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FUZZINESS AND CATASTROPHE 

Martin Zwick, Daniel G. Schwartz, and George G. Lendaria, Systems Science Ph.~. Program, Portland 
State University, P. O. Box 751, Portland, Oregon 97207, USA 

ABSTRACT 

In a recent short note, Flondor has alluded to a 
possible linkage of fuzzy set theory and catastrophe 
theory. We consider several features of catastrophe 
theory, namely the properties of discontinuous jumps, 
hysteresis, and divergence in the "cusp catastrophe," 
and the role of the bias factor in the "butterfly 
catastrophe," which have affinities to and suggest 
possih1e extensions of fuzzy set ideas. Certain 
funcLions extensively considered in catastrophe 
theory lend themselves in some cases to interpreta­
tion as membership functions. The use of such func­
tions may be of interest for the characterization of 
linguistic descriptions which•are time-varying and 
encompass both discrete and fuzzy distinctions. 

TEXT 

In a recent short note (1), Flondor has alluded 
to a possible linkage of fuzzy set theory (2,3,4) 
and catastrophe theory (5,6,7]. In the present 
paper we make explicit an interpretation of this 
proposal, and consider other aspects of catastrophe­
theoretic models which suggest possible extensions 
of and/or alterations to fuzzy set ideas. Specifi­
cally, certain functions which are extensively con­
sidered in catastrophe theory may sometimes be inter­
preted as membership functions. These functions 
suggest an interesting and mathematically deep way 
of introducing into fuzzy set theory both a temporal 
dimension and a topological linkage between discrete 
and continuous logics. (Other ways of incorporating 
these features in the theory are no doubt possible,) 

Catastrophe theory analyzes systems governed by 
a particular class of potential functions (let us 
use the notation V • f(x)) in the neighborhood of 
certain points of interest (topological singulari­
ties). It is assumed that dx/dt • -K av/ax where K 
is large. The theory studies the surfaces described 
by values of x (the "behavioral variable") for which 
the system is at equilibrium, i.e., where av/ax• O. 
Consider the case where V • x4/4 + ax2/2 + bx in the 
neighborhood of the singularity, S. For this case, 
known as the "cusp catastrophe," the equation 
a V /ax z x 3. + ax + b = 0 describes the equilibrium or 
"behavior" surface (Figure 1). For each combination 
of the "control parameters," a and b, the equilib­
rium value of xis specified by the point on the 
behavior surface"directly above the "control point," 
(a,b). As the control point moves on the control 
surface, a "behavior point" follows above it on the 
behavior surface. This latter surface is an 

Figure-1 

"attractor" in the sense that a displacement away 
from it (or an initial value of x not satisfying the 
equilibrium equation) results in rapid motion to the 
surface. Motion of the behavior point on the behav­
ior surface is usually slower than such~eturns to 
equilibrium, and depends upon the motion of the con­
trol point. 

For negative values of the control parameter, a, 
the behavior surface splits into overlapping upper 
and lower sheets. The resulting folds in the sur­
face project onto a cusp-shaped set of points in the 
control surface known as the "bifurcation set," this 
term also being used more loosely to indicate the 
(internal) region bounded by these points. Within 
the bifurcation set, there is, as it were, a "strug­
gle" between the two attractor surfaces, A and B. 
That is, if the behavior point is displaced or ini­
tially located away from the equilibrium surface, it 
moves rapidly to one or the other of these surfaces. 
Region C represents a condition of unstable equili­
brium, i.e., an initial value of x on C will result 
in motion to either A or B. Trajectories of the 
control point which cross both boundaries of the 
bifurcation set, e.g., path Pin the above figure, 
cause discontinuous jumps ("catastrophes") from one 
attr3ctor surface to the other. 

Without explicitly proposing this particular use 
of the cusp model, Flondor speaks of the struggle of 
attractors as the source of a kind of fuzziness, and 
suggests that "the fuzzy part of such a system con­
sists of the 'way' to stability," stability here 
meaning, "to be caught by an attractor." Fuzzin~ss 
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is thus correlated with rapidly chan1:ing values of x, 
i.e., with conditions either of non-.,quilibrium or 
unstable equilibrium. 

This is one possible connection 11hich might be 
made between fuzzy-set and catastrophe-theory ideas. 
We propose a different approach: on" in which 

1) fuzziness is associated with the variety 
of values taken by x on the attractor sur­
face(s); and, 

2) fuzziness also may be superinposed on dis­
crete (in this paper, 2- or ]-valued) 
characterizations. 

Consider sections of the behavior surface with 
the control parameter, a, being held constant at some 
positive value. These sections appear as continuous, 
single-valued, and typically, but not necessarily, 
monotonically increasing curves of the same form as 
the membership function of some fuzz:, sets. For an 
example, see Figure-2. 

X 

b 

Here bis some base variable, e.g., height in inches, 
Fis some fuzzy set, e.g., "tall," and xis the value 
of the membership function, µ (b), which indicates 
the degree of belonging of b tK F. If one wishes, 
one can have II F(b) approach O and 1 at low and high 
values of b, respectively. Hembershlp functions dif­
ferent from the one shown in the abo'!e figure can 
also be represented, either by seleccing different 
sections of the behavior surface, or by transforming 
the entire surface through some appropriate bending 
and/or stretching operation. 

Now consider what happens when a< O, i.e. , for­
ward (in Figure-!) of the topological singularity, S. 
The sections now bifurcate into two domains (e.g., A 
and Bin Figure-3). This could model a phenomenon in 
which the existence of a clear distinction suddenly 
emerges, but within which some fuzziness continues to 
exist. 

X 

Figure-) 

An example which ill~strates the above is embryo­
logical differen.tiation. Zeeman [6] has suggested 
that the cusp can be used to model t~e differentia­
tion of cells into distinct types, as shown in 
Figure-4. 

2 

Figure-4 
Here t represents time, and Sis a spatial coordi­
nate along which there exists some physical or chem 
ical gradient. This gradient is the basis for the 
eventual bifurcation of a population of cells into 
two tissue types separated one from another by a 
definite boundary (at S0 ). The cell population is 
represented by the several control points whose tra 
jectories are plotted. Initially at time t 1 , we 
have a continuous spectrum ranging between the two 
ultimate cell types. A plot of x versus S resemble 
the fuzzy set membership function shown in Figure-2 
At t2, the spectrum undergoes a sudden splitting, 
and as t continues, the distinction between what no 
may be called type A and type B cells becomes more 
clear+. But even after this distinction occurs, a 
fuzziness is still embodied in the range of values 
which x assumes on the upper or lower equilibrium 
surfaces. That is, cells are type A or type B, but 
they are also more or less "A-like" or "B-like." I 
this example, x represents something like the rela­
tive degree of "A-likeness" versus "B-likeness." \­
have thus in this case a description which is time­
dependent and which can encompass both 2-valued and 
fuzzy distinctions. --

This example is only illustrative, but ~t sug­
gests the possibility that fuzzy set theory might b 
enriched by the use of an integrated logic of conti 
nuity and discontinuity based on catastrophe'­
theoretic concepts. Fuzzy set theory is a response 
to the fact that ordinary 2-valued logic (something 
is either a member of a set or not a member of it) 

* The above figure is an approximation to Zeeman's 
drawing; his and Thom's application of catastrophe 
theory to embryological differentiation is also 
much more extensively developed than this. These 
analyses are not, however, settled matters. An 
active controversy currently rages about the valid­
ity of many applications of catastrophe theory. 

+ Indeed, the boundary between the two cell types 
stabilizes at time t4, 
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does not properly describe many phenc,mena, Continu­
ous membership functions (such as thE, one shown in 
Figure-2), whose use corresponds to multi-valued 
schemes of logic [8], are a possible alternative, but 
one would like to retain the possibility also o'f the 
classical sharp dichotomies, Within fuzzy set theory, 
classical 2-valued logic can be obtained, of course, 

·if values of the membership function are restricted 
to either O or 1. But a more interesting kind of 
dichotomy, which retains the possibility of member­
ship values over the whole (0,1) interval, is repre­
sented in the way in which the linguistic modifier 
"not" is interpreted. For example, if, in Figure-2, 
bis the height of persons whose membership in the 
fuzzy set "tall" is given as 

x • 11 tall (b) 

then "not tall" is defined by the coJI.plement of the 
set "tall" as follows: 

µnot tall (b) • 1 - µ tall (b) • 
We can also define the fuzzy set "short," to be iden­
tical to "not tall." We have then the result shown 
in Figurc-5. 

Figure-5 

If we make these curves steeper, they will approach, 
in the limit, a conventional dyadic description. (Or 
the reverse would illustrate a transition from class­
ical to fuzzy logic.) 

The catastrophe-theoretic curve of Figure-3 is a 
different - and, we suggest, more interesting - solu­
tion to the problem of uniting 2-valued and multi­
valued logics. Here we have a 2-valued distinction 
in the separate regions A and B, and multi-valued 
distinctions within these regions. A problem arises, 
however, over what these regions should be called in 
our present linguistic example. Band A are obvi­
ously correlated with tne attributes ,)f "tall" and 
"short," respectively, but this usage is not appro­
priate, since we have spoken of x as indicating the 
degree of membership in the fuzzy set "tall." 
"Short" is the name of a different fu.zzy set which 
has its own membership function. Yet, it seems quite 
natural to give these names to the tw,J attractor sur­
faces. The problem arises from the fact that the 
very possibility of bifurcation in the equilibrium 
surface indicates that the behavior v.1riable is "bi­
polar," that is, refers not to a single behavioral 
attrib~te, but to a complementary pair of such attri-
butes. (This is clear in the example of differen-
tiation.) 

The difficulty is not serious. It is certainly 
legitimate to gi;e linguistic "labels·" to separate 
parts of catastrophe-theoretic surfac,es, One must 
take care only not to confuse these s,eparate labels 
with separate fuzzy sets. Regions A .ind B could 

alternatively be labelled as "weakly tall" and 
"strongly tall," but there is a natural tendency to 
prefer positive linguistic characterizations over 
negative ones, e.g., "short" over "weakly tall." 

3 

A more serious complication arises from the fact 
that Figure-3 does not describe a single-valued func 
tion inside the bifurcation set. In practice, this 
ambiguity is resolved by the fact that x depends not 
simply on the present location of the control point. 
but also on its history. Figure-4 shows control 
point trajectories which illustrate the cusp proper­
ties of divergence and discontinuous jumps ("catas­
trophes"). For a value of b inside the bifurcation 
set, 

depending on which side of the singularity the tra­
jectory occurs. 

A trajectory such as path P of Figure-1, which 
results in the curve of Figure-3, shows how the pro­
perty of jumps can be combined with that of hystere­
sis. The system is in state A as the control point 
moves across the bifurcation set, and jumps to state 
B when the second (right-most) boundary of the bifut 
cation set is crossed. For motion in the reverse 
direction, the catastrophe occurs at the other (left 
most) boundary of the bifurcation set. In terms of 
our linguistic example, Figure-3 could be regarded 
as a composite, as it were, of two (discontinuous) 
membership functions. One of these ( µ 1 

1 
) speci­

fies membership in "tall" for a sequenc~aot observec 
subjects with gradually increasing heights, i.e., 
corresponds to motion of the control point towards 
increasing values of b; the other ( 11 2 ll) specifie" 
membership in "tall" for a sequence ol?subjects witr 
gradually decreasing heights, i.e., corresponds to 
motion of the control point towards decreasing 
values of b. This is summarized in Figure-6. (Thi" 
interpretation does not, however, account for the 
occurrence of the unstable equilibrium region, C.) 
The hysteresis effect might be said to model the cor 
ditioning by past experience of linguistic judgment" 
involving dyadic distinctions. 

It should be understood that the trajectories 
which have been discussed are only illustrative. 
Thom's theory does not dictate how the control point 
moves, but only supplies the necessary topological 
relationship between the control and behavior vari­
ables in the neighborhood of the singularity. The 
main point here is that the overlap of the behavior 
surface presents no technical difficulty, because 
the value of xis determined by the control point 
trajectory. 

Of course, whether linguistic descriptions of 
some phenomena require such features as divergence, 
sudden jumps, and/or hysteresis effects, is an 
empirical question. But if fuzzy set theory is to 
be applied to phenomena for which the cusp catastro­
phe is an appropriate model, it would seem plausible 
that some of the above features must be capable of 
being accomodated within the theory. 

*This calls to mind the classical Hegelian principle 
of dialectics, "the mutual interpretation of oppo­
sites." For an exposition of this principle, which 
shows it to be a philosophical precursor of fuzzy 
set theory, see (9]. For a discussion of the rela­
tions of dialectics and catastrophe theory, see flOJ 
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V 
I Composite, as 
: in Figure--3 

Figure-6 

We can also make use of a second of Thom's arche­
types, the "butterfly catastrophe," to model more 
complicated unions of discrete and ccntinuous logics 
as well as the effect of bias on the judgment of 
observers. The butterfly has the potential function, 
V = x6/6 + dx4/ 4 + cx 3/3 + bx2 / 2 + ax, and a corre­
sponding equilibrium surface which can have three 
attractor surfaces. If the cusp can be considered a 
kind of "hybrid" of classical 2-valued logic and 
fuzzy logic, the butterfly can be considered c 
"hybrid" of some 3-valued logic and fuzzy logic, The 
three attractor surfaces can be regarded as fuzzy 
versions of the logical values 0, 1, and~. just as 
attractors A and Bare fuzzy versions of O and 1. 
Figure-7 illustrates possible examples of these var­
ious logics. 

When the parameter din the potential function 
is positive, the butterfly "reduces" to a two-sur­
faced cusp, but one in which the valu,~s of the para­
meter, c, the "bias factor" can cause shifts in the 
dependence of the behavioral variable on b, as shown 
in Figure-8. 

To continue the previous example, assume that 
membership in "tall" is given by x; bis the height 
of the "subject," i.e., the person be.lng observed. 
Positive, zero, and negative values oi' the bias fac­
tor, c, correspond to tall, intermediate-height, and 
short observers, respectively. When 1:he person 
being observed has height b1, i.e., 18 fairly short, 
all three observers agree to label thH subject short, 
but the short observer (c < O) actually means by this 
a greater value of membership in "tall." than does the 
tall observer (c >O). * A subject of height b2 is 
considered by th~ short observer to bE, tall, and by 
the tall observer to be short; the intermediate­
height observer (c • 0) may regard thE, subject either 
as short or tall (probably depending upon the height 
of previously observed subjects). A ulightly taller 

1 

1 

1 

1 

.5 

1 

• 5 

Figure-7 

(a) Classical 2-valued 
logic (an example) 

(b) Fuzzy logic 

(c) 

" 
A cusp catastrophe 
"hybrid" of {a) and (b). 
(One section through 
the equilibrium surface.) 

(d) 3-valued logic 

(e) A butterfly catastrophe 
"hybrid" of (b) and {d) • 
(One section through the 
equilibrium surface.) 

.___...,b,_1--~b-2-~b-3-➔ ·b 

Figure-8 
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subject, b3, is labelled unambiguously as tall by 
both the short and intermediate-height observers, 
but might be considered either tall or short by the 
tall observer. And so on. 

In sununary, fuzzy-set theory and catastrophe 
theory have some affinities. Their linkage might 
suggest some novel ways to join together continuous 
and discrete logics to model aspects of natural lan­
guage. The present note, like Flondor's which 

* In this discussion, we speak of the fuzzy set 
"tall," but also use "short" and "tall" to label 
parts of the membership functions. It will be clear 
from the context which meaning of "tall" is intended. 
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inspired it, is highly preliminary, but may help 
point the way to more rigorous developments. 
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