality and also derive new results of convex analysis concerning optimal value/marginal func-

tions, normals to inverse images of sets under set-valued mappings, calculus rules for coderivatives

of single-valued and set-valued mappings, and calculating coderivatives of solution maps to param-

eterized generalized equations governed by set-valued mappings with convex graphs.

Key words. convex analysis, generalized differentiation, geometric approach, convex separation,

normal cone, subdifferential, coderivative, calculus rules, maximum function, optimal value function

AMS subject classifications. 49J52, 49J53, 90C31

1 Introduction

The notion of subdifferential (collection of subgradients) for nondifferentiable convex func-

tions was independently introduced and developed by Moreau [15] and Rockafellar [19] who

were both influenced by Fenchel [6]. Since then this notion has become one of the most

central concepts of convex analysis and its various applications, including first of all convex

optimization. The underlying difference between the standard derivative of a differentiable

function and the subdifferential of a convex function at a given point is that the subdif-

ferential is a set (of subgradients) which reduces to a singleton (gradient) if the function

is differentiable. Due to the set-valuedness of the subdifferential, deriving calculus rules

for it is a significantly more involved task in comparison with classical differential calculus.

Needless to say that subdifferential calculus for convex functions is at the same level of

importance as classical differential calculus, and it is difficult to imagine any usefulness of

subgradients unless reasonable calculus rules are available.

The first and the most important result of convex subdifferential calculus is the subdif-

ferential sum rule, which was obtained at the very beginning of convex analysis and has

been since known as the Moreau-Rockafellar theorem. The reader can find this theorem

and other results of convex subdifferential calculus in finite-dimensional spaces in the now

classical monograph by Rockafellar [20]. More results in this direction in finite and infinite
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dimensions with various applications to convex optimization, optimal control, numerical

analysis, approximation theory, etc. are presented, e.g., in the monographs [1–3, 5, 7, 9–

11, 14, 16, 17, 22] among the vast bibliography on the subject. In the recent time, convex

analysis has become more and more important for applications to many new fields such as

computational statistics, machine learning, and sparse optimization. Having this in mind,

our major goal here is to revisit the convex subdifferential and provide an easy way to excess

basic subdifferential calculus rules in finite dimensions.

In this paper, which can be considered as a supplement to our recent book [14], we develop a

a geometric approach to convex subdifferential calculus. Our approach relies on the normal

cone intersection rule based on convex separation and derives from it the major rules of

subdifferential calculus without any appeal to duality, directional derivatives, and other

tangentially generated constructions. This approach allows us to give direct and simple

proofs of known results of convex subdifferential calculus in full generality and also to

obtain some new results in this direction as those presented in Sections 9, 11, and 12.

The developed approach is largely induced by the dual-space geometric approach of general

variational analysis based on the extremal principle for systems of sets, which can be viewed

as a variational counterpart of convex separation without necessarily imposing convexity;

see [13] and the references therein.

Some of the results and proofs presented below have been outlined in the exercises of

our book [14] while some other results (e.g., those related to subgradients of the optimal

value function, coderivatives and their applications, etc.) seem to be new in the convex

settings under consideration. In order to make the paper self-contained for the reader’s

convenience and also to make this material to be suitable for teaching, we recall here some

basic definitions and properties of convex sets and functions with illustrative figures and

examples. Our notation follows [14].

2 Basic Properties of Convex Sets

Here we recall some basic concepts and properties of convex sets. The detailed proofs of

all the results presented in this and the next section can be found in [14]. Throughout the

paper, consider the Euclidean space Rn of n−tuples of real numbers with the inner product

〈x, y〉 :=
n
∑

i=1

xiyi for x = (x1, . . . , xn) ∈ R
n and y = (y1, . . . , yn) ∈ R

n.

The Euclidean norm induced by this inner product is defined as usual by

‖x‖ :=

√

√

√

√

n
∑

i=1

x2i .

We often identify each element x = (x1, . . . , xn) ∈ R
n with the column x = [x1, . . . , xn]

⊤.

Given two points a, b ∈ Rn, the line segment/interval connecting a and b is

[a, b] := {λa+ (1− λ)b | λ ∈ [0, 1]}.
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A subset Ω of Rn is called convex if λx + (1 − λ)y ∈ Ω for all x, y ∈ Ω and λ ∈ (0, 1). A

mapping B : Rn → R
p is affine if there exist a p×n matrix A and a vector b ∈ R

p such that

B(x) = Ax+ b for all x ∈ R
n.

It is easy to check that the convexity of sets is preserved under images of affine mappings.

Proposition 2.1 Let B : Rn → R
p be an affine mapping. The following properties hold:

(i) If Ω is a convex subset of Rn, then the direct image B(Ω) is a convex subset of Rp.

(ii) If Θ is a convex subset of Rp, then the inverse image B−1(Θ) is a convex subset of Rn.

For any collection of convex sets {Ωi}i∈I , their intersection
⋂

i∈I Ωi is also convex. This

motivates us to define the convex hull of a given set Ω ⊂ R
n by

co(Ω) :=
⋂

{

C
∣

∣

∣
C is convex and Ω ⊂ C

}

,

i.e., the convex hull of a set Ω is the smallest convex set containing Ω. The following useful

observation is a direct consequence of the definition.

Proposition 2.2 For any subset Ω of Rn, its convex hull admits the representation

co(Ω) =
{

m
∑

i=1

λiwi

∣

∣

∣

m
∑

i=1

λi = 1, λi ≥ 0, wi ∈ Ω, m ∈ N

}

,

where the symbol N stands for the set of all positive integers.

Given two points a, b ∈ R
n, the line connecting a and b in R

n is defined by

L[a, b] := {λa+ (1− λ)b | λ ∈ R}.

A subset A of Rn is called affine if for any x, y ∈ A and for any λ ∈ R we have

λx+ (1− λ)y ∈ A,

which means that A is affine if and only if the line connecting any two points a, b ∈ A is a

subset of A. This shows that the intersection of any collection of affine sets is an affine set

and thus allows us to define the affine hull of Ω by

aff(Ω) :=
⋂

{

A
∣

∣

∣
A is affine and Ω ⊂ A

}

.

Similarly to the case of the convex hull, we have the following representation.

Proposition 2.3 For any subset Ω of Rn, its affine hull is represented by

aff(Ω) =
{

m
∑

i=1

λiωi

∣

∣

∣

m
∑

i=1

λi = 1 ωi ∈ Ω, m ∈ N

}

.
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Ω

aff(Ω)

Figure 1: Affine hull.

Now we present some simple facts about affine sets.

Proposition 2.4 Let A be an affine subset of Rn. The following properties hold:

(i) If A contains 0, then it is a subspace of Rn.

(ii) A is a closed, and so the affine hull of an arbitrary set Ω is always closed.

Proof. (i) Since A is affine and since 0 ∈ A, for any x ∈ A and λ ∈ R we have that

λx = λx+ (1− λ)0 ∈ A. It also holds

x+ y = 2(x/2 + y/2) ∈ A

for any two elements x, y ∈ A, and thus A is a subspace of Rn.

(ii) The conclusion is obvious if A = ∅. Suppose that A 6= ∅, choose x0 ∈ A, and consider

the set L := A − x0. Then L is affine with 0 ∈ L, and so it is a subspace of Rn. Since

A = x0 + L and any subspace of Rn is known to be closed, the set A is closed as well. �

We are now ready to formulate the notion of the relative interior ri(Ω) of a convex set

Ω ⊂ R
n, which plays a central role in developing convex subdifferential calculus.

Definition 2.5 We say that x ∈ ri(Ω) if there exists γ > 0 such that

B(x; γ) ∩ aff(Ω) ⊂ Ω,

where B(x; γ) denotes the closed ball centered at x with radius γ.

The following simple proposition is useful in what follows and serves as an example for

better understanding of the relative interior.

4



Ω

a�(Ω)

ri(Ω)

Figure 2: Relative interior.

Proposition 2.6 Let Ω be a nonempty convex set. Suppose that x̄ ∈ ri(Ω) and ȳ ∈ Ω.

Then there exists t > 0 such that

x̄+ t(x̄− ȳ) ∈ Ω.

Proof. Choose a number γ > 0 such that

B(x̄; γ) ∩ aff(Ω) ⊂ Ω

and note that x̄ + t(x̄ − ȳ) = (1 + t)x̄ + (−t)ȳ ∈ aff(Ω) for all t ∈ R as it is an affine

combination of x̄ and ȳ. Select t > 0 so small that x̄ + t(x̄ − ȳ) ∈ B(x̄; γ). Then we have

x̄+ t(x̄− ȳ) ∈ B(x; γ) ∩ aff(Ω) ⊂ Ω. �

Given two elements a, b ∈ R
n, define the half-open interval

[a, b) := {ta+ (1− t)b | 0 < t ≤ 1}.

The following theorem is taken from [20, Theorems 6.1 and 6.2]; see also [14, Theorem 1.72]

for a direct and detailed proof.

Theorem 2.7 Let Ω be a nonempty convex subset of Rn. Then:

(i) We have ri(Ω) 6= ∅ and

(ii) [a, b) ⊂ ri(Ω) for any a ∈ ri(Ω) and b ∈ Ω.

The next theorem taken from [20, Theorem 6.7] gives us a convenient way to represent

the relative interior of the direct image of a convex set under an affine mapping via of the

relative interior of this set; see also [14, Excercise 1.27] and its solution for a simple proof.
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Theorem 2.8 Let B : Rn → R
p be affine, and let Ω ⊂ R

n be convex. Then we have

B(ri(Ω)) = ri(B(Ω)).

A useful consequence of this result is the following property concerning the difference of

two subsets A1, A2 ⊂ R
n defined by

A1 −A2 := {a1 − a2 | a1 ∈ A1 and a2 ∈ A2}.

Corollary 2.9 Let Ω1 and Ω2 be convex subsets of Rn. Then

ri(Ω1 − Ω2) = ri(Ω1)− ri(Ω2).

Proof. Consider the linear mapping B : Rn×R
n → R

n given by B(x, y) := x− y and form

the Cartesian product Ω := Ω1 × Ω2. Then we have B(Ω) = Ω1 − Ω2, which yields

ri(Ω1−Ω2) = ri(B(Ω)) = B(ri(Ω)) = B(ri(Ω1×Ω2)) = B(ri(Ω1)× ri(Ω2)) = ri(Ω1)− ri(Ω2)

by using the simple fact that ri(Ω1 × Ω2) = ri(Ω1)× ri(Ω2). �

Given now a set Ω ⊂ R
n, the distance function associated with Ω is defined on R

n by

d(x; Ω) := inf{‖x− ω‖ | ω ∈ Ω}

and the Euclidean projection of x onto Ω is

π(x; Ω) := {ω ∈ Ω | ‖x− ω‖ = d(x; Ω)}.

It is well known (see, e.g., [14, Corollary 1.76]) that π(x̄; Ω) is a singleton whenever the set

Ω is nonempty, closed, and convex in R
n.

The next proposition plays a crucial role in proving major results on convex separation.

Proposition 2.10 Let Ω be a nonempty closed convex subset of Rn with x̄ /∈ Ω. Then we

have ω̄ = π(x̄; Ω) if and only if ω̄ ∈ Ω and

〈x̄− ω̄, ω − ω̄〉 ≤ 0 for all ω ∈ Ω. (2.1)

Proof. Let us first show that (2.1) holds for ω̄ := π(x̄; Ω). Fixing any t ∈ (0, 1) and ω ∈ Ω,

we get tω + (1− t)ω̄ ∈ Ω, which implies by the projection definition that

‖x̄− ω̄‖2 ≤ ‖x̄− [tω + (1− t)ω̄]‖2.

This tells us by the construction of the Euclidean norm that

‖x̄− ω̄‖2 ≤ ‖x̄− [ω̄ + t(ω − ω̄)‖2 = ‖x̄− ω̄‖2 − 2t〈x̄− ω̄, ω − ω̄〉+ t2‖ω − ω̄‖2

and yields therefore the inequality

2〈x̄− ω̄, ω − ω̄〉 ≤ t‖ω − ω̄‖2.

Letting there t→ 0+ justifies property (2.1).

Conversely, suppose that (2.1) is satisfied for ω̄ ∈ Ω and get for any ω ∈ Ω that

‖x̄− ω‖2 = ‖x̄− ω̄ + ω̄ − ω‖2 = ‖x̄− ω̄‖2 + 2〈x̄− ω̄, ω̄ − ω〉+ ‖ω̄ − ω‖2 ≥ ‖x̄− ω̄‖2.

Thus we have ‖x̄− ω̄‖ ≤ ‖x̄− ω‖ for all ω ∈ Ω, which verifies ω̄ = π(x̄; Ω). �
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3 Basic Properties of Convex Functions

In this section we deal with extended-real-valued functions f : Rn → (−∞,∞] = R ∪ {∞}

and use the following arithmetic conventions on (−∞,∞]:

α+∞ = ∞+ α = ∞ for all α ∈ R,

α · ∞ = ∞ · α = ∞ for all α > 0,

∞+∞ = ∞, ∞ ·∞ = ∞, 0 · ∞ = ∞ · 0 = 0.

The domain and epigraph of f : Rn → (−∞,∞] are defined, respectively, by

dom(f) := {x ∈ R
n | f(x) <∞}, epi(f) :=

{

(x, α) ∈ R
n+1

∣

∣ x ∈ R
n, α ≥ f(x)

}

.

Recall that a function f : Rn → (−∞,∞] is convex on R
n if

f
(

λx+ (1− λ)y
)

≤ λf(x) + (1− λ)f(y) for all x, y ∈ R
n and λ ∈ (0, 1).

It is not hard to check that f is convex on R
n if and only if its epigraph is a convex subset

of Rn+1. Furthermore, the domain of a convex function is a convex set.

The class of convex functions is favorable for optimization theory and applications. The

next proposition reveals a characteristic feature of convex functions from the viewpoint of

minimization. Recall that f has a local minimum at x̄ ∈ dom(f) if there is γ > 0 such that

f(x) ≥ f(x̄) for all x ∈ B(x̄; γ).

If this inequality holds for all x ∈ R
n, we say that f has an absolute/global minimum at x̄.

Proposition 3.1 Let f : Rn → (−∞,∞] be a convex function. Then f has a local minimum

at x̄ if and only if f has an absolute minimum at x̄.

Proof. We only need to show that any local minimizer of f provides a global minimum

to this function. Suppose that x̄ is such a local minimizer, fix any x ∈ R
n, and denote

xk := (1 − k−1)x̄ + k−1x for all k ∈ N. Then xk → x̄ as k → ∞. Taking γ > 0 from the

definition of x̄ gives us that xk ∈ B(x̄; γ) when k is sufficiently large. Hence

f(x̄) ≤ f(xk) ≤ (1− k−1)f(x̄) + k−1f(x),

which readily implies that f(x̄) ≤ f(x) whenever x ∈ R
n. �

Next we present the basic definition of the subdifferential as the collection of subgradients

for a convex function at a given point.

Definition 3.2 A vector v ∈ R
n is a subgradient of a convex function f : Rn → (−∞,∞]

at x̄ ∈ dom(f) if it satisfies the inequality

f(x) ≥ f(x̄) + 〈v, x− x̄〉 for all x ∈ R
n.

The collection of subgradients is called the subdifferential of f at x̄ and is denoted by ∂f(x̄).

7



y = f(x) + <v,x-x>

y = f(x)

x

Figure 3: Subgradient.

Directly from the definition we have the subdifferential Fermat rule:

f has an absolute minimum at x̄ ∈ dom(f) if and only if 0 ∈ ∂f(x̄). (3.1)

Recall that f : Rn → (−∞,∞] is (Fréchet) differentiable at x̄ ∈ dom(f) if there is a vector

v ∈ R
n for which we have

lim
x→x̄

f(x)− f(x̄)− 〈v, x− x̄〉

‖x− x̄‖
= 0.

In this case the vector v is unique, is known as the gradient of f at x̄, and is denoted by

∇f(x̄). The next proposition shows that the subdifferential of a convex function at a given

point reduces to its gradient at this point when the function is differentiable.

Proposition 3.3 Let f : Rn → (−∞,∞] is convex and differentiable at x̄ ∈ dom(f). Then

〈∇f(x̄), x− x̄〉 ≤ f(x)− f(x̄) for all x ∈ R
n with ∂f(x̄) = {∇f(x̄)}. (3.2)

Proof. Since f is differentiable at x̄, for any ǫ > 0 there exists γ > 0 such that

−ǫ‖x− x̄‖ ≤ f(x)− f(x̄)− 〈∇f(x̄), x− x̄〉 ≤ ǫ‖x− x̄‖ whenever ‖x− x̄‖ ≤ γ.

Define further the function

ψ(x) := f(x)− f(x̄)− 〈∇f(x̄), x− x̄〉+ ǫ‖x− x̄‖

for which ψ(x) ≥ ψ(x̄) = 0 whenever x ∈ B(x̄; γ). It follows from the convexity of ψ that

ψ(x) ≥ ψ(x̄) when x ∈ R
n, and thus

〈∇f(x̄), x− x̄〉 ≤ f(x)− f(x̄) + ǫ‖x− x̄‖ for all x ∈ R
n.
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Letting now ǫ→ 0+ gives us the inequality in (3.2) and shows that ∇f(x̄) ∈ ∂f(x̄).

To verify the remaining part of (3.2), pick any v ∈ ∂f(x̄) and observe that

〈v, x− x̄〉 ≤ f(x)− f(x̄) for all x ∈ R
n.

From the differentiability of f at x̄ we have

〈v −∇f(x̄), x− x̄〉 ≤ ǫ‖x− x̄‖ whenever ‖x− x̄‖ ≤ γ,

and so ‖v − ∇f(x̄)‖ ≤ ǫ. This yields v = ∇f(x̄) since ǫ > 0 is arbitrary and thus justifies

the claimed relationship ∂f(x̄) = {∇f(x̄)}. �

The following simple example calculates the subdifferential of the Euclidean norm function

directly from the subdifferential definition.

Example 3.4 For the Euclidean norm function p(x) := ‖x‖ we have

∂p(x) =







B if x = 0,
{ x

‖x‖

}

otherwise,

where B stands for the closed unit ball of Rn. To verify this, we observe ∇p(x) =
x

‖x‖
for

x 6= 0 due to the differentiability of p(x) at nonzero points. Consider the case where x = 0

and use the definition describe v ∈ ∂p(0) as

〈v, x〉 = 〈v, x− 0〉 ≤ p(x)− p(0) = ‖x‖ for all x ∈ R
n.

For x = v therein we get 〈v, v〉 ≤ ‖v‖, which shows that ‖v‖ ≤ 1, i.e., v ∈ B. Conversely,

picking v ∈ B and employing the Cauchy-Schwarz inequality tell us that

〈v, x− 0〉 = 〈v, x〉 ≤ ‖v‖ · ‖x‖ ≤ ‖x‖ = p(x)− p(0) for all x ∈ R
n,

i.e., v ∈ ∂p(0). Thus we arrive at the equality ∂p(0) = B.

We conclude this section by the useful description of the relative interior of the graph of a

convex function via the relative interior of its domain; see, e.g., [8, Proposition 1.1.9].

Proposition 3.5 For a convex function f : Rn → (−∞,∞] we have the representation

ri(epi(f)) =
{

(x, λ)
∣

∣ x ∈ ri(dom(f)), λ > f(x)
}

.

4 Convex Separation

Separation theorems for convex sets, which go back to Minkowski [12], have been well

recognized among the most fundamental geometric tools of convex analysis. In this section

we formulate and give simple proofs of several separation results needed in what follows

under the weakest assumptions in finite dimensions. Let us begin with strict separation of

a closed convex set and a point outside the set.
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Proposition 4.1 Let Ω be a nonempty closed convex set, and let x̄ /∈ Ω. Then there exists

a nonzero vector v ∈ R
n such that

sup{〈v, x〉 | x ∈ Ω} < 〈v, x̄〉.

Proof. Denote ω̄ := π(x̄; Ω), v := x̄− ω̄, and fix x ∈ Ω. Proposition 2.10 gives us

〈v, x − ω̄〉 = 〈x̄− ω̄, x− ω̄〉 ≤ 0,

which shows that

〈v, x − ω̄〉 = 〈v, x− x̄+ x̄− ω̄〉 = 〈v, x− x̄+ v〉 ≤ 0.

The last inequality therein yields

〈v, x〉 ≤ 〈v, x̄〉 − ‖v‖2,

which implies in turn that

sup{〈v, x〉 | x ∈ Ω} < 〈v, x̄〉

and thus completes the proof of the proposition. �

Remark 4.2 It is easy to see that the closure Ω of a convex set Ω is convex. If Ω ⊂ R
n is

a nonempty convex set with x̄ /∈ Ω, then applying Proposition 4.1 to the convex set Ω gives

us a nonzero vector v ∈ R
n such that

sup{〈v, x〉 | x ∈ Ω} ≤ sup{〈v, x〉 | x ∈ Ω} < 〈v, x̄〉.

L

Ω

x ̄

Figure 4: Separation in a subspace.

The next proposition justifies a strict separation property in a subspace of Rn.

Proposition 4.3 Let L be a subspace of Rn, and let Ω ⊂ L be a nonempty convex set with

x̄ ∈ L and x̄ 6∈ Ω. Then there exists v ∈ L, v 6= 0, such that

sup{〈v, x〉 | x ∈ Ω} < 〈v, x̄〉.
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Proof. Employing Remark 4.2 gives us a vector w ∈ R
n such that

sup{〈w, x〉 | x ∈ Ω} < 〈w, x̄〉.

It is well known that Rn can be represented as the direct sum R
n = L⊕ L⊥, where

L⊥ := {u ∈ R
n | 〈u, x〉 = 0 for all x ∈ L}.

Thus w = u+ v with u ∈ L⊥ and v ∈ L. This yields 〈u, x〉 = 0 for any x ∈ Ω ⊂ L and

〈v, x〉 = 〈u, x〉+ 〈v, x〉 = 〈u+ v, x〉 = 〈w, x〉 ≤ sup{〈w, x〉 | x ∈ Ω}

< 〈w, x̄〉 = 〈u+ v, x̄〉 = 〈u, x̄〉+ 〈v, x̄〉 = 〈v, x̄〉,

which shows that sup{〈v, x〉 | x ∈ Ω} < 〈v, x̄〉 with v 6= 0. �

x0
Ω

-x0

-x0

k

Figure 5: Illustration of the proof of Lemma 4.4.

Lemma 4.4 Let Ω ⊂ R
n be a nonempty convex set, and let 0 ∈ Ω \ ri(Ω). Then aff(Ω) is a

subspace of Rn, and there is a sequence {xk} ⊂ aff(Ω) with xk /∈ Ω and xk → 0 as k → ∞.

Proof. Since ri(Ω) 6= ∅ by Theorem 2.7(i) and 0 ∈ Ω \ ri(Ω), we find x0 ∈ ri(Ω) and

conclude that −tx0 /∈ Ω for all t > 0. Indeed, suppose by contradiction that −tx0 ∈ Ω for

some t > 0 and then deduce from Theorem 2.7(ii) that

0 =
t

1 + t
x0 +

1

1 + t
(−tx0) ∈ ri(Ω),

which contradicts 0 /∈ ri(Ω). Letting now xk := −x0

k
implies that xk /∈ Ω for every k and

xk → 0 as k → ∞. Furthermore, we have

0 ∈ Ω ⊂ aff(Ω) = aff(Ω)

11



by the closedness of aff(Ω) due to Proposition 2.4(ii). This shows that aff(Ω) is a subspace

and that xk ∈ aff(Ω) for all k ∈ N. �

We continue with another important separation property known as proper separation.

Definition 4.5 It is said that two nonempty convex sets Ω1 and Ω2 are properly separated

if there exists a nonzero vector v ∈ R
n such that

sup{〈v, x〉 | x ∈ Ω1} ≤ inf{〈v, y〉 | y ∈ Ω2}, inf{〈v, x〉 | x ∈ Ω1} < sup{〈v, y〉 | y ∈ Ω2}.

Lemma 4.6 Let Ω be a nonempty convex set in R
n. Then 0 /∈ ri(Ω) if and only if the sets

Ω and {0} are properly separated, i.e., there is v ∈ R
n, v 6= 0, such that

sup{〈v, x〉 | x ∈ Ω} ≤ 0, inf{〈v, x〉 | x ∈ Ω} < 0.

Proof. We split the proof into the following two cases.

Case 1: 0 6∈ Ω. It follows from Remark 4.2 with x̄ = 0 that there exists v 6= 0 such that

sup{〈v, x〉 | x ∈ Ω} < 〈v, x̄〉 = 0,

and thus the sets Ω and {0} are properly separated.

Case 2: 0 ∈ Ω \ ri(Ω). Letting L := aff(Ω) and employing Lemma 4.4 tell us that L is a

subspace of Rn and there is a sequence {xk} ⊂ L with xk /∈ Ω and xk → 0 as k → ∞. By

Proposition 4.3 there is a sequence {vk} ⊂ L with vk 6= 0 and

sup{〈vk, x〉 | x ∈ Ω} < 〈vk, xk〉, k ∈ N.

Denoting wk := vk
‖vk‖

shows that ‖wk‖ = 1 for all k ∈ N and

〈wk, x〉 < 〈wk, xk〉 for all x ∈ Ω. (4.1)

Letting k → ∞ in (4.1) and supposing without loss of generality that wk → v ∈ L with

some ‖v‖ = 1 along the whole sequence of {k}, we arrive at

sup{〈v, x〉 | x ∈ Ω} ≤ 0

by taking into account that |〈wk, xk〉| ≤ ‖wk‖ · ‖xk‖ = ‖xk‖ → 0. To verify further

inf{〈v, x〉 | x ∈ Ω} < 0,

it suffices to show that there is x ∈ Ω with 〈v, x〉 < 0. Suppose by contradiction that

〈v, x〉 ≥ 0 for all x ∈ Ω and deduce from sup{〈v, x〉 | x ∈ Ω} ≤ 0 that 〈v, x〉 = 0 for all

x ∈ Ω. Since v ∈ L = aff(Ω), we get the representation

v =
m
∑

i=1

λiωi with
m
∑

i=1

λi = 1 and ωi ∈ Ω for i = 1, . . . ,m,

12



which readily implies the equalities

‖v‖2 = 〈v, v〉 =
m
∑

i=1

λi〈v, ωi〉 = 0

and so contradicts the condition ‖v‖ = 1. This justifies the proper separation of Ω and {0}.

To verify the reverse statement of the lemma, assume that Ω and {0} are properly separated

and thus find 0 6= v ∈ R
n such that

sup{〈v, x〉 | x ∈ Ω} ≤ 0 while 〈v, x̄〉 < 0 for some x̄ ∈ Ω.

Suppose by contradiction that 0 ∈ ri(Ω) and deduce from Proposition 2.6 that

0 + t(0− x̄) = −tx̄ ∈ Ω for some t > 0.

This immediately implies the inequalities

〈v,−tx̄〉 ≤ sup{〈v, x〉 | x ∈ Ω} ≤ 0

showing that 〈v, x̄〉 ≥ 0. It is a contradiction, which verifies 0 /∈ ri(Ω). �

Now we are ready to prove the main separation theorem in convex analysis.

Theorem 4.7 Let Ω1 and Ω2 be two nonempty convex subsets of Rn. Then Ω1 and Ω2 are

properly separated if and only if ri(Ω1) ∩ ri(Ω2) = ∅.

Proof. Define Ω := Ω1 − Ω2 and verify that ri(Ω1) ∩ ri(Ω2) = ∅ if and only if

0 /∈ ri(Ω1 − Ω2) = ri(Ω1)− ri(Ω2).

To proceed, suppose first that ri(Ω1) ∩ ri(Ω2) = ∅ and so get by Corollary 2.9 that 0 6∈

ri(Ω1 − Ω2) = ri(Ω). Then Lemma 4.6 tells us that the sets Ω and {0} are properly

separated. Thus there exist v ∈ R
n with 〈v, x〉 ≤ 0 for all x ∈ Ω and also y ∈ Ω such that

〈v, y〉 < 0. For any ω1 ∈ Ω1 and ω2 ∈ Ω2 we have x := ω1 − ω2 ∈ Ω, and hence

〈v, ω1 − ω2〉 = 〈v, x〉 ≤ 0,

which yields 〈v, ω1〉 ≤ 〈v, ω2〉. Choose ω̄1 ∈ Ω1 and ω̄2 ∈ Ω2 such that y = ω̄1 − ω̄2. Then

〈v, ω̄1 − ω̄2〉 = 〈v, y〉 < 0

telling us that 〈v, ω̄1〉 < 〈v, ω̄2〉. Hence Ω1 and Ω2 are properly separated.

To prove next the converse implication, suppose that Ω1 and Ω2 are properly separated,

which implies that the sets Ω = Ω1−Ω2 and {0} are properly separated as well. Employing

Lemma 4.6 again provides the relationships

0 /∈ ri(Ω) = ri(Ω1 − Ω2) = ri(Ω1)− ri(Ω2) and so ri(Ω1) ∩ ri(Ω2) = ∅,

which thus complete the proof of the theorem. �

Among various consequences of Theorem 4.7, including those presented below, note the

following relationships between the closure and relative interior operations on convex sets

that seemingly have nothing to do with separation.
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Corollary 4.8 (i) If Ω ⊂ R
n is convex, then ri(Ω) = ri(Ω) and ri(Ω) = Ω.

(ii) If both sets Ω1,Ω2 ⊂ R
n are convex, then we have ri(Ω1) = ri(Ω2) provided that Ω1 = Ω2.

Proof. (i) Both equalities are trivial if Ω = ∅. To verify the first equality in (i) when

Ω 6= ∅, observe that for any x ∈ R
n we have the equivalence

{x} and Ω are properly separated ⇐⇒ {x} and Ω are properly separated.

Indeed, the implication “=⇒” is obvious because for any v ∈ R
n

[

sup{〈v,w〉 | w ∈ Ω} ≤ 〈v, x〉
]

=⇒
[

sup{〈v,w〉 | w ∈ Ω} ≤ 〈v, x〉
]

,

which can be proved by a limiting argument. For the converse, suppose that {x} and Ω are

properly separated. Then there exists v ∈ R
n, v 6= 0, such that

sup{〈v,w〉 | w ∈ Ω} ≤ 〈v, x〉, inf{〈v,w〉 | w ∈ Ω} < 〈v, x〉.

It follows that

sup{〈v,w〉 | w ∈ Ω} ≤ sup{〈v,w〉 | w ∈ Ω} ≤ 〈v, x〉.

It remains to show that there exists w̄ ∈ Ω such that 〈v, w̄〉 < 〈v, x〉. If this is not the case,

then 〈v,w〉 ≥ 〈v, x〉 for all w ∈ Ω, which implies 〈v,w〉 = 〈v, x〉 for all w ∈ Ω. A simple

limiting argument yields 〈v,w〉 = 〈v, x〉 for all w ∈ Ω. This is a contradiction because

inf{〈v,w〉 | w ∈ Ω} < 〈v, x〉.

Defining further Θ := {x}, we get ri(Θ) = {x} and deduce from Theorem 4.7 that

x /∈ ri(Ω) ⇐⇒ ri(Θ) ∩ ri(Ω) = ∅

⇐⇒ {x} and Ω are properly separated

⇐⇒ {x} and Ω are properly separated

⇐⇒ ri(Θ) ∩ ri(Ω) = ∅ ⇐⇒ x /∈ ri(Ω).

The second equality in (i) is a direct consequence of Theorem 2.7(ii).

(ii) If Ω1 = Ω2, then ri(Ω1) = ri(Ω1) and hence ri(Ω1) = ri(Ω2) by (i). �

5 Normal Cone Intersection Rule

In this section we derive the central result of the geometric approach to convex subdifferen-

tial calculus, which provides a general intersection rule for the normal cone to convex sets.

All the subsequent subdifferential results are consequences of this intersection rule.

Recall first the definition of the normal cone to a convex set.

Definition 5.1 Let Ω be a nonempty convex subset of Rn. Then the normal cone to the

set Ω at x̄ ∈ Ω is defined by

N(x̄; Ω) := {v ∈ R
n | 〈v, x − x̄〉 ≤ 0 for all x ∈ Ω}.

In the case where x̄ /∈ Ω we define N(x̄; Ω) := ∅.
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N(x ̄,Ω)

Ω

x ̄

Figure 6: Normal cone.

It immediately follows from Definition 5.3 that N(x̄; Ω) is a closed and convex cone, which

reduces to {0} if x̄ ∈ int(Ω). A remarkable property of the normal cone to a convex set

Ω in finite dimensions is that N(x̄; Ω) 6= {0} if and only if x̄ is boundary point of Ω; see,

e.g., [14, Corollary 2.14]. This is the classical supporting hyperplane theorem, which can be

easily derived by the limiting procedure from Theorem 4.7.

Before deriving our major intersection result on the representation of the normal cone to

finitely many convex sets, let us present a useful lemma on the relative interior of set

intersections, which is also based on convex separation.

Lemma 5.2 Let Ωi ⊂ R
n for i = 1, . . . ,m with m ≥ 2 be convex subsets of Rn such that

m
⋂

i=1

ri(Ωi) 6= ∅. (5.1)

Then we have the representation

ri
(

m
⋂

i=1

Ωi

)

=

m
⋂

i=1

ri(Ωi). (5.2)

Proof. We first verify this result for m = 2. Pick x ∈ ri(Ω1) ∩ ri(Ω2) and find γ > 0 with

B(x; γ) ∩ aff(Ω1) ⊂ Ω1 and B(x; γ) ∩ aff(Ω2) ⊂ Ω2,

which implies therefore that

B(x; γ) ∩ [aff(Ω1) ∩ aff(Ω2)] ⊂ Ω1 ∩ Ω2.
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It is easy to see that aff(Ω1 ∩ Ω2) ⊂ aff(Ω1) ∩ aff(Ω2), and hence

B(x; γ) ∩ aff(Ω1 ∩Ω2) ⊂ Ω1 ∩ Ω2.

Thus we get x ∈ ri(Ω1 ∩ Ω2), which justifies that ri(Ω1) ∩ ri(Ω2) ⊂ ri(Ω1 ∩ Ω2).

To verify the opposite inclusion in (5.2) for m = 2, observe that

Ω1 ∩ Ω2 = Ω1 ∩ Ω2 (5.3)

for any convex sets Ω1,Ω2 with ri(Ω1) ∩ ri(Ω2) 6= ∅. Indeed, pick x ∈ Ω1 ∩Ω2, x̄ ∈ ri(Ω1) ∩

ri(Ω2) and observe that xk := k−1x̄+(1−k−1)x→ x as k → ∞. Then Theorem 2.7(ii) tells

us that xk ∈ Ω1 ∩ Ω2 for large k ∈ N and hence x ∈ Ω1 ∩Ω2, which justifies the inclusion

“⊃” in (5.3). The inclusion “⊂” therein obviously holds even for nonconvex sets. Now using

(5.3) and the second equality in Corollary 4.8(i) gives us

ri(Ω1) ∩ ri(Ω2) = ri(Ω1) ∩ ri(Ω2) = Ω1 ∩ Ω2 = Ω1 ∩ Ω2.

Then we have the equality

ri(ri(Ω1) ∩ ri(Ω2)) = ri(Ω1 ∩ Ω2),

and thus conclude by Corollary 4.8(ii) that

ri(ri(Ω1) ∩ ri(Ω2)) = ri(Ω1 ∩ Ω2) ⊂ ri(Ω1) ∩ ri(Ω2),

which justify representation (5.2) for m = 2.

To verify (5.2) under the validity of (5.1) in the general case of m > 2, we proceed by

induction with taking into account that the result has been established for two sets and

assuming that it holds for m− 1 sets. Considering m sets Ωi, represent their intersection as

m
⋂

i=1

Ωi = Ω ∩ Ωm with Ω :=

m−1
⋂

i=1

Ωi. (5.4)

Then we have ri(Ω) ∩ ri(Ωm) = ∩m
i=1ri(Ωi) 6= ∅ by the imposed condition in (5.1) and the

induction assumption on the validity of (5.2) for m− 1 sets. This allows us to employ the

obtained result for the two sets Ω and Ωm and thus arrive at the desired conclusion (5.2)

for the m sets Ω1, . . . ,Ωm under consideration. �

Now we are ready to derive the underlying formula for the representation of the normal cone

to intersections of finitely many convex sets. Note that the proof of this result and of the

subsequent calculus rules for functions and set-valued mappings mainly follow the geometric

pattern of variational analysis as in [13]. The specific features of convexity and the usage of

convex separation instead of the extremal principle allow us to essentially simplify the proof

and to avoid the closedness requirement on sets and the corresponding lower semicontinuity

assumptions on functions in subdifferential calculus rules. Furthermore, we show below that

the developed geometric approach works in the convex setting under the relative interior

qualification conditions, which are well-recognized in finite-dimensional convex analysis and

occur to be weaker than the basic/normal qualifications employed in [13, 14]; see. e.g.,

Corollary 5.5 and Example 5.6 below.
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Figure 7: Intersection rule.

Theorem 5.3 Let Ω1, . . . ,Ωm ⊂ R
n be convex sets satisfying the relative interior condition

m
⋂

i=1

ri(Ωi) 6= ∅, (5.5)

where m ≥ 2. Then we have the intersection rule

N
(

x̄;

m
⋂

i=1

Ωi)
)

=

m
∑

i=1

N(x̄; Ωi) for all x̄ ∈
m
⋂

i=1

Ωi. (5.6)

Proof. Proceeding by induction, let us first prove the statement of the theorem for the

case of m = 2. Since the inclusion “⊃” in (5.6) trivially holds even without imposing

(5.5), the real task is to verify the opposite inclusion therein. Fixing x̄ ∈ Ω1 ∩ Ω2 and

v ∈ N(x̄; Ω1 ∩ Ω2), we get by the normal cone definition that

〈v, x− x̄〉 ≤ 0 for all x ∈ Ω1 ∩ Ω2.

Denote Θ1 := Ω1 × [0,∞) and Θ2 := {(x, λ) | x ∈ Ω2, λ ≤ 〈v, x − x̄〉}. It follows from

Proposition 3.5 that ri(Θ1) = ri(Ω1)× (0,∞) and

ri(Θ2) =
{

(x, λ)
∣

∣ x ∈ ri(Ω2), λ < 〈v, x − x̄〉
}

.

Arguing by contradiction, it is easy to check that ri(Θ1) ∩ ri(Θ2) = ∅. Then applying

Theorem 4.7 to these convex sets in R
n+1 gives us 0 6= (w, γ) ∈ R

n × R such that

〈w, x〉 + λ1γ ≤ 〈w, y〉 + λ2γ for all (x, λ1) ∈ Θ1, (y, λ2) ∈ Θ2. (5.7)

Moreover, there are (x̃, λ̃1) ∈ Θ1 and (ỹ, λ̃2) ∈ Θ2 satisfying

〈w, x̃〉+ λ̃1γ < 〈w, ỹ〉+ λ̃2γ.
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Observe that γ ≤ 0 since otherwise we can get a contradiction by employing (5.7) with

(x̄, k) ∈ Θ1 as k > 0 and (x̄, 0) ∈ Θ2. Let us now show by using (5.5) that γ < 0. Again

arguing by contradiction, suppose that γ = 0 and then get

〈w, x〉 ≤ 〈w, y〉 for all x ∈ Ω1, y ∈ Ω2 and 〈w, x̃〉 < 〈w, ỹ〉 with x̃ ∈ Ω1, ỹ ∈ Ω2.

This means the proper separation of the sets Ω1 and Ω2, which tells us by Theorem 4.7 that

ri(Ω1) ∩ ri(Ω2) = ∅. The obtained contradiction verifies the claim of γ < 0.

To proceed further, denote µ := −γ > 0 and deduce from (5.7), by taking into account that

(x, 0) ∈ Θ1 when x ∈ Ω1 and and that (x̄, 0) ∈ Θ2, the inequality

〈w, x〉 ≤ 〈w, x̄〉 for all x ∈ Ω1.

This yields w ∈ N(x̄; Ω1) and hence
w

µ
∈ N(x̄; Ω1). Moreover, we get from (5.7), due to

(x̄, 0) ∈ Θ1 and (y, α) ∈ Θ2 for all y ∈ Ω2 with α = 〈v, y − x̄〉, that

〈

w, x̄
〉

≤
〈

w, y
〉

+ γ〈v, y − x̄〉 whenever y ∈ Ω2.

Dividing both sides therein by γ, we arrive at the relationship

〈w

γ
+ v, y − x̄

〉

≤ 0 for all y ∈ Ω2,

and thus
w

γ
+ v = −

w

µ
+ v ∈ N(x̄; Ω2). This gives us

v ∈
w

µ
+N(x̄; Ω2) ⊂ N(x̄; Ω1) +N(x̄; Ω2)

completing therefore the proof of (5.6) in the case of m = 2.

Considering now the case of intersections for any finite number of sets, suppose by induction

that the intersection rule (5.6) holds under (5.5) for m− 1 sets and verify that it continues

to hold for the intersection of m > 2 sets
⋂m

i=1 Ωi. Represent the latter intersection as

Ω ∩ Ωm with Ω :=
⋂m−1

i=1 Ωi, we get from the imposed relative interior condition (5.5) and

Lemma 5.2 that

ri(Ω) ∩ ri(Ωm) =
m
⋂

i=1

ri(Ωi) 6= ∅.

Applying the intersection rule (5.6) to the two sets Ω∩Ωm and then employing the induction

assumption for m− 1 sets give us the equalities

N
(

x̄;

m
⋂

i=1

Ωi

)

= N(x̄; Ω ∩ Ωm) = N(x̄; Ω) +N(x̄; Ωm) =

m
∑

i=1

N(x̄; Ωi),

which thus justify (5.6) for m sets and thus completes the proof of the theorem. �

It is not difficult to observe the relative interior assumption (5.5) is essential for the validity

of the intersection rule (5.6) as illustrated by the following example.
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Example 5.4 Define the two convex sets on the plane by

Ω1 := {(x, λ) ∈ R
2 | λ ≥ x2} and Ω2 := {(x, λ) ∈ R

2 | λ ≤ −x2}.

Then for x̄ = (0, 0) ∈ Ω1 ∩ Ω2 we have

N(x̄; Ω1) = {0} × (−∞, 0], N(x̄; Ω2) = {0} × [0,∞), and N(x̄; Ω1 ∩Ω2) = R
2.

Thus N(x̄; Ω1) +N(x̄; Ω2) = {0} ×R 6= N(x̄; Ω1 ∩Ω2), i.e., the intersection rule (5.6) fails.

It does not contradict Theorem 5.3, since ri(Ω1) ∩ ri(Ω2) = ∅ and so the relative interior

qualification condition (5.5) does not hold in this case.

Ω1

Ω2

y = x2

Figure 8: Illustration of the relative interior condition.

Finally, we compare the intersection rule of Theorem 5.3 derived under the relative interior

qualification condition (5.5) with the corresponding result obtained in [14, Corollary 2.16]

for m = 2 under the so-called basic/normal qualification condition

N(x̄; Ω1) ∩ [−N(x̄; Ω2)] = {0} (5.8)

introduced and applied earlier for deriving the intersection rule and related calculus results

in nonconvex variational analysis; see, e.g., [13, 21] and the references therein. Let us first

show that (5.8) yields (5.5) in the general convex setting.

Corollary 5.5 Let Ω1,Ω2 ⊂ R
n be convex sets satisfying the basic qualification condition

(5.8) at some x̄ ∈ Ω1 ∩ Ω2. Then we have

ri(Ω1) ∩ ri(Ω2) 6= ∅, (5.9)

and so the intersection rule (5.6) holds for these sets at any x̄ ∈ Ω1 ∩ Ω2.
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Proof. Arguing by contradiction, suppose that ri(Ω1) ∩ ri(Ω2) = ∅. Then the sets Ω1,Ω2

are properly separated by Theorem 4.7, and so there is v 6= 0 such that

〈v, x〉 ≤ 〈v, y〉 for all x ∈ Ω1, y ∈ Ω2.

Since x̄ ∈ Ω2, we have 〈v, x − x̄〉 ≤ 0 for all x ∈ Ω1. Hence v ∈ N(x̄; Ω1) and similarly

−v ∈ N(x̄; Ω2). Thus 0 6= v ∈ N(x̄; Ω1) ∩ [−N(x̄; Ω2)], which contradicts (5.8). �

The next example demonstrates that (5.9) may be strictly weaker then (5.8).

Example 5.6 Consider the two convex sets on the plane defined by Ω1 := R × {0} and

Ω2 := (−∞, 0] × {0}. We obviously get that condition (5.9) is satisfied ensuring thus the

validity of the intersection rule by Theorem 5.3. On the other hand, it follows for that

N(x̄; Ω1) = {0} × R and N(x̄; Ω2) = [0,∞) × R with x̄ = (0, 0),

i.e., the other qualification condition (5.8) fails, which shows that the result of [14, Corol-

lary 2.16] is not applicable in this case.

6 Subdifferential Sum Rule and Existence of Subgradients

The main goal of this section is to derive from the geometric intersection rule of Theorem 5.3

the subdifferential sum rule for convex extended-real-valued functions under the least re-

strictive relative interior qualification condition. Then we deduce from it a mild condition

ensuring the existence of subgradients for general convex functions.

Prior to this, let us recall well-known relationships between normals to convex sets and

subgradients of convex functions used in what follows.

Proposition 6.1 (i) Let Ω ⊂ R
n be a nonempty convex set, and let δ(x; Ω) = δΩ(x) be its

indicator function equal to 0 when x ∈ Ω and to ∞ otherwise. Then we have

∂δ(x̄; Ω) = N(x̄; Ω) for any x̄ ∈ Ω.

(ii) Let f : Rn → (−∞,∞] be a convex function, and let x̄ ∈ dom(f). Then we have

∂f(x̄) = {v ∈ R
n | (v,−1) ∈ N((x̄, f(x̄)); epi(f))}.

Proof. (i) It follows directly from the definitions of the subdifferential, normal cone, and

the set indicator function.

(ii) Fix any subgradient v ∈ ∂f(x̄) and then get from Definition 3.2 that

〈v, x− x̄〉 ≤ f(x)− f(x̄) for all x ∈ R
n. (6.1)
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To show that (v,−1) ∈ N((x̄, f(x̄)); epi(f)), fix any (x, λ) ∈ epi(f) and observe that due to

λ ≥ f(x) we have the relationships

〈(v,−1), (x, λ) − (x̄, f(x̄))〉 = 〈v, x− x̄〉+ (−1)(λ − f(x̄))

= 〈v, x− x̄〉 − (λ− f(x̄)) ≤ 〈v, x − x̄〉 − (f(x)− f(x̄)) ≤ 0,

where the the last inequality holds by (6.1). To verify the opposite inclusion in (ii), take

(v,−1) ∈ N((x̄, f(x̄)); epi(f)) and fix any x ∈ dom(f). Then (x, f(x)) ∈ epi(f) and hence

〈(v,−1), (x, f(x)) − (x̄, f(x̄))〉 ≤ 0,

which in turn implies the inequality

〈v, x− x̄〉 − (f(x)− f(x̄)) ≤ 0.

Thus v ∈ ∂f(x̄), which completes the proof of the proposition. �

Now we are ready to deduce the following subdifferential sum rule for function from the

intersection rule of Theorem 5.3 for normals to sets.

Theorem 6.2 Let fi : R
n → (−∞,∞], i = 1, . . . ,m, be extended-real-valued convex func-

tions satisfying the relative interior qualification condition

m
⋂

i=1

ri
(

dom(fi)
)

6= ∅, (6.2)

where m ≥ 2. Then for all x̄ ∈
⋂m

i=1 dom(fi) we have the sum rule

∂
(

m
∑

i=1

fi

)

(x̄) =
m
∑

i=1

∂fi(x̄). (6.3)

Proof. Observing that the inclusion “⊃” in (6.3) directly follows from the subdifferential

definition, we proceed with the proof of the opposite inclusion. Consider first the case of

m = 2 and pick any v ∈ ∂(f1 + f2)(x̄). Then we have

〈v, x − x̄〉 ≤ (f1 + f2)(x) − (f1 + f2)(x̄) for all x ∈ R
n. (6.4)

Define the following convex subsets of Rn+2 by

Ω1 := {(x, λ1, λ2) ∈ R
n × R× R | λ1 ≥ f1(x)} = epi(f1)× R,

Ω2 := {(x, λ1, λ2) ∈ R
n × R× R | λ2 ≥ f2(x)}.

We can easily verify by (6.4) and the normal cone definition that

(v,−1,−1) ∈ N((x̄, f1(x̄), f2(x̄)); Ω1 ∩ Ω2).

To apply Theorem 5.3 to these sets, let us check that ri(Ω1) ∩ ri(Ω2) 6= ∅. Indeed, we get

ri(Ω1) = {(x, λ1, λ2) ∈ R
n × R× R | x ∈ ri(dom(f1)), λ1 > f1(x)} = ri(epi(f1)× R,

ri(Ω2) = {(x, λ1, λ2) ∈ R
n × R× R | x ∈ ri(dom(f2)), λ2 > f2(x)}
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by Proposition 3.5. Then choosing z ∈ ri(dom(f1)) ∩ ri(dom(f2)), it is not hard to see that

(z, f1(z) + 1, f2(z) + 1) ∈ ri(Ω1) ∩ ri(Ω2) 6= ∅.

Applying now Theorem 5.3 to the above set intersection gives us

N((x̄, f1(x̄), f2(x̄)); Ω1 ∩ Ω2) = N((x̄, f1(x̄), f2(x̄)); Ω1) +N((x̄, f1(x̄), f2(x̄)); Ω2).

It follows from the structures of the sets Ω1 and Ω2 that

(v,−1,−1) = (v1,−γ1, 0) + (v2, 0,−γ2)

with (v1,−γ1) ∈ N((x̄, f1(x̄)); epi(f1)) and (v2,−γ2) ∈ N((x̄, f2(x̄)); epi(f2)). Thus

v = v1 + v2, γ1 = γ2 = 1,

and we have by Proposition 6.1(ii) that v1 ∈ ∂f1(x̄) and v2 ∈ ∂f2(x̄). This ensures the

inclusion ∂(f1 + f2)(x̄) ⊂ ∂f1(x̄) + ∂f2(x̄) and hence verifies (6.3) in the case of m = 2. To

complete the proof of the theorem in the general case of m > 2, we proceed by induction

similarly to the proof of Theorem 5.3 with the usage of Lemma 5.2 to deal with relative

interiors in the qualification condition (6.2). �

The next result is a simple consequence of Theorem 6.2 providing a mild condition for the

existence of subgradients of an extended-real-valued convex function at a given point.

Corollary 6.3 Let f : Rn → (−∞,∞] be a convex function. Then the validity of the relative

interiority condition x̄ ∈ ri(dom f) ensures that ∂f(x̄) 6= ∅.

Proof. Define the extended-real-valued function on R
n by

g(x) := f(x) + δ{x̄}(x) =

{

f(x̄) if x = x̄,

∞ otherwise

via the indicator function of the singleton {x̄}. Then epi(g) = {x̄} × [f(x̄),∞) and hence

N((x̄, g(x̄)); epi(g)) = R
n×(−∞, 0]. We obviously get that ∂g(x̄) = R

n and that ∂δ{x̄}(x̄) =

N(x̄; {x̄}) = R
n by Proposition 6.1(i). We further have

ri(dom(h)) = {x̄} for h(x) := δ{x̄}(x)

and thus ri(dom(f))∩ri(dom(h)) 6= ∅. Applying the subdifferential sum rule of Theorem 6.2

to the above function g(x) at x̄ gives us

R
n = ∂g(x̄) = ∂f(x̄) + R

n,

which justifies the claimed assertion on ∂f(x̄) 6= ∅. �

22



7 Subdifferential Chain Rule

In this section we employ the intersection rule of Theorem 5.3 to derive a chain rule of the

subdifferential of a composition of an extended-real-valued function and an affine mapping

under which we obviously keep convexity. First we present the following useful lemma.

Lemma 7.1 Let B : Rn → R
p be an affine mapping given by B(x) := Ax+ b, where A is

a p× n matrix and b ∈ R
p. Then for any (x̄, ȳ) ∈ gph(B) we have

N
(

(x̄, ȳ); gph(B)
)

=
{

(u, v) ∈ R
n ×R

p
∣

∣ u = −A⊤v
}

.

Proof. It is clear that gph(B) is convex and (u, v) ∈ N((x̄, ȳ) gph(B)) if and only if

〈u, x− x̄〉+ 〈v,B(x)−B(x̄)〉 ≤ 0 for all x ∈ R
n. (7.1)

It follows directly from the definitions that

〈u, x− x̄〉+ 〈v,B(x)−B(x̄)〉 = 〈u, x− x̄〉+ 〈v,A(x) −A(x̄)〉

= 〈u, x− x̄〉+ 〈A⊤v, x− x̄〉 = 〈u+A⊤v, x− x̄〉.

This implies the equivalence of (7.1) to 〈u + A⊤v, x − x̄〉 ≤ 0 for all x ∈ R
n, and so to

u = −A⊤v. �

Theorem 7.2 Let f : Rp → (−∞,∞] be a convex function, and let B : Rn → R
p be as in

Lemma 7.1 with B(x̄) ∈ dom(f) for some x̄ ∈ R
n. Denote ȳ := B(x̄) and assume that the

range of B contains a point of ri(dom(f)). Then we have the subdifferential chain rule

∂(f ◦B)(x̄) = A⊤
(

∂f(ȳ)
)

=
{

A⊤v
∣

∣ v ∈ ∂f(ȳ)
}

. (7.2)

Proof. Fix v ∈ ∂(f ◦B)(x̄) and form the subsets of Rn ×R
p × R by

Ω1 := gph(B)× R and Ω2 := R
n × epi(f).

Then we clearly get the relationships

ri(Ω1) = Ω1 = gph(B)× R, ri(Ω2) = {(x, y, λ) | x ∈ R
n, y ∈ ri(dom(f)), λ > f(y)},

and thus the assumption of the theorem tells us that ri(Ω1) ∩ ri(Ω2) 6= ∅.

Further, it follows from the definitions of the subdifferential and of the normal cone that

(v, 0,−1) ∈ N((x̄, ȳ, z̄); Ω1 ∩ Ω2), where z̄ := f(ȳ). Indeed, for any (x, y, λ) ∈ Ω1 ∩ Ω2 we

have y = B(x) and λ ≥ f(y), and so λ ≥ f(B(x)). Thus

〈v, x− x̄〉+ 0(y − ȳ) + (−1)(λ − z̄) ≤ 〈v, x− x̄〉 − [f(B(x))− f(B(x̄))] ≤ 0.

Employing the intersection rule of Theorem 5.3 to the above sets gives us

(v, 0,−1) ∈ N
(

(x̄, ȳ, z̄); Ω1

)

+N
(

(x̄, ȳ, z̄); Ω2

)

,
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which reads that (v, 0,−1) = (v,−w, 0) + (0, w,−1) with (v,−w) ∈ N((x̄, ȳ); gph(B)) and

(w,−1) ∈ N((ȳ, z̄); epi(f)). Then we get

v = A⊤w and w ∈ ∂f(ȳ),

which implies in turn that v ∈ A⊤(∂f(ȳ)) and hence verifies the inclusion “⊂” in (7.2). The

opposite inclusion follows directly from the definition of the subdifferential. �

8 Subdifferentiation of Maximum Functions

Our next topic is subdifferentiation of an important class of nonsmooth convex functions

defined as the pointwise maximum of convex functions. We calculate the subdifferential of

such functions by using again the geometric intersection rule of Theorem 5.3.

Given fi : R
n → (−∞,∞] for i = 1, . . . ,m, define the maximum function by

f(x) := max
i=1,...,m

fi(x), x ∈ R
n, (8.1)

and for x̄ ∈ R
n consider the active index set

I(x̄) :=
{

i ∈ {1, . . . ,m}
∣

∣ fi(x̄) = f(x̄)
}

.

Lemma 8.1 (i) Let Ω be a convex set in R
n. Then int (Ω) = ri(Ω) provided that int (Ω) 6= ∅.

Furthermore, N(x̄; Ω) = {0} if x̄ ∈ int(Ω).

(ii) Let f : Rn → (−∞,∞] be a convex function, which is continuous at x̄ ∈ dom(f). Then

we have x̄ ∈ int(dom(f)) with the implication

(v,−λ) ∈ N((x̄, f(x̄)); epi(f)) =⇒ [λ ≥ 0 and v ∈ λ∂f(x̄)].

Proof. (i) Suppose that int(Ω) 6= ∅ and check that aff(Ω) = R
n. Indeed, picking x̄ ∈ int(Ω)

and fixing x ∈ R
n, find t > 0 with tx+ (1− t)x̄ = x̄+ t(x− x̄) ∈ int(Ω) ⊂ aff(Ω). It yields

x =
1

t
(tx+ (1− t)x̄) + (1−

1

t
)x̄ ∈ aff(Ω),

which justifies the claimed statement due to the definition of relative interior.

To verify the second statement in (i), take v ∈ N(x̄; Ω) with x̄ ∈ int(Ω) and get

〈v, x− x̄〉 ≤ 0 for all x ∈ Ω.

Choosing δ > 0 such that x̄+ tv ∈ B(x̄; δ) ⊂ Ω for t > 0 sufficiently small, gives us

〈v, x̄+ tv − x̄〉 = t‖v‖2 ≤ 0,

which implies v = 0 and thus completes the proof of assertion (i).

(ii) The continuity of f allows us to find δ > 0 such that

|f(x)− f(x̄)| < 1 whenever x ∈ B(x̄; δ).

24



This yields B(x̄; δ) ⊂ dom(f) and shows therefore that x̄ ∈ int(dom(f)).

Now suppose that (v,−λ) ∈ N((x̄, f(x̄)); epi(f)). Then

〈v, x − x̄〉 − λ(t− f(x̄)) ≤ 0 whenever (x, t) ∈ epi(f). (8.2)

Employing this inequality with x = x̄ and t = f(x̄) + 1 yields λ ≥ 0.

If λ > 0, we readily get (v/λ,−1) ∈ N((x̄, f(x̄)); epi(f)). It follows from Proposition 6.1

that v/λ ∈ ∂f(x̄), and hence v ∈ λ∂f(x̄).

In the case where λ = 0, we deduce from (8.2) that v ∈ N(x̄; (dom(f)) = {0}, and so the

inclusion v ∈ λ∂f(x̄) is also valid. Note that ∂f(x̄) 6= ∅ by Corollary 6.3. �

Now we are ready to derive the following maximum rule.

Theorem 8.2 Let fi : R
n → (−∞,∞], i = 1, . . . ,m, be convex functions, and let x̄ ∈

⋂m
i=1 domfi be such that each fi is continuous at x̄. Then we have the maximum rule:

∂
(

max fi)(x̄) = co





⋃

i∈I(x̄)

∂fi(x̄)



 .

Proof. Let f be the maximum function defined in (8.1) for which we obviously have

epi(f) =

m
⋂

i=1

epi(fi).

Employing Proposition 3.5 and Lemma 8.1(i) give us the equalities

ri(epi(fi)) = {(x, λ) | x ∈ ri(dom(fi)), λ > fi(x)} = {(x, λ) | x ∈ int(dom(fi)), λ > fi(x)},

which imply that (x̄, f(x̄) + 1) ∈
⋂m

i=1 int(epi(fi)) =
⋂m

i=1 ri(epi(fi)). Furthermore, since

fi(x̄) < f(x̄) = ᾱ for any i /∈ I(x̄), there exists a neighborhood U of x̄ and γ > 0 such that

fi(x) < α whenever (x, α) ∈ U × (ᾱ− γ, ᾱ+ γ). It follows that (x̄, ᾱ) ∈ int(epi(fi)), and so

N((x̄, ᾱ); epi(fi)) = {(0, 0)} for such indices i. Thus Theorem 5.3 tells us that

N
(

(x̄, f(x̄)); epi(f)
)

=
m
∑

i=1

N
(

(x̄, ᾱ); epi(fi)
)

=
∑

i∈I(x̄)

N
(

(x̄, fi(x̄)); epi(fi)
)

.

Picking now v ∈ ∂f(x̄), we have by Proposition 6.1(ii) that (v,−1) ∈ N((x̄, f(x̄)); epif),

which allows us to find (vi,−λi) ∈ N((x̄, fi(x̄)); epifi) for i ∈ I(x̄) such that

(v,−1) =
∑

i∈I(x̄)

(vi,−λi).

This yields
∑

i∈I(x̄) λi = 1, λi ≥ 0, v =
∑

i∈I(x̄) vi, and vi ∈ λi∂fi(x̄) by Lemma 8.1(ii).

Thus v =
∑

i∈I(x̄) λiui, where ui ∈ ∂fi(x̄) and
∑

i∈I(x̄) λi = 1. This verifies that

v ∈ co





⋃

i∈I(x̄)

∂fi(x̄)



 .
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The opposite inclusion in the maximum rule follows from

∂fi(x̄) ⊂ ∂f(x̄) for all i ∈ I(x̄),

which in turn follows directly from the definitions. �

9 Optimal Value Function and Another Chain Rule

The main result of this section concerns calculating the subdifferential of extended-real-

valued convex functions, which play a remarkable role in variational analysis, optimization,

and their numerous applications and are known under the name of optimal value/marginal

functions. Functions of this class are generally defined by

µ(x) := inf
{

ϕ(x, y)
∣

∣ y ∈ F (x)
}

, (9.1)

where ϕ : Rn×R
p → (−∞,∞] is an extended-real-valued function, and where F : Rn →→ R

p

is a set-valued mapping, i.e., F (x) ⊂ R
p for every x ∈ R

n. In what follows we select ϕ and F

in such a way that the resulting function (9.1) is convex and to derive a formula to express

its subdifferential via the subdifferential of ϕ and an appropriate generalized differentiation

construction for the set-valued mapping F . The results obtained in the general framework

of variational analysis [13, 21] advise us that the most suitable construction for F for these

purposes is the so-called coderivative of F at (x̄, ȳ) ∈ gph(F ) defined via the normal cone

to the graphical set gph(F ) := {(x, y) ∈ R
n × R

p | y ∈ F (x)} by

D∗F (x̄, ȳ)(v) = {u ∈ R
n | (u,−v) ∈ N((x̄, ȳ); gph(F ))}, v ∈ R

p. (9.2)

It is easy to check that the optimal value function (9.1) is convex provided that ϕ is convex

and the graph of F is convex as well. An example of such F is given by the affine mapping

B considered in Lemma 7.1. Note that, as follows directly from Lemma 7.1 and definition

(9.2), the coderivative of this mapping is calculated by

D∗B(x̄, ȳ)(v) = A⊤v with ȳ = B(x̄). (9.3)

Now we proceed with calculating the subdifferential of (9.1) via that of ϕ and the coderiva-

tive of F . The results of this type are induced by those in variational analysis [13, 21],

where only upper estimate of ∂µ(x̄) were obtained. The convexity setting of this paper

and the developed approach allow us to derive an exact formula (equality) for calculating

∂µ(x̄) under a mild relative interior condition, which is strictly weaker than the normal

qualification condition from [14, Theorem 2.61]; cf. the discussion at the end of Section 5.

Theorem 9.1 Let µ(·) be the optimal value function (9.1) generated by a convex-graph

mapping F : Rn →→ R
p and a convex function ϕ : Rn × R

p → (−∞,∞]. Suppose that

µ(x) > −∞ for all x ∈ R
n, fix some x̄ ∈ dom(µ), and consider the solution set

S(x̄) :=
{

ȳ ∈ F (x̄)
∣

∣ µ(x̄) = ϕ(x̄, ȳ)
}

.
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If S(x̄) 6= ∅, then for any ȳ ∈ S(x̄) we have the equality

∂µ(x̄) =
⋃

(u,v)∈∂ϕ(x̄,ȳ)

[

u+D∗F (x̄, ȳ)(v)
]

(9.4)

provided the validity of the relative interior qualification condition

ri(dom(ϕ)) ∩ ri(gph(F )) 6= ∅. (9.5)

Proof. Picking any ȳ ∈ S(x̄), let us first verify the estimate

⋃

(u,v)∈∂ϕ(x̄,ȳ)

[

u+D∗F (x̄, ȳ)(v)
]

⊂ ∂µ(x̄). (9.6)

To proceed, take w from the set on the left-hand side of (9.6) and find (u, v) ∈ ∂ϕ(x̄, ȳ)

with w − u ∈ D∗F (x̄, ȳ)(v). It gives us (w − u,−v) ∈ N((x̄, ȳ); gph(F )) and thus

〈w − u, x− x̄〉 − 〈v, y − ȳ〉 ≤ 0 for all (x, y) ∈ gph(F ),

which shows that whenever y ∈ F (x) we have

〈w, x − x̄〉 ≤ 〈u, x− x̄〉+ 〈v, y − ȳ〉 ≤ ϕ(x, y)− ϕ(x̄, ȳ) = ϕ(x, y)− µ(x̄).

This allows us to arrive at the estimate

〈w, x − x̄〉 ≤ inf
y∈F (x)

ϕ(x, y)− µ(x̄) = µ(x)− µ(x̄)

justifying the inclusion w ∈ ∂µ(x̄) and hence the claimed one in (9.6).

It remains to verify the inclusion “⊂” in (9.4). Take w ∈ ∂µ(x̄), ȳ ∈ S(x̄) and get

〈w, x− x̄〉 ≤ µ(x)− µ(x̄) = µ(x)− ϕ(x̄, ȳ) ≤ ϕ(x, y) − ϕ(x̄, ȳ)

whenever y ∈ F (x) and x ∈ R
n. This implies in turn that for any (x, y) ∈ R

n ×R
p we have

〈w, x − x̄〉+ 〈0, y − ȳ〉 ≤ ϕ(x, y) + δ
(

(x, y); gph(F )) −
[

ϕ(x̄, ȳ) + δ
(

(x̄, ȳ); gph(F )
)]

.

Considering further f(x, y) := ϕ(x, y) + δ((x, y); gph(F )), deduce from the subdifferential

sum rule of Theorem 6.2 under (9.5) that

(w, 0) ∈ ∂f(x̄, ȳ) = ∂ϕ(x̄, ȳ) +N
(

(x̄, ȳ); gph(F )
)

.

This shows that (w, 0) = (u1, v1)+(u2, v2) with (u1, v1) ∈ ∂ϕ(x̄, ȳ) and (u2, v2) ∈ N((x̄, ȳ); gph(F ))

and thus yields v2 = −v1. Hence (u2,−v1) ∈ N((x̄, ȳ); gph(F )) meaning by definition that

u2 ∈ D∗F (x̄, ȳ)(v1). Therefore we arrive at

w = u1 + u2 ∈ u1 +D∗F (x̄, ȳ)(v1),

which justifies the inclusion “⊂” in (9.4) and completes the proof of the theorem. �
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Observe that Theorem 9.1 easily implies the chain rule of Theorem 7.2 by setting F (x) :=

{B(x)} and ϕ(x, y) := f(y) therein. Then we have µ(x) = (f ◦B)(x),

ri(dom(ϕ)) = R
n × ri(dom(f)), ri(gph(F )) = gph(B),

Thus the relative interiority assumption of Theorem 7.2 yields the validity of the qualifica-

tion condition (9.5) is satisfied, and we arrive at the chain rule (7.2) directly from (9.4) and

the coderivative expression in (9.3).

We now derive from Theorem 9.1 and the intersection rule of Theorem 5.3 a new subdif-

ferential chain rule concerning compositions of convex functions with particular structures.

We say that g : Rp → (−∞,∞] is nondecreasing componentwise if

[

xi ≤ yi for all i = 1, . . . , p
]

=⇒
[

g(x1, . . . , xp) ≤ g(y1, . . . , yp)
]

.

Theorem 9.2 Define h : R
n → R

p by h(x) := (f1(x), . . . , fp(x)), where fi : R
n → R

for i = 1, . . . , p are convex functions. Suppose that g : R
p → (−∞,∞] is convex and

nondecreasing componentwise. Then the composition g ◦ h : Rn → (−∞,∞] is a convex

function, and we have the subdifferential chain rule

∂(g ◦ h)(x̄) =
{

p
∑

i=1

γivi

∣

∣

∣
(γ1, . . . , γp) ∈ ∂g(ȳ), vi ∈ ∂fi(x̄), i = 1, . . . , p

}

(9.7)

with x̄ ∈ R
n and ȳ := h(x̄) ∈ dom(g) under the condition that there exist ū ∈ R

n and

λ̄i > fi(ū) for all i = 1, . . . , p satisfying

(λ̄1, . . . , λ̄p) ∈ ri(dom(g)).

Proof. Let F : Rn →→ R
p be a set-valued mapping defined by

F (x) := [f1(x),∞) × [f2(x),∞)× . . .× [fp(x),∞).

Then the graph of F is represented by

gph(F ) =
{

(x, t1, . . . , tp) ∈ R
n × R

p
∣

∣ ti ≥ fi(x)
}

.

Consider further the convex sets

Ωi := {(x, λ1, . . . , λp) | λi ≥ fi(x)}

and observe that gph(F ) =
⋂p

i=1 Ωi. Since all the functions fi are convex, the set gph(F )

is convex as well. Define ϕ : Rn ×R
p → (−∞,∞] by ϕ(x, y) := g(y) and observe, since g is

increasing componentwise, that

inf
{

ϕ(x, y)
∣

∣ y ∈ F (x)
}

= g
(

f1(x), . . . , fp(x)
)

= (g ◦ h)(x),

which ensures the convexity of the composition g ◦ h; see [14, Proposition 1.54]. It follows

from Proposition 3.5 and Lemma 5.2 that

ri(gph(F )) = {(x, λ1, . . . , λp) | λi > fi(x) for all i = 1, . . . , p}.
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The assumptions made in the theorem guarantee that ri(gph(F )) ∩ ri(dom(ϕ)) 6= ∅. More-

over, the structure of each set Ωi gives us

[(v,−γ1, . . . ,−γp) ∈ N((x̄, f1(x̄), . . . , fp(x̄)); Ωi)] ⇐⇒ [(v,−γi) ∈ N((x̄, fi(x̄)); epi(fi)), γj = 0 if j 6= i].

Using the coderivative definition and applying the intersection rule of Theorem 5.3 and also

Lemma 8.1, we get

v ∈ D∗F (x̄, f1(x̄), . . . , fp(x̄))(γ1, . . . , γp) ⇐⇒ (v,−γ1, . . . ,−γp) ∈ N((x̄, f1(x̄), . . . , fp(x̄)); gph(F )))

⇐⇒ (v,−γ1, . . . ,−γp) ∈ N((x̄, f1(x̄), . . . , fp(x̄));

p
⋂

i=1

Ωi)

⇐⇒ (v,−γ1, . . . ,−γp) ∈

p
∑

i=1

N((x̄, f1(x̄), . . . , fp(x̄)); Ωi)

⇐⇒ v =

p
∑

i=1

vi with (vi,−γi) ∈ N((x̄, fi(x̄)); epifi)

⇐⇒ v =

p
∑

i=1

vi with vi ∈ γi∂fi(x̄)

⇐⇒ v ∈

p
∑

i=1

γi∂fi(x̄).

It follows from Theorem 9.1 that v ∈ ∂(g ◦ h)(x̄) if and only if there exists a collection

(γ1, . . . , γp) ∈ ∂g(ȳ) such that v ∈ D∗F (x̄, f1(x̄), . . . , fp(x̄))(γ1, . . . , γp). This allows us to

deduce the chain rule (9.7) from the equivalences above. �

10 Normals to Preimages of Sets via Set-Valued Mappings

In this section we calculate the normal cone to convex sets of a special structure that

frequently appear in variational analysis and optimization. These sets are constructed as

follows. Given a set Θ ⊂ R
p and a set-valued mapping F : Rn →→ R

p the preimage or inverse

image of the set Θ under the mapping F is defined by

F−1(Θ) := {x ∈ R
n | F (x) ∩Θ 6= ∅}. (10.1)

Our goal here is to calculate the normal cone to the preimage set (10.1) via the normal cone

to Θ and the coderivative of F . This is done in the following theorem, which is yet another

consequence of the intersection rule from Theorem 5.3.

Theorem 10.1 Let F : Rn →→ R
p be a set-valued mapping with convex graph, and let Θ be

a convex subset of Rp. Suppose that there exists (a, b) ∈ R
n × R

p satisfying

(a, b) ∈ ri(gph(F )) and b ∈ ri(Θ).

Then for any x̄ ∈ F−1(Θ) and ȳ ∈ F (x̄) ∩Θ we have the representation

N(x̄;F−1(Θ)) = D∗F (x̄, ȳ)(N(ȳ; Θ)). (10.2)
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Proof. It is not hard to show that F−1(Θ) is a convex set. Picking any u ∈ N(x̄;F−1(Θ))

gives us by definition that

〈u, x− x̄〉 ≤ 0 whenever x ∈ F−1(Θ), i.e., F (x) ∩Θ 6= ∅.

Consider the two convex subsets of Rn+p defined by

Ω1 := gph(F ) and Ω2 := R
n ×Θ

for which we have (u, 0) ∈ N((x̄, ȳ); Ω1 ∩ Ω2). Applying now Theorem 5.3 tells us that

(u, 0) ∈ N((x̄, ȳ); Ω1) +N((x̄, ȳ); Ω2) = N((x̄, ȳ); gphF ) + [{0} ×N(ȳ; Θ)],

and thus we get the representation

(u, 0) = (u,−v) + (0, v) with (u,−v) ∈ N((x̄, ȳ); gphF ) and v ∈ N(ȳ; Θ)

from which it follows immediately that

u ∈ D∗F (x̄, ȳ)(v) and v ∈ N(ȳ; Θ).

This versifies the inclusion“⊂” in (10.2). The opposite inclusion is trivial. �

11 Coderivative Calculus

We see from above that the coderivative notion (9.2) is instrumental to deal with set-valued

mappings. Although this notion was not properly developed in basic convex analysis, the

importance of it has been fully revealed in general variational analysis and its applications;

see, e.g., [4, 13, 21] and the references therein, where the reader can find, in particular,

various results on coderivative calculus. Most of these results were obtained in the inclu-

sion form under the corresponding normal qualification conditions generated by (5.8). We

present below some calculus rules for coderivatives of convex-graph mappings, which are

derived from the intersection rule of Theorem 5.3 and hold as equalities in a bit different

form under weaker relative interior qualification conditions.

Recall that the domain of a set-valued mapping F : Rn →→ R
p is defined by

dom(F ) := {x ∈ R
m | F (x) 6= ∅}.

Given two set-valued mappings F1, F2 : R
n →→ R

p, their sum is defined by

(F1 + F2)(x) = F1(x) + F2(x) := {y1 + y2 | y1 ∈ F1(x), y2 ∈ F2(x)}.

It is easy to see that dom(F1 + F2) = dom(F1) ∩ dom(F2) and that the graph of F1 + F2 is

convex provided that both F1, F2 have this property.

Our first calculus result concerns representing the coderivative of the sum F1 + F2 at the

given point (x̄, ȳ) ∈ gph(F1 + F2). To formulate it, consider the nonempty set

S(x̄, ȳ) := {(ȳ1, ȳ2) ∈ R
p × R

p | ȳ = ȳ1 + ȳ2, ȳi ∈ Fi(x̄) for i = 1, 2} .
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Theorem 11.1 Let F1, F2 : R
n →→ R

p be set-valued mappings of convex graphs, and let the

relative interior qualification condition

ri(gph(F1)) ∩ ri(gph(F2)) 6= ∅ (11.1)

hold. Then we have the coderivative sum rule

D∗(F1 + F2)(x̄, ȳ)(v) =
⋂

(ȳ1,ȳ2)∈S(x̄,ȳ)

[D∗F1(x̄, ȳ1)(v) +D∗F2(x̄, ȳ2)(v)] (11.2)

for all (x̄, ȳ) ∈ gph(F1 + F2) and v ∈ R
p.

Proof. Fix any u ∈ D∗(F1 + F2)(x̄, ȳ)(v) and (ȳ1, ȳ2) ∈ S(x̄, ȳ) for which we have the

inclusion (u,−v) ∈ N((x̄, ȳ); gph(F1 + F2)). Consider the convex sets

Ω1 := {(x, y1, y2) ∈ R
n × R

p × R
p | y1 ∈ F1(x)}, Ω2 := {(x, y1, y2) ∈ R

n × R
p × R

p | y2 ∈ F2(x)}

and deduce from the normal cone definition that

(u,−v,−v) ∈ N((x̄, ȳ1, ȳ2); Ω1 ∩ Ω2).

It is easy to observe the relative interior representations

ri(Ω1) = {(x, y1, y2) ∈ R
n × R

p × R
p | (x, y1) ∈ ri(gph(F1))},

ri(Ω2) = {(x, y1, y2) ∈ R
n × R

p × R
p | (x, y2) ∈ ri(gph(F2))},

which show that condition (11.1) yields ri(Ω1)∩ ri(Ω2) 6= ∅. It tells us by Theorem 5.3 that

(u,−v,−v) ∈ N((x̄, ȳ1, ȳ2); Ω1) +N((x̄, ȳ1, ȳ2); Ω2),

and thus we arrive at the representation

(u,−v,−v) = (u1,−v, 0) + (u2, 0,−v) with (ui,−v) ∈ N((x̄, ȳi); gph(Fi)), i = 1, 2.

This verifies therefore the relationship

u = u1 + u2 ∈ D∗F1(x̄, ȳ1)(v) +D∗F2(x̄, ȳ2)(v),

which justifies the inclusion “⊂” in (11.2). The opposite inclusion is obvious. �

Next we define the composition of two mappings F : Rn →→ R
p and G : Rp →→ R

q by

(G ◦ F )(x) =
⋃

y∈F (x)

G(y) := {z ∈ G(y) | y ∈ F (x)), x ∈ R
n,

and observe that G ◦ F is convex-graph provided that both F and G have this property.

Given z̄ ∈ (G ◦ F )(x̄), we consider the set

M(x̄, z̄) := F (x̄) ∩G−1(z̄).
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Theorem 11.2 Let F : Rn →→ R
p and G : Rp →→ R

q be set-valued mappings of convex

graphs for which there exist vectors (x, y, z) ∈ R
n × R

p × R
q satisfying

(x, y) ∈ ri(gph(F )) and (y, z) ∈ ri(gph(G)). (11.3)

Then for any (x̄, z̄) ∈ gph(G ◦ F ) and w ∈ R
q we have the coderivative chain rule

D∗(G ◦ F )(x̄, z̄)(w) =
⋂

ȳ∈M(x̄,z̄)

D∗F (x̄, ȳ) ◦D∗G(ȳ, z̄)(w). (11.4)

Proof. Picking u ∈ D∗(G ◦ F )(x̄, z̄)(w) and ȳ ∈ M(x̄, z̄) gives us the inclusion (u,−w) ∈

N((x̄, z̄); gph(G ◦ F )), which means that

〈u, x− x̄〉 − 〈w, z − z̄〉 ≤ 0 for all (x, z) ∈ gph(G ◦ F ).

Form now the two convex subsets of Rn ×R
p × R

q by

Ω1 := gph(F )× R
q and Ω2 := R

n × gph(G)

We can easily deduce from the definitions that

(u, 0,−w) ∈ N((x̄, ȳ, z̄); Ω1 ∩ Ω2)

and that the qualification condition (11.3) ensures the validity of the one ri(Ω1)∩ri(Ω2) 6= ∅

in Theorem 5.3. Applying then the intersection rule to the above sets tells us that

(u, 0,−w) ∈ N((x̄, ȳ, z̄); Ω1 ∩ Ω2) = N((x̄, ȳ, z̄); Ω1) +N((x̄, ȳ, z̄); Ω2),

and thus there is a vector v ∈ R
p such that we have the representation

(u, 0,−w) = (u,−v, 0)+(0, v,−w) with (u,−v) ∈ N((x̄, ȳ); gph(F )), (v,−w) ∈ N((ȳ, z̄); gph(G)).

This shows by the coderivative definition (9.2) that

u ∈ D∗F (x̄, ȳ)(v) and v ∈ D∗G(ȳ, z̄)(w),

and so we justify the inclusion “⊂” in (11.4). The opposite inclusion is easy to verify. �

Our final result in this section provides an exact formula for calculating the coderivative of

intersections of set-valued mappings F1, F2 : Rn →→ R
p defined by

(F1 ∩ F2)(x) := F1(x) ∩ F2(x), x ∈ R
n,

which is also deduced from the basic intersection rule for the normal cone in Theorem 5.3.

Proposition 11.3 Let F1, F2 : Rn →→ R
p be of convex graphs, and let

ri(gph(F1)) ∩ ri(gph(F2)) 6= ∅.

Then for any ȳ ∈ (F1 ∩ F2)(x̄) and v ∈ R
p we have

D∗(F1 ∩ F2)(v) =
⋃

v1+v2=v

[D∗F1(x̄, ȳ)(v1) +D∗F2(x̄, ȳ)(v2)] . (11.5)
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Proof. It follows from the definition that gph(F1 ∩ F2) = gph(F1) ∩ gph(F2). Pick any

vector u ∈ D∗(F1 ∩ F2)(v) and get by Theorem 5.3 that

(u,−v) ∈ N((x̄, ȳ); gph(F1 ∩ F2)) = N((x̄, ȳ); gph(F1)) +N((x̄, ȳ); gph(F2)).

This allows us to represent the pair (u, v) in the form

(u,−v) = (u1,−v1) + (u2,−v2),

where (u1,−v1) ∈ N((x̄, ȳ); gph(F1)) and (u2,−v2) ∈ N((x̄, ȳ); gph(F2)). Therefore we have

u = u1 + u2 ∈ D∗F1(x̄, ȳ)(v1) +D∗F2(x̄, ȳ)(v2) with v = v1 + v2,

verifying the inclusion “⊂” in (11.5). The opposite inclusion comes from the definition. �

12 Solution Maps for Parameterized Generalized Equations

Here we present a rather simple application of coderivative calculus to calculating the

coderivative of set-valued mappings given in the structural form

S(x) = {y ∈ R
p | 0 ∈ F (x, y) +G(x, y)}, x ∈ R

n, (12.1)

where F,G : Rn ×R
p →→ R

q are set-valued mappings. Mappings of this type can be treated

as solutions maps to the so-called generalized equations

0 ∈ F (x, y) +G(x, y), x ∈ R
n, y ∈ R

p,

with respect to the decision variable y under parameterization/perturbation by x. This ter-

minology and first developments go back to Robinson [18], who considered the case where

G(y) = N(y; Ω) is the normal cone mapping associated with a convex set Ω and where

F (x, y) is single-valued. It has been recognized that the generalized equation formalism,

including its extended form, is a convenient model to investigate various aspects of opti-

mization, equilibrium, stability, etc. In particular, the coderivative of the solution map

(12.1) plays an important role in such studies; see, e.g., [13] and the references therein.

To proceed with calculating the coderivative of the solution map (12.1) in the case of

convex-graph set-valued mappings, we first observe the following fact of its own interest.

Proposition 12.1 Let F : Rn →→ R
p be an arbitrary set-valued mapping with convex graph.

Given x̄ ∈ dom(F ), we have the relationships

N(x̄; dom(F )) = D∗F (x̄, ȳ)(0) for every ȳ ∈ F (x̄). (12.2)

Proof. Picking any v ∈ N(x̄; dom(F )) and ȳ ∈ F (x̄) gives us

〈v, x− x̄〉 ≤ 0 for all x ∈ dom(F ),
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which immediately implies the inequality

〈v, x− x̄〉+ 〈0, y − ȳ〉 ≤ 0, y ∈ F (x).

This yields in turn (v, 0) ∈ N((x̄, ȳ); gph)(F )) and so v ∈ D∗F (x̄, ȳ)(0) thus verifying the

inclusion “⊂” in (12.2). The opposite inclusion in (12.2) is straightforward. �

Theorem 12.2 Let F and G in (12.1) be convex-graph, and let (x̄, ȳ) ∈ gphS. Impose the

qualification condition

ri(gph(F )) ∩ ri(−gph(G)) 6= ∅. (12.3)

Then for every z̄ ∈ F (x̄, ȳ) ∩ [−G(x̄, ȳ)] we have

D∗S(x̄, ȳ)(v) =
⋃

w∈Rq

{u ∈ R
n | (u,−v) ∈ D∗F ((x̄, ȳ), z̄)(w) +D∗G((x̄, ȳ),−z̄)(w)}. (12.4)

Proof. It is easy to see that the solution map S is convex-graph under this property for F

and G. Furthermore, we get

gph(S) = {(x, y) ∈ R
n ×R

p | 0 ∈ F (x, y) +G(x, y)}

= {(x, y) ∈ R
n ×R

p | F (x, y) ∩ [−G(x, y)] 6= ∅} = dom(H),

where H(x, y) := F (x, y)∩ [−G(x, y)]. Take further any u ∈ D∗S(x̄, ȳ)(v) and deduce from

(9.2) and Proposition 12.1 that

(u,−v) ∈ N((x̄, ȳ); gph(S)) = N((x̄, ȳ); dom(H)) = D∗H((x̄, ȳ, z̄))(0)

for every z̄ ∈ H(x̄, ȳ) = F (x̄, ȳ) ∩ [−G(x̄, ȳ)]. Then the coderivative intersection rule of

Proposition 11.3 tells us that under the validity of (12.3) that

(u,−v) ∈ D∗H((x̄, ȳ, z̄))(0) =
⋃

w∈Rq

[D∗F ((x̄, ȳ), z̄)(w) +D∗(−G)((x̄, ȳ), z̄)(−w)]

=
⋃

w∈Rq

[D∗F ((x̄, ȳ), z̄)(w) +D∗(G)((x̄, ȳ),−z̄)(w)],

which yields (12.4) and thus completes the proof of the theorem. �
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