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Abstract
Absence of a priori knowledge about a problem domain
typically forces use of overly compler neural network
An information-theoretic method based on
calculating information transmission is applied to train-
ing data to obtain a priori knowledge that is useful for
prestructuring (reducing complezity) of neural networks.
The method s applied to a continuous system, and it
1s shown that such prestructuring reduces training time,

structures.

and enhances generalization capability.

1 Introduction

In the absence of significant a prior: knowledge about
the problem to which an artificial neural network (ANN)
is to be applied, an appropriate starting structure for
the ANN would typically include full interconnection be-
tween adjacent layers. Once the ANN paradigm and
number of layers is selected, the choice of full inter-
connection provides the maximum capability of repre-
senting/modeling the target system. Unfortunately, this
most general configuration also maximizes the dimen-
sionality of the weight space, giving rise to the dual
problems of increased training time and likely conver-
gence to an inferior local-minimum in weight space (in
the sense of providing poorer generalization for the re-
sulting ANN).

For typical multivariate systems, the relation to be mod-
eled is not fully general; that is, the relation is likely to
be decomposable into simpler sub-relations, since not all
system variables will exhibit the same degree of inter-
dependence.

In this paper, an information-theoretic approach is used
to perform an analysis of the data from the problem con-
text in order to determine the structure of the relation to
be modeled. Then, the knowledge obtained concerning
the mathematical structure of the problem is translated
into a form that allows an appropriate physical prestruc-
turing of the ANN. The objective of the prestructuring
is to reduce the dimensionality of the weight space in
a principaled way, while reducing training time and im-
proving generalization capability.

This is not the first work to use information-theoretic
methods in conjunction with neural networks (e.g. see
[3]). A closely allied method to the current work has
been applied to discrete systems [9][8][7] however this
may be the first application of information-theoretic neu-
ral prestructuring to continuous systems.

2 Bias/Variance Justification for
Pre-structuring

The modeling process may be abstracted to approximat-
ing the observed relation X — Y (X and Y may be
vectors or scalars) with a function f(X) for the purpose
of predicting Y for future observations of X. The ideal
approximation will produce the most likely Y for a given
X, so the optimal f(X) is

f(X) = Ey[Y|X]

Error resulting from the conversion of a potentially
stochastic relation into a function may be measured us-
ing the squared difference between the observed output
and the optimal function approximation f(X).

B[(Y - F(X))*] (1)
In practice, a model will be constructed from a finite
sample of data observations, D. A specific model, devel-
oped using a data set D, from the set of feasible models
will be designated fp(X).

Error for a specific model fp is then

~

e=E[Y - fp(X))*] =
EIY - FO)+ (Up(X) - FXD? )
The first term on the right side of Equation 2 is a mea-
sure of the non-deterministic component of the relation
X — Y (Equation 1), or the stochastic variance of YV
given X, and is not reducible.

Therefore, the performance of a modeling methodology
can only be improved by reducing the contribution of
the second term. To accomplish this, we use

Epl(fpo(X) - f(X))?]
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where Fp indicates the expected value over all possible
data sets D. This error may be further decomposed as

Epl(fp(X) - f(X))*] =

~

(Eplfp(X)]=f(X))*+Ep[(fo(X)—Ep[fp(X)])*](3)

This equation separates error due to the difference be-
tween the possible models and the optimal function
f(X), into bias error and variance error terms. The first
term on the right of Equation 3 is the square of the dif-
ference (over all data sets D) between the expected value
of the output of the models generated using specific data
sets, D, and the expected output Y given X (the ideal
deterministic model f(X)) This is the expected value
of the bias of the model. A large bias error term (in re-
lation to the variance term) suggests the model chosen
is poorly suited to the data sets, 1. The model is too
simple (more parameters are required) and/or the model
is fundamentally incompatible with the system (e.g. a
linear model applied to a non-linear problem).

The second term is the degree of variability of the mod-
els over the possible data sets. I.e., the expected value
(over all the data sets) of the squared difference between
the average model and the model generated by a given
data set. This is the tendency of the model to vary
across the possible data sets. It is the component of the
error due to over-fitting, or in the ANN context, over-
training. A large variance error value (relative to bias
error) typically indicates that the model has too many
parameters (weights for ANNs) for the data sets. Or,
equivalently, the data sets are too small and/or noisy
for the complexity of the model.

The relationship between these error components is such
that efforts to decrease one tend to increase the other,
giving rise to the bias/variance dilemma [2]. For ex-
ample, adding parameters (complexity) to a model will
likely reduce the bias error since the increased capability
of the model will allow it to better approximate f(X),
but this increased power will also allow the model to
better fit any noise present in D.

A solution to the dilemma is to purposefully intro-
duce non-destructive bias into the model which allows
the variance, Ep[(fp(X) — Ep[fp(X)])?], to be re-
duced without increasing the bias error, (Ep[fp(X)] —

~

Ey[Y|X])?. With selected knowledge of f(X), prestruc-
turing may be accomplished by fixing parameters in the
model in a manner which facilitates the approximation
of f(X). By fixing these values, the number of free pa-
rameters 1s reduced, thereby helping to reduce the vari-
ance error (the tendency to over-fit the data). Neural

networks may be so prestructured, by either fixing or

removing (equivalent to setting to 0) selected connec-
tion weights.

Speaking of the importance of this approach, Geman,
et al.[2] suggest that, ¢ ...learning complex tasks is es-
sentially impossible without the a priori introduction
of carefully designed biases into the machine’s architec-
ture.”

The modeling process must therefore incorporate some
degree of meta-level knowledge about Ey[Y|X] (the
ideal function approximation, f(X))
raises the question: How can such knowledge be dis-
covered? and the apparent paradox: Since “black-box”
modeling methods such as ANNs are most useful in con-
texts where little of the internal dynamics of the target
system are known, the knowledge of the system required
to make the application of neural modeling techniques
successful would appear to be the same knowledge which
ensures that these techniques are not needed. A method
is described and demonstrated in the following sections
that (successfully) addresses these issues.

However this

3 Information-Theoretic Analysis
The proposed method provides a non-parametric means

of identifying relevant sub-relations within a larger tar-
get system. The analysis may be performed using the
same data' which will subsequently be used to train the
neural network to model the target system.

3.1 Computation of Information-Theoretic Mea-
sures

From the law of statistically independent events, the
probability of two events p and ¢ occurring in the same
trial is p - ¢ of and only if p and ¢ are statistically in-
dependent. Without assuming the distributions of these
events, we can suppose that the degree of dependence
between events can be measured as the divergence of the
joint distribution of these events from the independence
distribution. This divergence, for example between nom-
inal variables X and Y, can be quantified using nfor-
mation transmission, T(X :Y)%.

T(X:Y)=H(X)+H(Y) - H(XY)

where H(X) and H(Y) are the Shannon entropies [10]
of the marginal distributions of X and Y.

H(X)==Y (sz’j) log; (sz’j)
i J J
HY)==Y <Zpij) log, (ZPM)
j i i
where p;; is the probability of state ¢, j occurring in the

joint distribution of X and Y, where ¢ designates the
state of X and j is the state of Y.

1 The data must be clustered prior to analysis. See Section 4.2.
2 Transmission is also known as mutual information.



H(XY) is the entropy of the joint distribution,

H(XY) ==Y pij log, pi
i

By measuring transmission between variables, depen-
dencies within the system can be identified, and more
importantly, if the dependence between variables is neg-
ligible, relations may be partitioned into simpler sub-
relations

Information-theoretic entropy is the measure of uncer-
tainty of a distribution (H(X) is maximum when X is
uniform and minimized when only one state for X is ob-
served). Transmission 7'(X :Y) is then the degree of
constraint in the joint distribution not accounted for by
the combined uncertainties of X and Y.

These methods for detecting constraint differ from com-
mon statistical measures such as the correlation coef-
ficient and covariance which assume either the distri-
bution of the data or the nature of the constraint (e.g.
linear). Since measurements of information transmission
are non-parametric, transmission is sensitive to any con-
straint between observed variables. This property makes
the technique appealing as an analysis tool applied prior
to a “black box” modeling methodology such as neural
networks for which it is difficult to predict which facets
of a system the network will model successfully.

3.1.1 Statistical Significance for Information
Theoretic Models. Information theoretic transmis-
sion values are tested for statistical significance using
the standard y? test. Degrees of freedom for the test are
computed as the difference in degrees of freedom between
the proposed model and the degrees of freedom for the
joint distribution (See Equation 4). For the transmis-
sions computed in the example, these values are listed
as “df” and “y? sig.” in Table 1. Degrees of freedom for
a transmission is calculated as follows

dfr(xy) = dfxy — dfx —dfy (4)
A limiting factor in this type of analysis is statistical sig-
nificance. Since x? significance declines with the growth
in degrees of freedom, higher order distributions where
the constituent variables have a large number of states
may not yield significant results.

4 An Example System
Given a directed system of 5 variables: A,B,C',D, and F,
where A,B and C are inputs for independent variables
(TVs) and D and E are outputs for dependent variables
(DVs), the lattice of general structures® (Figure 1) shows

3These are the distinct structural forms. In contrast, a specific
structure may be shown to be isomorphic to another specific struc-
ture by the reassignment of variables. It should be noted that this
terminology is not universal.

the possible models of the system. A general structure
may be transformed into a specific structure by assign-
ing the variables: A, B and C' to the inputs and the
variables: D and F to the outputs.

Figure 1: Lattice of Structures for a 5-variable directed
system

The lattice is a hierarchy with the saturated (non-
decomposable) model at the top (for this example sys-
tem, this is structure 1 in Figure 1). The descendants are
simplified models, constructed by partitioning relations.
The extreme decomposition exhibits complete indepen-
dence between the variables. For this example system,
this is structure 12 in Figure 1. Each descendant in the
lattice is the result of a single partition between an IV
and a DV in the parent. For example, structure 2 is
derived from structure 1 by breaking the dependence of
one of the DVs on one of the IVs. Since one output
now only depends on two of the three inputs, the single
3-input, 2-output system is transformed into two sub-
relations where one output is only dependent on two of
the inputs.

4.1 Definition of the System Relations
The example system is defined to be a relation composed
of two sub-relations. These sub-relations are the func-

tions 4

4Since the system is deterministic, the error term given in Equa-
tion 2 will be due solely to error from Equation 3. No noise was

added to the data.



D =
EF =

sin(A + B)
sin(B + ()

Since A does not affect £, and C does not affect D, this
system corresponds most closely to structure 4 (in Fig-
ure 1). A,B and C are restricted to be real values in
the interval [0, 7]. To produce observations of this sys-
tem, 1000 random input triples were generated.® These
inputs were coupled with the corresponding system out-
puts to produce the 1000 system observations for anal-
ysis and network training.

4.1.1 Discussion of the Choice for Sub-relation
Functions. The sine function of summed inputs was
chosen in order to demonstrate the capacity of the
method to cope with a high degree of non-linearity. Fur-
thermore, the same function was used over the same
domain and range to show the capacity of the analy-
sis method to distinguish between variables from simi-
lar distributions. The complexity of the system is just
within the capacity of the network size chosen, so any
destructive bias introduced should render the network
incapable of modeling the target system successfully.

4.2 Analysis of Observations

Since the information-theoretic methods employed re-
quire discrete distributions, continuous variable obser-
vations must first be converted to nominal values. For
this system, a simple uniform clustering algorithm® was
applied. However, for a more complex data set, a less
naive approach would likely improve the results of the
analysis. If the variables were nominal, no clustering
would be required” Results of the information-theoretic
analysis, using a clustering granularity of 5 clusters per
dimension, are given in Table 1.

Transmission values do depend on clustering granular-
ity, but the system dynamics are clear from the results
of even this coarse clustering. As expected, for the de-
pendent variable D, T(C': D) is trivial while T'(A: D)
and T'(B: D) are sizable. T(AB: D)® accounts for 67%
of the uncertainty of the dependent variable. The trans-
mission value of T(ABC': D) is larger, but the increase
is small (0.0792 bits) and since T(C': D) is negligible, it
is apparent that this small increase 1s due to sampling
error.

For output F, T(B:FE) and T(C: E) are both large and

54,B and C inputs come from a uniform distribution over the
interval [0, 7].

8The algorithm “rasterizes” the continuous data by dividing
the domain and range into N equal intervals.

"Unless increased statistical significance is required.

8This should be read as the information transmission between
the joint distribution AB and the dependant variable D.

Trans. | %H(DV) | df x? sig.
T(A:D) 0.4013 | 18.292 16 1.0
T(B:D) 0.3992 | 18.194 16 1.0
T(C:D) 0.0082 | 0.373 16 .213
T(AB:D) 1.4691 | 66.960 96 1.0
T(AC:D) 0.4433 | 20.205 96 1.0
T(BC:D) 0.4426 | 20.176 96 1.0
T(ABC:D) | 1.5483 | 70.573 496 | 1.0
T(A:E) 0.0125 | 0.566 16 0.636
T(B:E) | 03921 | 17.753 16 | 1.0
T(C:E) .3633 16.450 16 1.0
T(AB:E) 0.4405 | 19.946 96 1.0
T(AC:E) 0.4102 | 18.570 96 1.0
T(BC:E) 1.4795 | 66.983 96 1.0
T(ABC:E) | 1.5691 | 71.041 496 | 1.0

Table 1: Information transmissions using 5 clusters

T(BC': E) has the largest significant transmission. And,
as expected, the relations between C' and D (expressed
as C': D) and between A and E(expressed as A: F) may
be disregarded.

4.2.1 Traversal of the Lattice of Structures. It is
clear from the discounted relations: A:F and C': D, that
structure 4 from Figure 1 is the most accurate model for
the example system. Figure 2 shows the path of traver-
sal down the lattice corresponding to the two relations
eliminated. For each IV to DV relation discounted, one
step 1s taken down the lattice. The order that relations
are removed from the model is not relevant since the re-
sulting structure will be the same. Based on the above
analysis, no other relations may be be disregarded, so
no further simplification is possible.

D E

saturated model

Figure 2: Traversal of the lattice for the example system.
The supporting transmission analysis is show in

Table 1

It should be noted that Reconstructability Analysis



(RA) provides a much more systematic way of travers-
ing the lattice of structures and determining “goodness
of fit” for a given model. Unfortunately, a complete de-
scription of the RA methodology is beyond the scope of
this paper. The reader is directed to [11], [6] and [5].

5 Translating the Model into a Prestructured
Neural Network

A single hidden layer neural network with 3 inputs, 2
outputs and 8 hidden layer nodes was deemed adequate
to model the example system.® The fully connected con-
figuration contains 40 connection weights (not including
biases). Selected weights were pruned from the fully
connect configuration, using the selected model shown
in Figure 2 as a “template.” This results in the network
shown in Figure 3. Since the relations A: E and C': D
were determined to be negligible, any connections be-
tween the input A and the output E, and the input C
and the output D can provide only “crosstalk”.

Figure 3: Prestructured 3-8-2 feed-forward network

Since the internal “complexity”!® of each of the sub-
relations 1s unknown, equal numbers of hidden layer
nodes are allocated for each. The resulting “biased” con-
figuration is such that input A is connected to 4 hidden
layer nodes, and input C' is connected to the other 4.
B is fully connected to the hidden layer since B partici-
pates in both identified sub-relations. From the hidden
layer, the 4 nodes connected to input A are connected
to the output node D and the remaining 4 notes (which
are connected to input C) are connected to output F.
The biased network contains 24 connection weights, a
35% reduction in connection parameters.

6 Comparison Between the Biased and
Unbiased Networks
Typical responses for D and E against the ideal are
shown in Figures 4 and 5 for an unbiased network and
in Figures 6 and 7 for a biased network. In Figure 4,
the horizontal axis is x = A + B, so the ideal response

9The activation functions are sigmoid and the training algo-
rithm is the delta-bar-delta learning rule (EDBD) [4].

10 Complexity is used loosely in this context as an estimate of
the ANN resources (hidden nodes) required to model the relation.

Performance of Unbiased Network Model for y=sin(A+B)

y=sin(A+B) ——
unbiased network 1

Figure 4: Comparison between fully-connected (‘“unbi-
ased”) net’s response and ideal response for out-
put D

Performance of Unbiased Network Model for y=sin(B+C)

‘yzsin(B+b) —
unbiased network 1

Figure 5: Comparison between fully-connected (“unbi-
ased”) net’s response and ideal response for out-
put E

(D = sin(A + B)) is plotted as y = sin(z). There are
numerous combinations of A and B that yield a spe-
cific value of z, and correspondingly, a specific value for
y = sin(z). If the neural network function approxima-
tor were perfect, it would yield a clean sine wave output
(at the D node) for all combinations of A and B at
the inputs. Since the neural network involves multiple
paths that combine in the output node, there is consid-
erable opportunity for mapping error to occur, in par-
ticular, when (non-zero) connections from the C input
node are allowed to impinge on the D neural element.
The latter contribute a kind of cross talk component to
the output value. Data for Figure 4 was generated by
applying a large set of A, B, and C' combinations to
the input nodes of the neural network, and recording
the value out of the B node. To plot the data, the A
and B values were added to yield an x coordinate, and
the corresponding output of the D node plotted on the
y axis. This resulted in the scattered values of y on
either side of the ideal sine wave plot. The key thing
to observe is that the scattering is significantly lower
in Figure 6 (prestructured/biased neural network) than
in Figure 4 (fully-connected/unbiased neural network).
Similar comments apply to dependent variable E in Fig-



Performance of Biased Network Model for D=sin(A+B)

y=sin(A+B) ——
biased network 7

05 +

Figure 6: Comparison between prestructured (“biased”)
net’s response and ideal response for output D

Performance of Biased Network Model for y=sin(B+C)

‘yzsin(B+b) —
biased network 1

05 +

Figure 7: Comparison between prestructured (“biased”)
net’s response and ideal response for output E

ures 7 and 5. Whereas in principle, the neural network
could have learned to eliminate the cross-talk terms in its
architecture, by virtue of manually deleting these terms
(i.e. introducing purposeful bias) based on the a priori
knowledge obtained via the information-theoretic analy-
sis, the neural networks job was made substantially eas-
ier and less prone to error.

6.1 Comparison of Convergence

Quality of converge was compared by sampling RMS
error after 500,000 training cycles. The network con-
figuration used was the same as in section 6.2. Data
from only 20 runs with each configuration was sufficient
to demonstrate superior convergence for the prestruc-
tured network. The mean difference in RMS error was
0.005125. Applying the Student’s t test of statistical sig-
nificance, the difference in RMS error 1s found to be out-
side the 93.1% confidence interval for the differences of
the means; suggesting a significant difference in quality
of convergence. That is, there is a 93.1% probability that
the two samples of RMS error are from different distri-
butions, indicating that the convergence characteristics
of the prestructured network are measurably better.

6.2 Comparison of Training Times
Training time was compared by sampling the number
of training cycles to the point where RMS error for an

epoch fell to 0.05 or below. The weight parameters
were initialized to small random values and the networks
were trained using the Extended Delta-Bar-Delta[4] al-
gorithm. We conducted 41 sample runs for each network
configuration using an epoch size of 100. The mean num-
ber of training cycles (ycycles) to achieve RM S < 0.05
was 13,662 for the unbiased configuration and 11,072 for
the prestructured configuration. Applying the Student’s
t test to the difference in the means as was done in Sec-
tion 6.1, the probability that the difference is statistically
significant is overwhelming (>99.999%).

7 Conclusion

In  previous  work ([7118]19), Reconstruct-
ability Analysis[5][6][11] has been applied to the context
of discrete systems to yield a prior: information useful
in prestructuring neural networks with the objective of
reducing train time, and enhancing generalization capa-
bility. The material of the present paper extends the
approach to the context of continuous systems.
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