
Portland State University Portland State University 

PDXScholar PDXScholar 

Electrical and Computer Engineering Faculty 
Publications and Presentations Electrical and Computer Engineering 

5-2009 

Extended Superposed Quantum State Initialization Extended Superposed Quantum State Initialization 

Using Disjoint Prime Implicants Using Disjoint Prime Implicants 

David Rosenbaum 
Portland State University 

Marek Perkowski 
Portland State University 

Follow this and additional works at: https://pdxscholar.library.pdx.edu/ece_fac 

 Part of the Electrical and Computer Engineering Commons 

Let us know how access to this document benefits you. 

Citation Details Citation Details 
Rosenbaum, David, and Marek Perkowski. "Extended superposed quantum-state initialization using 
disjoint prime implicants." Physical Review A 79, no. 5 (2009): 052310. 

This Article is brought to you for free and open access. It has been accepted for inclusion in Electrical and 
Computer Engineering Faculty Publications and Presentations by an authorized administrator of PDXScholar. 
Please contact us if we can make this document more accessible: pdxscholar@pdx.edu. 

https://pdxscholar.library.pdx.edu/
https://pdxscholar.library.pdx.edu/ece_fac
https://pdxscholar.library.pdx.edu/ece_fac
https://pdxscholar.library.pdx.edu/ece
https://pdxscholar.library.pdx.edu/ece_fac?utm_source=pdxscholar.library.pdx.edu%2Fece_fac%2F192&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/266?utm_source=pdxscholar.library.pdx.edu%2Fece_fac%2F192&utm_medium=PDF&utm_campaign=PDFCoverPages
http://library.pdx.edu/services/pdxscholar-services/pdxscholar-feedback/?ref=https://pdxscholar.library.pdx.edu/ece_fac/192
mailto:pdxscholar@pdx.edu


Extended superposed quantum-state initialization using disjoint prime implicants

David Rosenbaum*
Department of Computer Science, Portland State University, 1900 SW 4th Avenue, Portland, Oregon 97201, USA

Marek Perkowski†

Department of Electrical Engineering, Portland State University, 1900 SW 4th Avenue, Portland, Oregon 97201, USA
�Received 1 January 2009; published 12 May 2009�

Extended superposed quantum-state initialization using disjoint prime implicants is an algorithm for gener-
ating quantum arrays for the purpose of initializing a desired quantum superposition. The quantum arrays
generated by this algorithm almost always use fewer gates than other algorithms and in the worst case use the
same number of gates. These improvements are achieved by allowing certain parts of the quantum superposi-
tion that cannot be initialized directly by the algorithm to be initialized using special circuits. This allows more
terms in the quantum superposition to be initialized at the same time which decreases the number of gates
required by the generated quantum array.

DOI: 10.1103/PhysRevA.79.052310 PACS number�s�: 03.67.Lx

I. INTRODUCTION

The problem of initializing a quantum superposition is
important for Grover’s algorithm �1�, quantum neural net-
works �2,3�, and other applications. The purpose of the algo-
rithm presented here is to generate a quantum array that ini-
tializes a desired quantum superposition from a basis state.
Ventura and Martinez �4� created an algorithm that generates
a quantum array capable of initializing a quantum superpo-

sition of the form ���=�i=0
2n−1 ti

�m
�i�, where ti� 	−1,0 ,1
, m is

equal to the number of terms in the desired quantum super-
position, and n is the number of qubits in the desired quan-
tum superposition using ��mn� one and two qubit operations
and n+1 ancilla qubits. Long and Sun �5� created another
algorithm based on a different principle that solves a similar
problem without using any ancilla bits but requires an expo-
nential number of one and two qubit operations in the gen-
erated quantum array. An advantage of the Long-Sun algo-
rithm �5� is that it uses a training operator that is based on
sinusoidal functions in contrast to the Ventura-Martinez al-
gorithm which uses a special training operator. The super-
posed quantum state initialization using disjoint prime impli-
cants �SQUID� algorithm �6� is based on the Ventura-
Martinez algorithm �4�. The SQUID algorithm �6� is an
improvement over the Ventura-Martinez �4� and Long-Sun
�5� algorithms and generates quantum arrays that almost al-
ways use fewer gates than those generated by the Ventura-
Martinez algorithm �4� and in the worst case generates a
quantum array that requires the same number of operations.
The extended superposed quantum state initialization using
disjoint prime implicants �ESQUID� algorithm presented in
this paper improves on the SQUID algorithm �6� by gener-
alizing the phase groups used in the SQUID algorithm �6�
with the introduction of generalized phase groups. This is
done by using special circuits to initialize parts of the quan-
tum superposition that cannot be initialized directly by the
algorithm in an efficient manner. This allows the desired

quantum superposition to be represented using fewer groups
which results in fewer gates in the quantum arrays generated
by the ESQUID algorithm.

II. INITIALIZING THE STARTING STATE

The Ventura-Martinez �4�, Long-Sun �5�, and SQUID �6�
algorithms require all qubits to be initialized to �0� before the
generated quantum array is applied. The ESQUID algorithm
presented in this paper also requires this starting state to be
initialized before the quantum array it generates is applied.
This requires another algorithm to be run first to initialize the
state to �0n ,00� prior to applying the quantum array gener-
ated by the ESQUID algorithm. One method for initializing
the starting state is the Schulman-Vazirani heat engine �7�.
The rest of this paper will assume that the starting state has
been initialized and will focus on initializing the desired su-
perposition from the starting state.

III. DESIRED QUANTUM SUPERPOSITIONS

The ESQUID algorithm is capable of initializing the same
class of quantum superpositions as the SQUID algorithm �6�.
Thus, the desired quantum superposition must be of the form

��� = �
i=0

2n−1
ti

�m
�i�, ti � 	− 1,0,1
 , �1�

where m is the number of nonzero amplitudes in ���. Note
that this is also the number of terms in ���.

A. Phase maps

Phase maps �6� are a special type of Karnaugh map that
were created for use with the SQUID algorithm. A phase
map provides a way to visualize a quantum superposition.
The idea is that each cell on the phase map contains the
coefficient of the term in the quantum superposition that cor-
responds to the minterm of the cell. This can be obtained by
concatenating the binary representations of the row and col-
umn of the cell in the same way as for a conventional Kar-
naugh map. If all amplitudes are equal as is the case in Eq.

*drosenba@cs.pdx.edu
†mperkows@ece.pdx.edu

PHYSICAL REVIEW A 79, 052310 �2009�

1050-2947/2009/79�5�/052310�10� ©2009 The American Physical Society052310-1

http://dx.doi.org/10.1103/PhysRevA.79.052310


�1�, the amplitudes can be omitted and each cell can contain
only the phase. Thus, in the case of the SQUID and ESQUID
algorithms, each cell must contain some ti� 	−1,0 ,1
, where
i is the index of the cell on the phase map. As an example,
the quantum superposition

��� =
1
�2

�01� −
1
�2

�10� �2�

can be represented using the phase map shown in Fig. 1.

B. Phase groups

The phase maps used in the SQUID and ESQUID algo-
rithms also use a type of group called a phase group to rep-
resent quantum superpositions. The idea is that each phase
group contains a set of minterms that correspond to terms in
the desired quantum superposition that will be initialized at
the same time when the SQUID algorithm is run. A term in a
quantum superposition is the product of a basis state that has
a nonzero coefficient in the quantum superposition and its
coefficient. Certain restrictions apply to which sets of min-
terms can form a phase group. It must be possible to express
a phase group as a string of length n where each element of
the string is 0 or 1 if the corresponding qubit is 0 or 1,
respectively, in the phase group. If the qubit is not constant
within the phase group then � is used as the corresponding
element in the string in order to indicate this. Furthermore,
the quantum superposition that corresponds to the phase
group must be of the form

��� = � �
j=0

n

�� j� , �3�

where

�� j� =
1
�2

��0� � �1��, �0� or �1� . �4�

The symbol � denotes a Kronecker product and the sign in
Eq. �4� is determined by the corresponding phase group. This
implies that each phase group either has the value −1 in
every cell, the value 1 in every cell, or has an equal number
of the values −1 and 1 in its cells. Thus, phase groups have
the same shapes as literal product groups in a standard Kar-
naugh map but restrictions apply to the phases that can be
present within each phase group. Two phase groups are dis-

joint if they do not overlap on the phase map. Because the
SQUID �6� and ESQUID algorithms assume that all phase
groups are disjoint and will not initialize the desired quantum
superposition correctly if this is not the case, minterms with
amplitudes of 0 may not be present in any phase group.

C. Generalized phase groups

While the SQUID algorithm �6� requires that the desired
superposition be expressed as a disjoint set of phase groups,
the ESQUID algorithm allows the use of a more general type
of phase group called a generalized phase group. A general-
ized phase group is a set of 2� minterms on the phase map
where there exists a 2n�2n permutative operator U such that

��� = U���� , �5�

where ��� is the quantum superposition that corresponds to
the generalized phase group and ���� is a phase group that
contains 2� minterms. The quantum state ���� is called the
intermediate phase group. Note that every phase group is
also a generalized phase group because U can be taken to be
the identity matrix. Because U is a permutative operator, a
generalized phase group can have the value −1 in every cell,
the value 1 in every cell, or an equal number of the values −1
and 1 in its cells as is the case for phase groups. In the
ESQUID algorithm, the desired quantum superposition is
represented as a sequence of generalized phase groups. In
order for the ESQUID algorithm to initialize the correct
quantum superposition, all generalized phase groups in the
sequence must be disjoint and the intermediate phase group
that each generalized phase group is created from must be
disjoint from all previous generalized phase groups in the
sequence of generalized phase groups. This is necessary be-
cause the generalized phase groups at the beginning of the
sequence will be initialized first by the ESQUID algorithm.
If an intermediate phase group or a generalized phase group
later in the sequence overlapped with a generalized phase
group earlier in the sequence, part of the quantum superpo-
sition that had already been initialized would be changed
when the new intermediate phase group or generalized phase
group was initialized. This would result in the ESQUID al-
gorithm failing to initialize the correct quantum superposi-
tion.

D. Complexity of the U operations

Because a permutative U operation is used for each gen-
eralized phase group initialized by the ESQUID algorithm,
the U operations have an important impact on the complexity
of the ESQUID algorithm in terms of the number of one and
two qubit gates required. Since U is an arbitrary permutative
operation, implementing it using inverters controlled by up
to n−1 qubits requires an exponential number of operations
in the most general case. The number of operations is still
exponential if the permutative U operations are implemented
using controlled single qubit operations selected from any
finite set of single qubit unitary matrices. However, it is pos-
sible to place restrictions on the U operations so that they use
a polynomial number of operations. Let G be a finite set of

FIG. 1. The phase map for Eq. �2�.

DAVID ROSENBAUM AND MAREK PERKOWSKI PHYSICAL REVIEW A 79, 052310 �2009�

052310-2



single qubit unitary matrices. Let a be the number of ele-
ments in the set G. To show that the number of operations
required is exponential in general consider the number of
possible permutative operators on n qubits compared with
the number of possible quantum arrays that can be created
using a polynomial number of controlled single qubit opera-
tions from the set G. Since each permutative operation on n
qubits corresponds to an invertible function over the set of
all integers between 0 and 2n−1 inclusive, there are a total of
2n! permutative operations on n qubits. If every permutative
operation on n qubits can be implemented using a polyno-
mial number of controlled single qubit operations from the
set G then there exists a polynomial p�n� such that p�n� is an
upper bound on the number of operations in every such
quantum array. Since there are n qubits and a possible op-
erations, there are an� j=0

n−1� n−1
j �+1=an2n−1+1 choices for

each operation in each quantum array since there are � n−1
j �

ways to place each operation with j controls. Note that each
of these operations could also be the identity operation since
p�n� is an upper bound so an2n−1+1 is the number of choices
for each operation rather than an2n−1. This implies that the
number of quantum arrays that can be constructed using up
to p�n� controlled inverters is bounded above by �an2n−1

+1�p�n�. It can be shown that

lim
n→�

�an2n−1 + 1�p�n�

2n!
= 0. �6�

It follows that �an2n−1+1�p�n�	2n! for large n. Therefore,
there exist permutative operations that cannot be imple-
mented using a polynomial number of controlled operations
from a finite set of single qubit unitary matrices. It will now
be shown how to place restrictions on the U operations in
order to allow them to be implemented using a polynomial
number of operations. Let the variables xj, j=1, . . . ,n denote
the inputs to the permutative operator U. Let j1 , . . . , jn be
integers that denote the order in which each output is calcu-
lated in the quantum array such that the qubit with index jk is
the kth output calculated. Let the output on the �jk�th qubit be
yjk

= f jk
�yj1

, . . . ,yjk−1
,xjk

, . . . ,xjn
�. The idea here is that the

outputs are calculated in the order given by j1 , . . . , jn. Since
each output yjk

replaces xjk
as the value of the �jk�th qubit,

each output yjk
is a function of the inputs xj�

,�=k , . . . ,n to
the permutative U operator as well as the outputs yj�

,�
=1, . . . ,k−1. This is because when the kth output is com-
puted, the first k−1 outputs have already been computed so
each of the values xj�

,�=1, . . . ,k−1 has been replaced by
the values yj�

,�=1, . . . ,k−1, respectively. Let q�n� be a
polynomial. The U operations can now be restricted to a
polynomial number of controlled inverters by requiring each
output yjk

= f jk
�yj1

, . . . ,yjk−1
,xjk

, . . . ,xjn
� to be an exclusive

sum of products �ESOP� with at most q�n� products of any
input or its negation �termed a literal�. This means that each
function can be constructed using controlled inverters since
the exclusive sum corresponds to the exclusive or operation.
The total number of controlled inverters required to imple-
ment a U operation is therefore bounded above by nq�n� and
is therefore polynomial. By using different degrees for the

polynomial q�n� more control can be gained over the com-
plexity of the U operations.

IV. ESQUID ALGORITHM

The ESQUID algorithm operates on the state
�x1 , . . . ,xn ,c1c2� where the desired quantum superposition is
initialized on the qubits �xi� , i=1, . . . ,n and �c1� and �c2� are
ancilla qubits.

A. Codes in the ancilla qubits

The ancilla qubits �c1� and �c2� are called the code qubits
and keep track of the following:

�i� which terms in the current superposition have been
initialized,

�ii� which terms are currently being initialized, and
�iii� which terms will be used later to create more terms in

the quantum superposition �this is called the generator state
�4��.

The following codes are used:
�i� �00� on the �c1� and �c2� qubits is not used.
�ii� �01� on the �c1� and �c2� qubits is used to indicate that

the corresponding terms in the quantum superposition have
already been initialized to the proper values and should not
be modified again by the algorithm.

�iii� �10� indicates that the corresponding terms in the
quantum superposition are part of the generalized phase
group that is currently being initialized.

�iv� �11� is used to indicate the generator state. Note that
applying a SWAP gate to the code that indicates the current
group transforms it into the code for an initialized term in the
quantum superposition. Also, applying a SWAP gate to the
code for the generator state will not change it. The generated
quantum array will take advantage of both of these properties
by using controlled SWAP gates to update the codes for the
terms in each generalized phase group after it is initialized.

B. Initialization operators

The training operator used in the ESQUID algorithm is
the same as the training operator used in the SQUID algo-
rithm �6� which is based on the training operator from the
Ventura-Martinez algorithm �4�. However, it relies on a dif-
ferent concept than the operator used in the Ventura-Martinez
algorithm as it operates on phase map groups rather than on
the individual minterms that the original operator in the
Ventura-Martinez algorithm operates on. This allows many
minterms to be initialized at the same time by creating a new
term in the quantum superposition and then splitting it using
controlled Hadamard gates. The operator is defined by Eq.
�7�,

St,g,p = �
1 0 0 0

0 1 0 0

0 0 �p − g

p
t�g

p

0 0 − t�g

p
�p − g

p

� . �7�

This operator works by splitting the terms corresponding to
the groups off from the generator state during the algorithm

EXTENDED SUPERPOSED QUANTUM-STATE … PHYSICAL REVIEW A 79, 052310 �2009�

052310-3



where t is the phase that is multiplied by all the minterms in
the group, g is the number of cells in the group on the phase
map, and p is the number of minterms that still need to be
added to the quantum superposition including those in the
current group. Note that since this operator is always applied
to the �c1� and �c2� qubits, a superposition containing a new
generator state and a term that can be split into the current
group will be created. Also, due to the nature of this algo-
rithm, this operator will never be applied to a superposition
containing codes for the current group. Thus, only the gen-
erator state will be modified and the terms in the quantum
superposition that have already been initialized will not be
changed.

C. High-level overview of the ESQUID algorithm

The pseudocode shown in Table I is intended only as a
high level overview of the algorithm and ignores several
important details. A complete and detailed description of the
algorithm is given in Sec. VI.

V. SIMPLE EXAMPLE

This section illustrates the basic idea behind the ESQUID
algorithm using a simple example. For this example, the state

��� = 1
2 �0101� + 1

2 �0110� − 1
2 �1001� − 1

2 �1010� �8�

will be initialized. The phase map that corresponds to the
state ��� is shown in Fig. 2. First observe that all of the
minterms in Fig. 2 can be put into one generalized phase
group which is denoted in Fig. 2 by the small circles con-
nected with lines. This is because applying the quantum ar-
ray in Fig. 3 transforms the intermediate phase group in Fig.
4 into the generalized phase group in Fig. 2. Note that the
intermediate phase group that corresponds to the phase group
in Fig. 4 can be denoted by the string �1�1 because the
qubits �x1� and �x3� are both �0� and �1� within this phase
group but the qubits �x2� and �x4� are constant within this

phase group. It is important to observe that this string does
not completely describe the phase group because it does not
account for phase. This phase group can also be written as a
quantum superposition according to the form in Eq. �3�
which results in

�
� = 1
2 �0101� + 1

2 �0111� − 1
2 �1101� − 1

2 �1111� �9�

= 1
2 ��0� − �1���1���0� + �1���1� . �10�

The quantum array for initializing the quantum superpo-
sition in Eq. �8� is therefore as shown in Fig. 5. The inverters
denoted by G1 and G2 set the code to indicate that the only
term in the quantum superposition is the generator state.
Note that �11� is the code for the generator state from Sec.
IV A. The state of the quantum array before any operators
are applied is ��0�= �0000,00� so the state after G1 and G2
are applied is ��1�= �0000,11�. Now consider the factored
form in Eq. �10�. The qubits �x2� and �x4� are both �1� in Eq.
�10�; these qubits must be set to �1� in the generator state so
the controlled-NOT �CNOT� gates denoted by G3 and G4 are
applied. Because the state of the qubit �x1� is 1

�2
�0�− 1

�2
�1�, it

is necessary to set the state of the �x1� qubit to �1� because a
Hadamard gate will be applied later to this qubit to initialize
the intermediate phase group in Eq. �10�. To do this, the
CNOT gate denoted by G5 is applied. Note that inverters
could have been used rather than these CNOT gates because at
this point in the algorithm the generator state is the only term
in the quantum superposition. However, this is not true dur-
ing later stages of the algorithm. Applying these gates results
in a new state ��2�= �1101,11�. The gate S1,4,4 denoted by G6
is then applied to the c1 and c2 qubits. From Eq. �7�,

S1,4,4 = �
1 0 0 0

0 1 0 0

0 0 0 1

0 0 − 1 0
�

so that the state becomes ��3�= �1101,10� after G6 is applied.
Note that applying S1,4,4 has changed the code to �10�
which is the code for the phase group that is currently being
initialized as defined in Sec. IV A. The controlled Hadamard

TABLE I. Algorithm I: High level pseudocode for the ESQUID
algorithm.

�1� Find a small set A of generalized phase groups using
logic synthesis methods

�2� Initialize all qubits �xi�, �c1�, and �c2� to �0�
�3� Set the �c1� and �c2� qubits to the code for the generator

state

�4� for all a�A do

�5� Split the term corresponding to the intermediate phase
group from the generator state

�6� Split the term into the intermediate phase group using
controlled Hadamard gates

�7� Transform the intermediate phase group into the
generalized phase group

�8� Change the codes for the terms in the generalized phase
group to the codes for initialized terms

�9� end for

FIG. 2. The phase map for Eq. �8�.

DAVID ROSENBAUM AND MAREK PERKOWSKI PHYSICAL REVIEW A 79, 052310 �2009�

052310-4



gates denoted by G7 and G8 are applied to split the term
that corresponds to the current phase group into the interme-
diate phase group from Eq. �10�. This results in the state
��4�= 1

2 ��0�− �1���1���0�+ �1���1,10�. It is now necessary to
transform this intermediate phase group into the desired
generalized phase group from Eq. �8�. This can be done
using the quantum array from Fig. 3 with controls added
so that only the generalized phase group that is currently
being initialized will be affected. Note that these controls
are not necessary for the first generalized phase group. This
is because all terms in the current quantum superposition
are in the first generalized phase group since no other
generalized phase groups are initialized before the first
generalized phase group. However, these controls are re-
quired for generalized phase groups that are initialized after
the first generalized phase group. First note that ��4� can
be rewritten as ��4�= 1

2 �0101,10�+ 1
2 �0111,10�− 1

2 �1101,10�
− 1

2 �1111,10�. The state after the gates G9 and G10 are
applied is therefore ��5�= 1

2 �0101,10�+ 1
2 �0110,10�

− 1
2 �1001,10�− 1

2 �1010,10�. The SWAP gate G11 is then ap-
plied to the terms in the quantum superposition that corre-
spond to the generalized phase group that is currently being
initialized. This changes the codes for these terms to the code
for initialized terms. Because in this case all terms in the
quantum superposition are in the group that is currently be-
ing initialized, it is not necessary to control the SWAP gate

denoted by G11. This results in the state ��6�= 1
2 �0101,01�

+ 1
2 �0110,01�− 1

2 �1001,01�− 1
2 �1010,01�. Finally, the inverter

denoted by G12 is applied to restore states of the code qubits
to �0�. This results in the state ��7�= 1

2 �0101,00�
+ 1

2 �0110,00�− 1
2 �1001,00�− 1

2 �1010,00� which is equal to the
desired quantum superposition from Eq. �8� if the code qu-
bits are ignored. Since the states of the code qubits have been
restored to �0�, the code qubits can be reused later for other
tasks.

VI. DETAILED PSEUDOCODE

The algorithm will now be described using the detailed
pseudocode in Table II. The qubits �xj� are the qubits that the
desired quantum superposition will be initialized on and the
qubits �c1� and �c2� are used for storing the codes discussed in
Sec IV A. The notation sa=sa,1 , . . . ,sa,n is used to denote the
string that corresponds to the intermediate phase group for
the generalized phase group a and Ua is the unitary operator
from Eq. �5�.

Theorem 1. The ESQUID algorithm initializes the desired
quantum superposition.

Proof. Let ��i�= �xi,1 , . . . ,xi,n ,ci,1ci,2� denote the state of
the quantum array after the ith iteration has been completed
where ��0� is defined to be the state immediately before the
first iteration. Let m be the number of terms in the desired
quantum superposition from Eq. �1� and let ti be the value
that is assigned to t at the ith iteration of the algorithm. Let gi
be the number of minterms that are initialized in the quantum
superposition during the ith iteration of the algorithm and let
pi be the total number of minterms that need to be initialized
in the quantum superposition by the ith iteration and all sub-
sequent iterations of the algorithm. Let b be the total number
of generalized phase groups that are initialized, let �ai� be the
quantum superposition that corresponds to the generalized
phase group that is initialized at the ith iteration of the algo-
rithm, and let �sai

� be the intermediate phase group that cor-
responds to ai as defined in Eq. �5�. Let qi be the binary
string of length n that corresponds to the states of the �xj�
qubits in the generator state before line 30. Let q0 be the
starting states of the qubits �xj� in the generator state. It will
be proven by induction on i that the state after the ith itera-
tion is

��i� = �
k=1

i
1

�m
�ak,01� +�pi − gi

m
�qi,11� . �11�

Consider the basis case where i=0. By definition, this is the
quantum state immediately before the first iteration which is

FIG. 3. The quantum array for transforming the intermediate
phase group in Eq. �10� into the generalized phase group in Eq. �8�.

FIG. 4. The intermediate phase group for the generalized phase
group in Eq. �8�.

FIG. 5. The quantum array for initializing the quantum super-
position from Eq. �8�.

EXTENDED SUPERPOSED QUANTUM-STATE … PHYSICAL REVIEW A 79, 052310 �2009�

052310-5



the quantum state after the operations on line 3 of the algo-
rithm are applied. Line 1 does not affect the state. After line
2, the quantum state is �0n ,00�. Note that there is no 0th
iteration of the algorithm so the number of minterms initial-
ized in the 0th iteration is 0. Also, since no minterms have
been initialized yet, the number of minterms that still need to
be initialized is m. Thus, g0=0 and p0=m. Using these re-
sults, the state after line 3 is applied is

��0� = �0n,11� �12�

=�
k=1

0
1

�m
�ak,01� +�p0 − g0

m
�q0,11�

�13�

so the basis case holds. The inductive case will now be
proven. Assume that Eq. �11� holds for the ith iteration.
Lines 5–11 update the parameters g, p, and t to gi+1, pi+1, and
ti+1. Let the factored form of the intermediate phase group be
�� j=0

n ��i+1,j�, where ��i+1,j�= 1
�2

��0�� �1��. After lines 13–26
are run the following properties hold:

�i� If sai+1,j =� and the sign in ��i+1,j� is positive then the
jth qubit in the generator state is �0�. This is because the
qubits in the generator state are always either �0� or �1� so if
the jth qubit in the generator state is not �1�, it must be �0�.
However, since the sign in ��i+1,j� is positive, the jth qubit in
the generator state cannot be �1� because if it was �1� it
would have been set to �0� by line 17. Hence, qi+1,j =0 in this
case.

�ii� If sai+1,j =� and the sign in ��i+1,j� is negative then the
jth qubit in the generator state is �1�. This is because the
qubits in the generator state are always either �0� or �1� so if
the jth qubit in the generator state is not �0�, it must be �1�.
However, since the sign in ��i+1,j� is negative, the jth qubit in
the generator state cannot be �0� because if it was �0� it
would have been set to �1� by line 21. Hence, qi+1,j =1 in this
case.

�iii� If sai+1,j��, the jth qubit in the generator state is set
to sai+1,j on line 26. Hence, qi+1,j =sai+1,j in this case.

TABLE II. Algorithm II: Detailed pseudocode for the ESQUID
algorithm.

�1� Find a small set A of generalized phase groups using
logic synthesis methods

�2� Initialize the state to �0n ,00�

�3� Apply inverters to �c1� and �c2�; this results in ��0�
= �0n ,11�

�4� for all a�A do

�5� Let g be the number of minterms in intermediate phase
group that corresponds to sa

�6� Let p be the number of terms in the quantum
superposition that have not been initialized yet including
the terms about to be initialized in the current group

�7� Find the state that corresponds to sa using the form
shown in Eq. �3�

�8� if the sign outside the product is positive then

�9� Let t=1

�10� else

�11� Let t=−1

�12� end if

�13� for all j=1, . . . ,n do

�14� if sa,j =� then

�15� if the sign in Eq. �4� for the jth qubit in the
intermediate phase group is positive then

�16� if the jth qubit is �1� in the generator state then

�17� Apply an inverter controlled by �1� on �c1� to the
jth qubit

�18� end if

�19� else

�20� if the jth qubit is �0� in the generator state then

�21� Apply an inverter controlled by �1� on �c1� to the
jth qubit

�22� end if

�23� end if

�24� else

�25� if the jth qubit in the generator state is not equal to
�sa,j� then

�26� Apply an inverter controlled by �1� on �c1� to the
jth qubit

�27� end if

�28� end if

�29� end for

�30� Apply St,g,p to �c1c2�

�31� for all j=1, . . . ,n do

�32� if sa,j =� then

�33� Apply a Hadamard gate controlled by �10� on �c1c2�
to the jth qubit

TABLE II. �Continued.�

�34� end if

�35� end for

�36� Apply a Ua operation controlled by �10� on
�c1c2� to �x1 , . . . ,xn�

�37� Apply Ua
† to �x1 , . . . ,xn�

�38� Apply a SWAP gate controlled by sa,j on each �xj� where
sa,j�� to �c1c2�

�39� Apply Ua to �x1 , . . . ,xn�

�40� end for

�41� Apply an inverter to �c2�

DAVID ROSENBAUM AND MAREK PERKOWSKI PHYSICAL REVIEW A 79, 052310 �2009�

052310-6



These operations affect only the generator state because
they are controlled by �1� on �c1� and from Eq. �11�, the qubit
�c1� is �1� only in the generator state. After the loop on line
13 finishes, the state is therefore

��i+1� = �
k=1

i
1

�m
�ak,01� +�pi+1

m
�qi+1,11� . �14�

Note that pi+1= pi−gi because all minterms that are not ini-
tialized at the ith iteration must be initialized by the �i
+1�th or later iterations. Now consider line 30. By definition,
ti+1, gi+1, and pi+1 are the values assigned to the parameters t,
g, and p at the �i+1�th iteration of the algorithm. Hence, line
30 applies the operator Sti+1,gi+1,pi+1

to �c1c2�. From Eq. �7�,
this operator does not affect the code �01� so the state is now

��i+1� = �
k=1

i
1

�m
�ak,01� +�pi+1

m
�qi+1��

1 0 0 0

0 1 0 0

0 0 �pi+1 − gi+1

pi+1
ti+1�gi+1

pi+1

0 0 − ti+1�gi+1

pi+1
�pi+1 − gi+1

pi+1

��11�� �15�

=�
k=1

i
1

�m
�ak,01� +�pi+1

m
�qi+1��ti+1�gi+1

pi+1
�10� +�pi+1 − gi+1

pi+1
�11�� �16�

=�
k=1

i
1

�m
�ak,01� + ti+1�gi+1

m
�qi+1,10� +�pi+1 − gi+1

m
�qi+1,11� . �17�

The loop on line 31 applies a Hadamard gate to each qubit if
sai+1,j =�. Since qi+1,j =0 if sai+1,j =� and the sign in ��i+1,j� is
positive and H�0�= 1

�2
�0�+ 1

�2
�1�, applying a Hadamard gate

results in the correct phase in this case. Also, since qi+1,j =1
if sai+1,j =� and the sign in ��i+1,j� is negative and H�1�
= 1

�2
�0�− 1

�2
�1�, applying a Hadamard gate also results in the

correct phase in this case. If sai+1,j��, then sai+1,j =qi+1,j.
Therefore, after the loop on line 31 runs, the state is

�i+1� = �
k=1

i
1

�m
�ak,01� + ti+1

1
�m

��
j=1

n

��i+1,j���10�

+�pi+1 − gi+1

m
�qi+1,11� �18�

=�
k=1

i
1

�m
�ak,01� +

1
�m

�sai+1
,10�

+�pi+1 − gi+1

m
�qi+1,11� . �19�

Note that these Hadamard gates only affect the terms with
the code �10� because of the controls on the Hadamard gates.
Line 36 transforms the intermediate phase group into the
generalized phase group. This results in the state

��i+1� = �
k=1

i
1

�m
�ak,01� +

1
�m

�ai+1,10�

+�pi+1 − gi+1

m
�qi+1,11� . �20�

Observe that since Uai+1
is a permutative matrix, it performs

a one-to-one mapping from the set of all basis states in the
intermediate phase group to the set of all basis states in the
generalized phase group. Thus, the operator Uai+1

† maps a
basis vector to basis vector in the intermediate phase group if
and only if the basis vector is in the generalized phase group.
Therefore, line 37 causes the SWAP operation on line 38 to be
applied to the terms in the generalized phase group that was
just initialized and line 39 restores the state of the �xj� qubits.
Note that since the generalized phase groups that were pre-
viously initialized are disjoint from this intermediate phase
group, this SWAP gate will not be applied to these generalized
phase groups. Thus, the state after lines 37–39 is

��i+1� = �
k=1

i
1

�m
�ak,01� +

1
�m

�ai+1,01� +�pi+1 − gi+1

m
�qi+1,11�

�21�

=�
k=1

i+1
1

�m
�ak,01� +�pi+1 − gi+1

m
�qi+1,11� �22�

EXTENDED SUPERPOSED QUANTUM-STATE … PHYSICAL REVIEW A 79, 052310 �2009�

052310-7



= ��i+1� . �23�

Thus, the inductive case is proven. Therefore, by the prin-
ciple of mathematical induction, the state after the ith itera-
tion is as shown in Eq. �11�. Applying Eq. �11� for the final
bth iteration results in

��b� = �
k=1

b
1

�m
�ak,01� +�pb − gb

m
�qb,11� �24�

=�
k=1

b
1

�m
�ak,01� . �25�

Note that this is because pb=gb since the bth iteration is
the last iteration. Line 41 applies an inverter to the �c2� qubit
which results in the state �k=1

b 1
�m

�ak ,00� which is equal to the
desired state ��� from Eq. �1� with the addition of two ancilla
qubits set to �0�. Therefore, the ESQUID algorithm initializes
the desired state. �

VII. MORE COMPLEX EXAMPLE

This section will show how to use the ESQUID algorithm
to initialize the quantum superposition,

��� = −
1

�10
�0000� +

1
�10

�0010� +
1

�10
�0011� −

1
�10

�0101�

−
1

�10
�0110� +

1
�10

�0111� +
1

�10
�1100� +

1
�10

�1001�

+
1

�10
�1010� −

1
�10

�1011� . �26�

This is much more complicated than for the example in Sec.
V as two generalized phase groups and one phase group are
required to initialize this quantum superposition. The phase
map for Eq. �26� is shown in Fig. 6. In Fig. 6, two general-
ized phase groups and one phase group are used to represent
the quantum superposition. Note that a phase group is also a
generalized phase group so ESQUID can be used to initialize

this quantum superposition. The phase map itself does not
specify the order in which the generalized phase groups are
initialized although an order must be chosen so that the pre-
viously discussed constraints are satisfied. Since the order
depends on the intermediate phase groups, the order will be
chosen after the intermediate phase groups have been se-
lected. The generalized phase group

��� = − 1
2 �0101� − 1

2 �0110� + 1
2 �1001� + 1

2 �1010� �27�

can be initialized from the intermediate phase group

��� = − 1
2 �0101� − 1

2 �0111� + 1
2 �1101� + 1

2 �1111� �28�

=− 1
2 ��0� − �1���1���0� + �1���1� �29�

using the quantum array in Fig. 3. The generalized phase
group

��� = − 1
2 �0000� + 1

2 �0111� + 1
2 �1100� − 1

2 �1011� �30�

can be initialized from the intermediate phase group

��� = − 1
2 �0000� + 1

2 �0100� + 1
2 �1100� − 1

2 �1000� �31�

=− 1
2 ��0� − �1����0� − �1���00� �32�

using the quantum array in Fig. 7. Now the intermediate
phase group ��� overlaps with the generalized phase group
���. As mentioned in Sec. III C, each intermediate phase
group must be disjoint from all generalized phase groups that
have already been initialized. This implies that the general-
ized phase group ��� must be initialized before the general-
ized phase group ��� is initialized. The phase group

��� =
1
�2

�0010� +
1
�2

�0011� �33�

=
1
�2

�001���0� + �1�� �34�

can be initialized at any point in the algorithm. If ��� is
initialized first, ��� is initialized second and ��� is initialized
last, the ESQUID algorithm generates the quantum array in
Fig. 8. Note that the two CNOT gates above the second con-
trolled SWAP gate in Fig. 8 are unnecessary and can be re-
moved from the quantum array. However, these gates have

FIG. 6. The phase map for Eq. �26�.

FIG. 7. The quantum array for transforming the intermediate
phase group in Eq. �32� into the generalized phase group in Eq.
�30�.

DAVID ROSENBAUM AND MAREK PERKOWSKI PHYSICAL REVIEW A 79, 052310 �2009�

052310-8



not been removed in order to demonstrate the operation of
the algorithm. Calculating the quantum states that result from
applying this quantum array to the starting state �0n ,00� con-
firms that the ESQUID algorithm works correctly.

VIII. COMPLEXITY OF THE ESQUID ALGORITHM

This section will analyze the complexity of the ESQUID
algorithm in terms of the number of one and two qubit op-
erations required. The number of iterations required by the
ESQUID algorithm will be denoted by b. It is assumed that
applying the b required initialization operators requires a to-
tal of O�bn� one and two qubit operations. It is also assumed
that applying the 2b U operators from Eq. �5� and the b
required U† operators requires a total of O�bn� one and two
qubit operations. The operations on line 3 require two invert-
ers and hence two single qubit gates. Lines 5–11 do not
require any operations. Lines 13–26 require O�n� CNOT

gates. Since this is repeated b times, this requires a total of
O�bn� two qubit gates. Line 30 requires a total of O�bn� one
and two qubit gates by assumption. Lines 31–33 use n Had-
amard gates with two controls. These gates can be imple-

mented using five two qubit gates �8� so since this is repeated
b times, this requires O�bn� two qubit gates. By assumption,
lines 36–39 use O�bn� one and two qubit gates to implement
the U and U† operators. Implementing the controlled SWAP

operations requires O�bn� two qubit gates if n ancilla qubits
are used for this purpose since a controlled SWAP gate can be
implemented using two CNOT gates and a Toffoli gate which
can be implemented using the method in the Ventura-
Martinez algorithm �4�. Since line 41 uses only one single
qubit gate, the entire algorithm requires O�bn� one and two
qubit gates. If the Toffoli gates used to implement the con-
trolled SWAP gates in the ESQUID algorithm are imple-
mented using a quadratic number of two qubit gates �8�, then
the algorithm requires a total of O�bn2� one and two qubit
gates. In this case, the b initialization operators used by the
algorithm must use O�bn2� one and two qubit gates and the
2b U operators from Eq. �5� and the b required U† operators
must also use O�bn2� one and two qubit gates. This means
that the initialization and U operators from Eq. �5� may use
more gates when ancilla qubits are not used to implement the
Toffoli gates required for constructing the controlled SWAP

gates. This version of the ESQUID algorithm will be referred
to as the modified ESQUID algorithm for the remainder of
this paper.

IX. COMPARISON OF INITIALIZATION ALGORITHMS

The ESQUID algorithm is compared with the SQUID �6�,
Ventura-Martinez �4�, and Long-Sun �5� algorithms in Table
III where n is the number of qubits in the desired quantum
superposition, m is the number of minterms in the quantum
superposition, p is the number of phase groups required by
the SQUID algorithm �6�, and b is the number of generalized
phase groups required by the ESQUID algorithm. In Table
III, the modified ESQUID algorithm is as described in Sec.
VIII; similarly, the modified SQUID algorithm �6� uses a
quadratic number of one and two qubit gates �8� to imple-
ment the Toffoli gates required for constructing the con-
trolled SWAP gates used in the SQUID algorithm �6�. The
modified Ventura-Martinez algorithm �4� also uses a qua-
dratic number of one and two qubit gates �8� to implement
the Toffoli gates required for the algorithm. Because in the
worst case, a phase group contains only a single minterm,
p�m. Since any generalized phase group is also a phase

FIG. 8. The quantum array for initializing the quantum super-
position in Eq. �26�.

TABLE III. Comparison of the complexity of different quantum initialization algorithms where m, p, and
b are the numbers of iterations required by the Ventura-Martinez, SQUID, and ESQUID algorithms, respec-
tively, and n is the number of qubits in the desired quantum superposition.

Algorithm Worst case Best case Total qubits

Long-sun algorithm ��n22n� ��n22n� n

Ventura-Martinez algorithm ��mn� ��mn� 2n+1

Modified Ventura-Martinez algorithm ��mn2� ��mn2� n+2

SQUID algorithm O�pn� O�n� 2n+2

Modified SQUID algorithm O�pn2� O�n� n+2

ESQUID algorithm O�bn� O�n� 2n+2

Modified ESQUID algorithm O�bn2� O�n� n+2

EXTENDED SUPERPOSED QUANTUM-STATE … PHYSICAL REVIEW A 79, 052310 �2009�

052310-9



group, b can always be selected so that b� p which implies
that b� p�m. Thus, the quantum arrays generated by the
ESQUID algorithm will never use more gates than quantum
arrays generated by the SQUID algorithm �6� which will
never use more gates than quantum arrays generated by the
Ventura-Martinez �4� and Long-Sun �5� algorithms. Hence,
quantum arrays generated by the ESQUID algorithm will
never use more gates than any existing algorithm. For most
quantum superpositions, the ESQUID algorithm will use far
less gates than existing algorithms due to the increased flex-
ibility of generalized phase groups over phase groups. The
best case performance for quantum arrays generated by the
ESQUID algorithm is the same as for quantum arrays gen-
erated by the SQUID algorithm �6� and is an exponential
improvement over all other initialization algorithms. The
best case for quantum arrays generated by the ESQUID al-
gorithm will also occur more often than the best case perfor-
mance for quantum arrays generated by the SQUID algo-
rithm �6� since there are far more quantum superpositions
that can be represented by a single generalized phase group
than by a single phase group. This makes the ESQUID algo-
rithm much more efficient than all other algorithms for ini-

tializing quantum superpositions including the SQUID algo-
rithm �6�.

X. CONCLUSION

The ESQUID algorithm generates quantum arrays that are
much more efficient than the quantum arrays generated by
other quantum initialization algorithms for almost all quan-
tum superpositions. Furthermore, quantum arrays generated
by the ESQUID algorithm never require more gates than
quantum arrays generated by other algorithms assuming that
the generalized phase groups are selected as described in
Sec. IX. As with the SQUID algorithm �6�, the ESQUID
algorithm provides an exponential improvement in the num-
ber of gates required in the generated quantum arrays in the
best case. Because the generalized phase groups introduced
in this paper are more general than phase groups, the best
case for the ESQUID algorithm occurs for more quantum
superpositions than the best case for the SQUID algorithm.
Due to these properties, the ESQUID algorithm is much bet-
ter for initializing quantum superpositions efficiently than
other initialization algorithms.

�1� L. K. Grover, Proceedings of the Annual ACM Symposium on
Theory of Computing �ACM, New York, 1996�, p. 212.

�2� D. Ventura and T. Martinez, Inf. Sci. �N.Y.� 124, 273 �1999�.
�3� A. A. Ezhov, A. V. Nifanova, and D. Ventura, Inf. Sci. �N.Y.�

128, 271 �1999�.
�4� D. Ventura and T. Martinez, Found. Phys. Lett. 12, 547

�1999�.
�5� G.-L. Long and Y. Sun, Phys. Rev. A 64, 014303 �2001�.
�6� D. J. Rosenbaum and M. A. Perkowski, Proceedings of the

38th International Symposium on Multiple Valued Logic
�IEEE, Piscataway, NJ, 2008�, p. 144.

�7� L. J. Schulman and U. V. Vazirani, Conference Proceedings of
the Annual ACM Symposium on Theory of Computing �ACM,
New York, 1999�, p. 322.

�8� A. Barenco, C. H. Bennett, R. Cleve, D. P. DiVincenzo, N.
Margolus, P. Shor, T. Sleator, J. A. Smolin, and H. Weinfurter,
Phys. Rev. A 52, 3457 �1995�.

DAVID ROSENBAUM AND MAREK PERKOWSKI PHYSICAL REVIEW A 79, 052310 �2009�

052310-10


	Extended Superposed Quantum State Initialization Using Disjoint Prime Implicants
	Let us know how access to this document benefits you.
	Citation Details

	tmp.1414794172.pdf.dDg7O

