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A B S T R A C T

Human ecodynamics (H.E.) refers to processes of stability, resilience, and change in socio-ecological relation-
ships or systems. H.E. research involves interdisciplinary study of the human condition as it affects and is af-
fected by the rest of the non-human world. In this paper, we review the intellectual history of the human
ecodynamics concept over the past several decades, as it has emerged out of classical ecology, anthropology,
behavioral ecology, resilience theory, historical ecology, and related fields, especially with respect to the study
of long-term socioecological change. Those who study human ecodynamics reject the notion that humans should
be considered external to the environments in which they live and have lived for millennia. Many are interested
in the resilience and sustainability of past human-natural configurations, often striving to extract lessons from
the past that can benefit society today. H.E. research, involving the study of paleoenvironments and archaeology,
has taken shape around a series of methodological advances that facilitate the study of past chronology, pa-
leoecology, paleodemography, mobility, trade, and social networks. It is only through integrated study of
'coupled human-natural systems'—'socio-ecosystems'—that we can hope to understand dynamic human-en-
vironmental interactions and begin to manage them for sustainable goals. Local and traditional or Indigenous
knowledge provides another important influence to human ecodynamics research, and we explore how such
knowledge can provide both expert witness into the operation of socioecological systems and insight into the
human/cultural dimensions of those systems. Ultimately, we conclude that human ecodynamics is more en-
compassing than a number of related approaches and can provide a nexus for productive research. Through its
interdisciplinary breadth, the framework unites scholarship that tends to be more isolated to address complex
problems that are best tackled with diverse perspectives.

1. Introduction

Human ecodynamics refers to the integrated, non-linear workings of
‘coupled human and natural systems’ in landscapes through time
(Kirch, 2007; McGlade, 1995:126). Archaeologists straddle the social
and natural sciences and are well situated to study past human eco-
dynamics (Van der Leeuw and Redman, 2002), and the term has be-
come increasingly popular in the past decade when referring to re-
search into the dynamic integration and co-evolution of human and
natural systems, or socioecosystems (Kirch, 2005, 2007). The human
ecodynamics approach was a central organizing principle of the inter-
disciplinary Čḯxwicən (pronounced ch-WHEET-son) project, results of
which are featured in other papers in this special issue of JASR.
Čḯxwicən is a traditional village of the Lower Elwha Klallam Tribe,

located on the north coast of the Olympic Peninsula in Washington
State, dating between 2700 years ago and the present (Campbell et al.,
this issue). Here we review the concept of human ecodynamics and
related approaches to long-term, human-environmental change to si-
tuate the Čḯxwicən Project and others like it in an intellectual history
and to explore ecodynamics concepts and methods, especially as relates
to the deep histories of coastal systems.

While the term human ecodynamics has gained currency in academic
writing since 2007, its use is commonly undefined. Indeed in many
applications a reader could be forgiven for wondering if the term is just
the latest repackaging of research on human-environmental interac-
tions, a focus of inquiry stretching back at least to Darwin and one at
the core of many variants of ‘human ecology’ over the years. Poul Holm
(2016), in a thoughtful and generally supportive review of a recent
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collection titled Human Ecodynamics in the North Atlantic: A Collaborative
Model of Humans and Nature through Space and Time (Harrison and
Maher, 2014), searches in vain for an overarching conceptual frame-
work (and model) orienting the contributions. He concludes:

Human Ecodynamics seems to be an umbrella term to describe “humans
and their environments as made up of landscapes and seascapes,” and it
involves collaboration between archaeologists … and researchers from
other human, social, and natural sciences… but it does not add up to an
interpretative model (Holm, 2016:307, emphasis added).

Whether or not this is a fair critique of the Harrison and Maher
volume, the claim resonates more broadly, leading us to dig deeper into
the roots and guiding principles of human ecodynamics (H.E.) research.

In this paper, we explore a series of interrelated questions that
should be useful to those of us trying to advance work on human-en-
vironment relationships based on archaeological perspectives. Where
does the H.E. concept come from? What are its influences? What, if
anything, separates H.E. from related frameworks such as historical
ecology or resilience theory? Does H.E. contain a defined theoretical or
methodological commitment and dedicated set of practitioners? Is it
useful in other ways, for example in facilitating interdisciplinary col-
laborations? What can Indigenous knowledge contribute to human
ecodynamics research? How can H.E. research contribute to society
addressing contemporary problems and needs in human-environment
relationships?

2. Conceptual foundations in the study of human ecodynamics

An attempt to document the evolution of a concept like human
ecodynamics must first acknowledge the semantic baggage loaded onto
the double term. To pursue research into human ecodynamics is at once
to acknowledge and to question the distinction between the human and
ecological. The term presumes the legitimacy, or at least ontological
hegemony, of distinct domains of study and implies a conjunction or
building of bridges. Such bridge-building has been at the heart of en-
vironmental social science for decades. Of course, the binary distinction
between humans/humanity/culture and nature/environment was deeply
engraved in Enlightenment philosophy (and Judo-Christian cosmology)
and has since come to influence much of modern global science and
policy (see Cronon, 1995; Vining et al., 2008;1–2). While some dis-
ciplines sit far from the boundary and may be comfortable in the
nature-human dichotomy (physics and political science, perhaps),
others like ecology and ecological anthropology haunt the border and
struggle to rectify an ontology of crisp distinction with the intuitive
feeling that true understanding requires the complete dissolution of the
boundary. This is not the place for a rigorous philosophical examination
of the problem. We raise the issue simply to acknowledge the irony in
having to use terms, such as ‘human ecodynamics’, ‘socio-ecosystems’
and ‘coupled human and natural systems,’ that reify the very construct
that some scholars seek to problematize.

With that caveat, we turn next to explore the history of ecological
thinking in both “natural” and “social” domains through an examina-
tion of the disciplines of (mostly non-human-centered) ecology and
(human-centered) ecological anthropology. In the latter case, we focus
on theories that have influenced archaeological approaches to human-
ecological processes and long-term change.

2.1. Trends in twentieth century ecology and ecological anthropology

Human ecodynamics emerged in the late 20th century from a set of
intersecting themes and methods in biology, ecology and ecological
social sciences (primarily anthropology). Its major conceptual com-
mitments, therefore, should be understood in the context of changing
ecological and anthropological thought through that period. Ecology is
defined as “the study of the structure and function of ecosystems”
(Odum, 1953). Many of the principles of contemporary ecological

theory were established by the mid-20th century and provided the
foundations for a holistic science of nature (Odum and Barrett,
2005:2–4). Theories of succession, energy and material cycles, popu-
lation dynamics, and system feedbacks led ecologists of the time to view
ecosystems as holistic equilibrium-seeking systems in their natural (i.e.,
non-human influenced) states (see Worster, 1990, 1994). Ecosystems
were defined as emergent entities composed of hierarchically nested
physical and biological interactors. Defined by the systemic relation-
ships of component parts transferring matter, energy, and information,
ecosystems could be studied at any level of organization and with re-
ference to physical, biological and/or social inputs and interactions.
Importantly, this view also provided a foundation for 20th century
conservation policies that sought to restore “natural” or “pristine”
ecosystems by removing human inputs and extractions and allowing the
systems to “recover” to their “healthy” states.

By mid-20th century, anthropologists and archae-
ologists—especially those studying small-scale, often hunting and
gathering, societies—came to see close relationships between human
social organization and the ecosystems they inhabited. Julian Steward's
(1955) ‘cultural ecology’ is the most explicit, and his view that cultural
evolution should be understood through the lens of adaptation to en-
vironmental conditions formed the ecological cornerstone of Processual
Archaeology initiated by Anglo-American archaeologists starting in the
1960s (Binford, 1962). While the reasons differed somewhat in spe-
cifics, at this time ecological and anthropological theory shared a focus
on the explanation of the aggregate and abstract “emergent” structures
of ecosystems and cultures/societies, respectively, according to ex-
planatory principles at those levels of aggregation (e.g., group-func-
tionalism/’adaptationism’, cybernetic systems theory, and similar con-
structs). Disaffection with the aggregate level of analysis drove both
fields down parallel and often overlapping paths in the subsequent
decades (Fitzhugh, 2000).

In the ecological domain, empirical and theoretical developments in
the latter 20th century challenged the belief that ecosystems could be
explained as self-regulating and equilibrium-seeking entities, triggering
a paradigm shift that continues to reverberate (Worster, 1990). Em-
pirical studies failed to support the orderly model of ecological change
(succession to climax communities) and ecologists started questioning
the existence of homeostatic regulatory mechanisms, especially in non-
human influenced states (Connell and Slatyer, 1977; Drury and Nisbet,
1973). Instead, a growing chorus of field ecologists, theorists, and
computational modelers turned to examine the place of disturbance,
individual-level competition, and non-linear complexity in ecological dy-
namics (Davis, 1984; Holling, 1973, 1986; May, 1974). Where pre-
viously ecologists sought to generalize the functioning of relatively
stable systems, when they started looking for stability, they found in-
stead that disturbance and disruption were common and systems do not
necessarily return to the same “equilibrium” states after perturbations.
It turns out that ecosystems are complex entities, sensitive to initial
conditions and with interesting and contingent histories. Those his-
tories affect how systems are configured and function at any given time.
Thus, the causal factors driving particular ecological changes appeared
overwhelmingly complex, random, and, it was soon discovered, non-
linear. Confronted with this complexity, ecologists turned to mathe-
matical developments in modeling chaotic, complex, non-linear systems
(Bak and Chen, 1991; Kauffman, 1991, 1993; Simberloff et al., 1997;
Worster, 1994).

Equilibrium ecology was also undercut by developments in evolu-
tionary biology. Inspired by implications of the synthesis of Darwinian
and genetic theory, evolutionary biologists in the 1960s began ques-
tioning then-prevailing views about the evolutionary coherence of
ecosystems as integrated, functional entities and of the group level
adaptations presumed to organize their constituent taxa (Lewontin,
1970; Williams, 1966). Prior to that time, scholars assumed that species
and populations (and societies or “cultures”) evolved at the group and
even species levels to take advantage of available opportunities
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(resources, spatial configurations, climates, etc.) and to solve external
challenges to group survival and well-being. Developing understanding
of genetic mechanisms of evolution instead suggested that population
and ecosystem characteristics should ultimately emerge from the at-
tributes and actions of individuals within them (Dawkins, 1976;
Trivers, 1971). That insight propelled the field of evolutionary ecology
(Pianka, 1974).

In a parallel way, anthropologists (starting in the 1960s) and ar-
chaeologists (from the early 1980s) started to question the group-
functionalist foundations of cultural ecological models (see Biersack,
1999; Johnson, 2010; Vayda and McCay, 1975). Group-functionalist
principles applied to “emergent” cultural entities came under both
materialist and idealist critique, and for some (the strong idealists) the
very connection between humans and their material environments were
deemed irrelevant (Hodder, 1986; Sahlins, 1976). For others, the non-
human environment remained important to the understanding of social
structure and change, but the question of mechanisms and motivations
of agents within social groups took on paramount importance. Intra-
group conflict, competition, inequality and exploitation (between
classes, genders, and individuals) revealed flaws in adaptationist
models and drew attention to the strategic and political aspects of social
organization and change (Brumfiel, 1992; Earle, 1978). For ecological
anthropologists and archaeologists, in particular, the group-function-
alist critique led to a profound shift in focus of analyses from cultures
and societies to the behavior of individuals and agents (Dobres and
Robb, 2000; Fitzhugh, 2000). Human behavioral ecology, discussed in
the next section, was one outcome for those inclined to reductive and
deductive approaches (see Winterhalder and Smith, 1992 for a justifi-
cation of scientific reductionism). Archaeological engagement with
political ecology was another (Van Buren, 2001). Given the increased
complexity of interactions implicit in individual-based models of social
change, some archaeologists turned to the notion of historical con-
tingency—the idea that change is the result of unique, complex, and
indeterminate historical trajectories of interactions (both human and
non-human) (Bintliff, 1999; Engelstad, 1991; Trigger, 1998). Like the
shift in analytical focus from groups to individuals, attention to his-
torical contingency has echoes in ecology, in this case with the devel-
opment of chaos and complexity theory, as noted above.

Importantly, if ecological and social aggregates are indeed products
of complex, non-linear, interdependent and contingent histories, then
ecologists and anthropologists need to pay much more attention to
place-based histories of change when trying to understand these orga-
nizations and relationships in particular settings and times. Another
ramification—one still underappreciated—is that human influences on
environmental systems have long legacies with cumulative effects, that
there is no such thing as a singular “natural,” “healthy” or necessarily
human-free state of nature, and conservation efforts are better spent
seeking sustainable, rather than “pristine,” ecosystem targets (see, for
instance, Maschner et al., 2013). For both reasons, human and en-
vironmental history, archaeology and paleoecology become more cri-
tical than ever for understanding environmental changes in the past. In
the next sections we explore elements of the ‘new ecologies’ (the strands
of thought carrying forward from the late 20th century rejection of
equilibrium based ecology and group-functionalist ecological anthro-
pologies) as they have come to influence current H.E. research.

2.2. Human behavioral ecology and niche construction

Emerging from common roots in natural history, ecological theory
has always been closely linked to concepts of biological evolution.
Evolutionary mechanisms are usually assumed responsible for the
morphological and behavioral characteristics that provide relative fit-
ness to the organisms and populations found in ecosystems at any given
time. As such, ecosystems can be viewed as emergent (and evolving)
properties of the evolutionary histories of their components — a tem-
poral construct. Reciprocally, those evolutionary histories arise from

the interactions of organisms in ecosystems — a spatial construct.
Ecosystems condition the field of evolutionary possibilities for change
at any given moment. Collectively this bivalent, time-space dynamic
makes explaining ecological change uniquely challenging. How can we
explain the evolution of system components (e.g., populations and
ecological communities) and aggregate systems themselves?
Evolutionary ecology was developed explicitly to study the intersection
of ecology and evolutionary biology in order to take on the first of these
questions: how to study the evolution of populations and adaptive de-
sign of organisms in terms of their changing ecological settings
(Winterhalder and Smith, 1992). This biologically coherent paradigm
explicitly set out to develop understandings of the ‘microfoundations’ of
evolutionary history, and as such, could be an important ingredient in
efforts to explain ecodynamic processes (see Winterhalder, 1994, for an
argument for the centrality of evolutionary ecology in any ‘historical
ecology’).

Behavioral ecology is the branch of evolutionary ecology studying
ecologically adaptive (i.e., fitness enhancing) behavioral strategies
(Krebs and Davies, 2009). Behavioral ecologists employ optimality
models tuned to ecological parameters to derive deductive predictions
about how behaviors should vary as environmental conditions change.
Those predictions are compared with empirical observations, and the
degree of coherence between predictions and observations help guide
refinements in models and build or challenge confidence in starting
assumptions. Human behavioral ecology (HBE) was born when a handful
of anthropologists, and later archaeologists, started applying the be-
havioral ecology framework to understand patterned human behavior
(Winterhalder and Smith, 1981, 1992, 2000). Initial approaches fo-
cused on simple economic optimization of foraging alternatives among
small-scale, subsistence-based communities. Optimal foraging theory
models, carried over from the study of non-human animals, dominated
this early research (e.g., Winterhalder, 1981; Yesner, 1981). Over the
last 40 years, HBE has helped develop a broad theoretical tool kit for
understanding the ways people evaluate choices in food procurement,
mobility, divisions of labor, task-group membership, social affiliation,
prestige and social subordination (Boone, 1992; Kaplan and Hill, 1992;
Kelly, 1995; Smith, 1981; see Nettle et al., 2013).

From its early foundations in optimal foraging, HBE theory has been
integrated into more complex evolutionary models of socio-ecological
systems and used to understand or predict constellations of human
behavior in the past that may have driven system-level changes (e.g.,
Broughton, 1994; Butler, 2001; Fitzhugh, 2003; Kelly, 1995; Kennett,
2005). In these and similar applications, HBE has provided broad in-
sights. Even so, the HBE approach sheds only limited light on the
evolution of the social institutions and larger socio-ecosystems in which
those behavioral strategies are enacted. Some HBE scholars have sought
to overcome this deficiency through simulation modeling (e.g., Agent-
Based Models) to evaluate the extent to which complex organization
can emerge simply from the compounded strategic decision making of
large numbers of optimizing agents (Kohler and Gumerman, 2000;
Winterhalder and Kennett, 2006:19). Even so, HBE may not be framed
properly to answer many questions about the evolution of systems per
se, only how human optimizers should organize their effort within the
systems in which they find themselves. External change (e.g., climate
change or catastrophic loss of populations) pose little problem for this
explanatory framework, but internally generated (evolutionary) change
is anathema.

A promising bridging approach is the recently developed theory of
niche construction. Laland and O'Brien (2011:191) define niche con-
struction as “the process whereby organisms, through their activities
and choices, modify their own and each other's niches.” Upon reflec-
tion, it might seem obvious that spider webs, bird nests, and brick
buildings serve adaptive purposes for their architects while also altering
environments and creating new opportunities, dependencies, and con-
straints for themselves and other organisms. When considered as a co-
evolutionary process in which people and other organisms iteratively
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alter the characteristics of their selective environment and experience
changing selective pressures as a result, niche construction provides a
formal way of studying human ecodynamic co-evolution. Within this
context, Laland and O'Brien (2011) use the concepts of ‘cultural niche
construction’ to refer specifically to the way that people modify en-
vironments, in part, on the basis of cultural beliefs and practices. Bruce
Smith (2007) shows how the food production “revolution” can be un-
derstood as an outcome of human modification of environments that
ultimately led to fundamental changes in human economies and orga-
nizations, though he explicitly tries to distance niche construction
theory from the principles of human behavioral ecology.

We suggest that these two approaches, HBE and niche construction,
are complementary and that they could be integrated into a more
comprehensive theory of human ecodynamics. Even so, the re-
ductionism inherent in the “ultimate” evolutionary logic guiding HBE
and to a lesser extent niche construction is unacceptable to many
scholars on theoretical grounds, especially in its neglect of symbolic or
cultural considerations. From a practical perspective, behavioral and
evolutionary reductionism may miss important structural causes con-
ditioning macro-evolutionary ecological change. For behavioral ecolo-
gists, the position that such processes should be explained reductively is
recognized as a methodological assumption (Winterhalder and Smith,
1992). Other theoretical traditions focus on examining structural fac-
tors that may guide the evolution of systems irrespective of or, more
likely, in concert with the actions and motivations of strategic and
evolutionarily designed agents within them. Prominent among these for
ecological anthropology are historical ecology and resilience theory.

2.3. Historical ecology

Historical ecology traces the complex relationships between our
species and the planet we live upon, charted over the long term. It is a
term new to both ecology and to history; practitioners take the term
ecology to include humans as a component of all ecosystems, and the
term history to include that of the Earth system as well as the social and
physical past of our species. Historical ecologists adopt a holistic,
practical, and, often, dialectical perspective on environmental change
and on the practice of interdisciplinary research. They draw on a broad
spectrum of evidence from the physical and biological sciences,
ecology, the social sciences and the humanities. As a whole, this in-
formation forms a picture of human-environment relations over time in
a particular geographic location. The goal of historical ecologists is to
use scientific knowledge in conjunction with local knowledge to make
effective and equitable management decisions. (Crumley, 2007:16).

From foundations laid in the 1970s and 1980s (see Crumley, 1998),
historical ecology came to the fore in the mid-1990s with two thematic
volumes, the first edited by Carole Crumley (1994) and the second by
William Balée (1998). According to Crumley (1998: xii), the goal was a
“renewed effort to foster collaboration in two crucial social science
disciplines (anthropology and geography) and among several hybrid
fields (e.g., environmental history, environmental sociology, human
ecology, landscape ecology) that seek to mend the divide between the
two cultures.” The two cultures are those of the sciences and the hu-
manities caricatured by Snow (1959), and the differences between them
continue to plague efforts to unite social and environmental scholarship
(see Barash, 2005; Crumley, 2007:15–16). Naturally, any success in
understanding — and therefore effectively managing—human-en-
vironmental processes requires an equal measure of environmental
science (biological ecology, climate change, geology, hydrology, ocea-
nography, etc.), and knowledge of human social processes and what
motivates human behavior (cultures, ideologies, politics, economics,
etc.). Social science occupies the middle ground between natural sci-
ence and humanities, yet is itself mostly divided into camps on either
side of the ‘two cultures’ rift.

As proposed by Crumley and Balée—if not closely followed by later
practitioners—the "historical" in historical ecology refers to notions of

‘historical process’ developed in the humanities and social sciences
through the influence of Hegel and Marx, among others. The core
principle is that history (the changes in social and environmental con-
figurations and relationships through time) is the product of dialectic
interactions between agents, human and non-human, that transpire in
particular places and times, driving change. In other words, history is
the outcome of cumulative small and large interactions and responses,
in the human context often driven by individual beliefs and motivations
but conditioned by the ‘hard’ realities of their situation in particular
socio-environmental configurations. This notion of social change is
consistent with the concept of ‘structuration’ advocated by Anthony
Giddens (1984) and taken up by post-processual archaeologists in the
late 1980s and since (Johnson, 2010). The "ecology" in historical
ecology refers to the scientific understanding of relationships between
organisms, including humans, in environments that drive adaptations
and evolution of populations, communities and ecosystem structures
through time. It emphasizes the materialist basis of dynamic, co-
evolved, co-dependent systems of biological life and culture.

Combined, ‘historical ecology’ emphasizes the importance of his-
torical contingency in spatial and temporal contexts for shaping in-
tegrated human-environmental systems. Under this framework, an-
thropologists, ecologists, geographers, environmental historians and
others have shown how landscapes from the tropics to the poles carry
histories of past human activities and indeed how few landscapes today
can be said to be devoid of human influence or considered "natural"
(Dunning et al., 2002; Heckenberger et al., 2007; Maschner et al., 2013;
Normand et al., 2017; Urgenson et al., 2014). Ecosystems are dynamic
and unstable, and explaining their states at any given time or place
requires knowledge of prior states and the variables that have affected
them over time. Unlike some approaches to social and ecological sys-
tems of the past, historical ecologists commonly focus less on the de-
velopment of broad, abstract explanatory generalities, in favor of more
detailed and place-based study of the contingent causes of landscape
change. This is not to say that they reject insights drawn from general
theory. These are necessarily employed in explanatory models of local
landscape change. A related tenet of historical ecology is recognition of
the reciprocal (dialectic) relationships inherent in human cultural and
environmental co-evolution. Humans are seen as active agents in eco-
logical change not passive respondents to external environmental forces
(Erickson, 2008: 160). In this way, historical ecologists have recognized
practices of Indigenous resource management in environments long
thought (by outsiders) to have been "wild" and "natural" (Balée, 1994).

Archaeologists have been drawn to historical ecology as a frame-
work for the study of long-term, human-environmental change. In the
context of the post-processual critique, environmental archaeologists
were attracted by the effort to embrace both materialist and cultural
influences in the unfolding of place-based, human-environmental his-
tories (Hegmon, 2003). It did not hurt that these are histories that ar-
chaeological evidence is well-suited to address, and indeed—in many
cases—that only archaeology is in a position to document (Van der
Leeuw and Redman, 2002).

2.4. Resilience theory

Where ecological anthropology and archaeology turned to history,
landscape and dialectics, biological ecology (under the framework of
complex and non-linear adaptive systems) took up the question of
ecosystem resilience to disturbance (e.g., Holling, 1986). The concept of
resilience, including its formalization in resilience theory (RT), has
since become influential in many studies of human ecodynamics. Re-
silience is frequently defined as the capacity of a system to tolerate
disturbance maintaining or returning to the same basic properties and
functions without shifting into a differently organized system (Holling,
1986). Resilience frameworks are an outgrowth of ‘disturbance ecology’
and the collapse of equilibrium models, which treated systems as re-
latively simple and closed; that saw change as linear and deterministic;
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and that advocated management practices which support simplification
and stability (Gunderson and Holling, 2002; Holling, 1973). Equili-
brium models guided the establishment of resource management po-
licies in the mid to late 20th century in the U.S. and elsewhere and
remain embedded in management practices even today. As such,
management strategies seek to promote harvests of “nature's excess
production with as little fluctuation as possible” (Holling, 1973:21; see
also Holling and Meffe, 1996) by promoting estimates of ‘maximum
sustainable yields.’ Resilience theory represents a paradigm shift in
ecology. Systems are viewed as complex, change as non-linear, and—-
given the indeterminate nature of future events—the best management
practices are those that seek persistence in system relationships, rather
than stability per se. Contemporary resource managers are trying to
adjust to this new understanding under the banner of ‘ecosystem-based
management’ over conventional ‘species-based management’ practices
(Belgrano and Fowler, 2011; Levin et al., 2009; McLeod and Leslie,
2009).

While RT has its origins in 20th century ecological theory, it has
found broader application to a variety of complex social systems, in
areas such as healthcare, urban planning, and more. Likely one reason
RT has currency across such disparate fields is that it incorporates hu-
mans—their social and political structures—as components of complex
system models. Thus RT focuses on Social-Ecological systems (SESs), or
the coupling of ‘human-natural systems,’ in conceptualizing questions
related to food, human health, the environment, global climate change,
and so forth (e.g., Abramson et al., 2015; Bottom et al., 2011; Folke
et al., 2010; Urgenson et al., 2010; Walker and Salt, 2006).

One thrust of RT has been on modeling the dynamics of SESs as
historical process by means of the adaptive cycle (illustrated by the
figure eight panarchic loop), wherein a SES moves through four main
phases: growth, conservation, release, and reorganization (Holling,
2001; Gunderson and Holling, 2002). As modeled, cycling need not
occur in a fixed and regular direction, and SESs can interact across
multiple scales and operate at different rates. So conceptualized, nested
SESs combine to introduce complexity and contingency to system his-
tories. Considering SESs in this way addresses the paradox of change
and persistence that characterizes complex adaptive systems, poten-
tially accounting for patterns of so-called punctuated equilibria in both
biological and cultural evolution.

Resilience ‘thinking’ (see Walker and Salt, 2006) is appealing as a
way to frame stability and change in complex coupled human-en-
vironmental systems according to relatively intuitive models (e.g., the
adaptive cycle, the ‘ball and basin’ metaphor). Adaptive cycle models,
for example, suggest new ways of framing enduring questions of long-
term change observed archaeologically, such as how cultural com-
plexity increases some times and then declines or "collapses" at other
times, or how communities persist through some environmental
downturns but are destroyed by others of similar scale. For example,
Nelson et al. (2016) compare the resilience of SESs in Greenland and
the American Southwest in the face of extreme and rare environmental
events (drought in the Southwest; cooling in the North Atlantic). They
document community vulnerability to food shortage before environ-
mental crises and then cultural response after the crises, finding “major
social changes and food shortfall followed climate challenges in the
highest vulnerability loads” (2016:302). Communities with relatively
resilient food systems (e.g., diverse portfolios of foods, social networks,
storage) were less affected by extreme events. Besides scholarly in-
sights, their study has clear implications for how ancient records can
contribute to modern disaster management policy.

Despite its appeal, the application of resilience theory in archae-
ology remains limited (Bradtmӧller et al., 2017; but see examples by
Redman, 2005; Nelson et al., 2006; and Thompson and Turck, 2009).
Debate continues about whether resilience theory provides truly ex-
planatory insights or simply a new way of describing patterns of sta-
bility and change (Bradtmӧller et al., 2017). At least in some applica-
tions, adaptive cycle models have been used primarily as a post-hoc,

descriptive tool. This is true, for example, where cultural units (e.g.,
‘Solutrean,’ ‘Early Woodland’) are assigned to a distinct phase in the
adaptive cycle, and then specific socio-ecological factors are proposed
that may have caused the SES to shift from one domain to another. We
suggest the most fruitful avenues in RT research will be in expanded
theorizing about the mechanisms that underlie complex system changes
drawing on HBE, niche construction, political ecology and similar fra-
meworks (see Bradtmӧller et al., 2017; and Solich and Bradtmӧller,
2017, for examples along these lines).

Often resilience research seems to describe the resilience of coupled
systems themselves, under the expectation that a resilient system sup-
ports resilience of its components (e.g., human communities). We note
here, in passing, that it is sometimes unclear in these applications
whether the relevant target of analysis is or should be the human po-
pulation, its economic organization, socio-cultural lifestyle, non-human
taxa influenced in part by human interaction, or the larger, coupled
human-natural system in which these SES components are situated.
That analytical ambiguity is a common feature of complex system
analyses, and it is one of the reasons some prefer to explore mechanisms
at less aggregated scales (e.g., HBE).

2.5. Human ecodynamics

In this already crowded field of alternative approaches to the study
of long-term human-ecological interactions, we turn now to explore
human ecodynamics itself. The term "ecodynamics" appears in the
ecology literature starting in the late 1960s (Gannutz, 1971; Hansen
and Reed, 1969). Perhaps the earliest application of the term to human
social processes is by evolutionary economist Kenneth Boulding, in an
ambitious tome called Ecodynamics: A New Theory of Societal Evolution
(Boulding, 1978). In that work, Boulding asks why human social and
cultural institutions have a tendency to grow in complexity at odds with
the then-current principles of ecological equilibria. His answer, after
much dissection, is "disturbance" (destabilizing elements), a conceptual
shift paralleled, and no-doubt influenced, by the same turn in main-
stream ecology discussed above (Worster, 1994). Similar in some re-
spects to the encompassing social evolutionary approaches of con-
temporaries in anthropology and archaeology (e.g., Flannery, 1968;
Sahlins and Service, 1960; White, 1959), though citing none of them,
Boulding sought to expose generalizable structural principles at the
nexus of social change. Unlike some of his contemporaries, Boulding
embraced an ‘agnostic evolutionism,’ envisioning social change as
emerging continuously through the complex and undirected interac-
tions of physical, biological, and social factors, each at once structuring
the evolution of other parts and being structured by them. Boulding's
approach foreshadows much in H.E. research as it is practiced today.
This includes:

• viewing human social change as embedded in and contributing to
human-environmental interactions;

• seeking understanding through examination of patterns of systemic
relationships;

• including both "natural" (physical and biological) as well as "social"
(psychological, ideological) dimensions in any comprehensive de-
scription of social evolutionary process; and

• rejecting evolutionary teleology and embracing a contingent un-
derstanding of socio-ecological evolution.

Without explicit reference to human dimensions, ecodynamics ap-
pears again a decade after Boulding's book as the organizational fra-
mework for a volume entitled Ecodynamics: Contributions to Theoretical
Ecology (Wolff et al., 1988). Papers in that volume reflect the general
trend in ecology toward more mathematical modeling and simulation,
conservation, and especially non-linear ‘complex ecological systems’
discussed earlier.

The first paper embracing an archaeological approach to
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ecodynamics was by James McGlade (1995; see also Van der Leeuw and
McGlade, 1997), who proposed a ‘human ecodynamic’ framework, but
without reference to Boulding's earlier use of the term and indeed
without Boulding's social-evolutionary focus. McGlade was inspired by
contemporary trends in ecological theory, and his view of human
ecodynamics emphasized non-linear dynamics arising from nested
scales of socio-natural relations and the unpredictable creativity of
disturbance/perturbation (like Boulding). Crucial to McGlade's frame-
work is the view that humans are integral parts of the environment, not
external actors outside of nature. His work explicitly breaks from
1960s-era cultural ecology and systems theory archaeology, which
viewed cultures as coherent adaptive units, human ecosystems as
homeostatic, and that classified the ‘environment’ as distinct from
‘subsistence’ and from other discrete parts of human-related phe-
nomena. To McGlade, human-environmental interactions are simply
irreducible, a position at odds with behavioral ecology and perhaps
some niche construction approaches. Archaeology should focus on re-
ciprocal, co-evolutionary relationships between humans and the ‘en-
vironment’ or ‘socio-natural systems.’ The paper is also notable for its
effort to promote mathematically intensive non-linear modeling fo-
cused on the mutually constructed relationships of coupled natural and
social dynamics. In this pioneering archaeological work, we already see
some of the dominant concepts that will carry through most subsequent
applications of human ecodynamics: nonlinearity, disturbance, histor-
ical contingency, resilience and sustainability, which echo and combine
themes also raised in historical ecology and resilience theory.

McGlade's (1995) paper presented a rather abstract vision of H.E.
research goals with relatively little pragmatic guidance for archae-
ologists interested in using it. Those who took up the torch since have
tended to approach the subject more concretely, emphasizing the dy-
namic relations between physical (climate change, natural hazards,
etc.), ecological (nutrient cycling, predator-prey relations, population
fluctuations), and social (economic, technological, organizational, po-
litical, and ideological) processes. Patrick Kirch's adoption of the con-
cept in the early 2000s provided an influential catalyst. He used it to
frame the evolutionary analysis of pre-contact Hawaiian socio-ecosys-
tems, with attention to climate, soil ecology, agricultural technologies,
population, and the political strategies of elites (Kirch, 2005, 2007;
Kirch et al., 2004, 2007). A number of subsequent papers and projects
adopted the human ecodynamics label. Many were funded under the
U.S. National Science Foundation's (NSF) ‘Coupled Natural and Human
Systems’ program (CNH, initially a subprogram of the ‘Biocomplexity in
the Environment’ initiative; Baerwald et al., 2016). Many of these
projects were developed to synthesize decades of archaeological and
ecological research in targeted landscapes and emphasized the in-
tegrated modeling of human and natural system co-evolution. While
H.E. research is in no way limited to large, well-funded efforts, most
published references to the term come from those projects. This fact
suggests both that realizing the goals of a synthetic, long-term H.E.
research program is laborious and expensive, but also that the term's
initial fluorescence is at least partly linked to its relevance to funding
initiatives as it is a self-realizing research paradigm (see McGovern,
2014:214).

Many of the CNH and thematically related projects have led to
comparative theoretical, methodological, and substantive syntheses
across multiple projects (e.g., Alberti et al., 2011; Nelson et al., 2016).
To give a sense of the kinds of research recently generated under the
topic of human ecodynamics, Table 1 lists the human ecodynamics (or
‘coupled natural and human systems’) research efforts funded by the
NSF CNH program. These are particularly representative of the direc-
tion of H.E. research, given the targeted nature of the funding program
and the large budgets that allowed unusually comprehensive, inter-
disciplinary efforts within coordinated research programs.

A common theme in the H.E. research projects listed in Table 1 and
otherwise is the effort to study the causal relationships between past
climate, ecology, geography, human settlement, demography, mobility,

economy and other cultural dimensions of their respective regions, such
as political and social organization. These projects often draw on large
datasets (making well-studied areas some of the first such targets) and
use computational models in various ways to flesh out predictions, fa-
cilitate data integration and develop experimental scenarios. Studies
run the gamut of temporal, economic and socio-political variation in
human history, from the Pleistocene to late Holocene, hunter-gatherers
to agriculturalists/pastoralists, mobile to sedentary, egalitarian to
hierarchical, and organizationally simple to complex. Locations of re-
search projects cover terrestrial and maritime environments, continents
and islands, tropical latitudes to the subarctic.

Of course, H.E. projects are not limited to large-scale, inter-
disciplinary collaborations supported by the CNH program, or other
research agencies in the U.S. or abroad. A number of smaller-scaled or
otherwise funded studies fall under the umbrella of H.E. research (e.g.,
Corbett et al., 2010; Katzenberg et al., 2012; Müller et al., 2016; Weber
et al., 2011, 2013; West et al., 2012). The Čḯxwicən Project, about which
this special issue is dedicated, is another in this growing list of H.E. case
studies. Importantly, one way smaller-scale projects, including those
linked to heritage management, or ‘compliance’ archaeology can be
incorporated into H.E. research is through coordinating efforts and
synthesis of ‘big data’ (see Section 4.7 below). Research coordination
efforts (e.g., Integrated History of People on Earth or IHOPE [ihopenet.
org]; Global Human Ecodynamics Alliance [gheahome.org]; North
Atlantic Biocultural Organization or NABO [nabohome.org]), are ex-
cellent examples of such networks that illustrate how integrating results
from disparate, relatively small-scale projects can contribute to broad
comparative syntheses, directly applicable to H.E. research.

2.6. Comparing human ecodynamics and allied frameworks

In the previous four Sections (2.2–2.5), we sought to characterize
several concepts popular in the archaeological study of human-en-
vironmental interactions. Upon reflection, while human behavioral
ecology, niche construction, historical ecology, resilience theory, and
now human ecodynamics are defined around some unique explanatory
goals and/or methodological commitments, they also overlap in nu-
merous ways. HBE is probably the most formally circumscribed of these
approaches with its strong theoretical commitment to individual-level
Darwinian explanatory modeling. Niche construction provides a way to
view how human (and non-human) behaviors could change socio-eco-
logical systems through the engineering of new niches, and it may be an
interesting theoretical mechanism to bridge scales from individual-level
actions to system ‘evolution’. Of the remaining three concepts, resi-
lience theory is the next most formally defined conceptually, and the
adaptive cycle model provides a key orienting framework.

Outside of the formal resilience theory framework, many archae-
ologists use the concept of resilience as a framing tool to explore the
relative effectiveness of past community adaptations within socio-eco-
logical contexts. In these cases, theoretical attention is sometimes
drawn to relationships between "natural" variables (e.g., "natural" ha-
zard exposure, climate change, and scales and predictability of ecolo-
gical variability) and "social" variables (e.g., demographic patterns,
mobility, residential organization, economic practices, social networks,
hierarchies, and inter-group hostilities). These variables are often
considered in terms of their relative implications for the welfare of
economic, social, and cultural systems (Campbell and Butler, 2010;
Fitzhugh et al., 2016; see papers in Harrison and Maher, 2014). These
archaeologists attempt to track ways socio-ecological systems confer
greater or lesser resilience to the well-being of the individuals, com-
munities, and populations they include.

Historical ecology and human ecodynamics are probably the least
formally defined of the concepts reviewed above. In one of the papers in
which Kirch promoted the term ‘human ecodynamics,’ he explicitly
points out the ‘heavy intersection’ between H.E. and historical ecology,
while also acknowledging the influence of complexity and resilience
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theories:

In addition to sharing with historical ecology an emphasis on the con-
tingent long-term histories of landscapes, human ecodynamics in-
corporates concepts such as hierarchy, resilience, self-organization, and
nonlinear causality (Gunderson and Holling, 2002; Nicolis and
Prigogine, 1977; O'Neill et al., 1986). While drawing heavily on the
legacy of a largely qualitative and descriptive environmental archae-
ology, human ecodynamics thus moves the field toward quantitative
approaches and the use of dynamic, nonlinear models. (Patrick V.
Kirch, 2007:8)

Clearly, ‘human ecodynamics’ is a concept closely allied and over-
lapping in application with related frameworks proposed to study
complex human-environmental interactions and long-term histories.
With historical ecology, it shares and draws inspiration from theoretical
currents of mainstream ecology, anthropology, geography, sociology,
and related disciplines. The research falling under these two labels
shares the foundational premises: 1) that humans are part of the en-
vironments and ecosystems in which they engage; and 2) that the
component social and natural subsystems co-evolve through mutual
interaction and bi-directional influences. These premises themselves do
not form a singular and coherent theoretical framework or model for
research as such, and for that purpose, different researchers have
tapped into theoretical inspiration from across the spectra of science
and humanities, from Darwinian behavioral ecology to Hegelian dia-
lectics.

On the basis of early programmatic statements, historical ecology
may be said to have been defined uniquely around a human/non-
human Hegelian dialectic in which landscapes come to inscribe the
‘dialogic’ histories of interacting natural and cultural processes. By the
same token, a core and somewhat unique element in human ecody-
namics, not central in early historical ecological framings, is the em-
phasis on mathematical modeling, especially in the development of
coupled human and "natural" system models. Interestingly, the themes
raised by those identifying with historical ecology today are somewhat
different from those highlighted by Crumley and Balée in early for-
mulations. In particular, dialectical models of history are not mentioned
in Armstrong et al.'s (2017) list of the top 50 questions in historical
ecology. Apparently more materialist, ecological models have claimed
prominence under the banner of historical ecology. In any case, the
outcome of these shifts is the reduction of any significant differences
between the practice of historical ecology and what might be otherwise
defined more generally as human ecodynamics research.

Conceptually, both human ecodynamics and historical ecology view
social and natural systems as coupled, inextricably bound entities.

Humans are nature. Given this perspective, one might expect that the
unit of study should be the socio-ecological system or SES. In practice,
however, to explain changes in coupled human-natural systems, scho-
lars from both camps generally divide the components of the SES into
sub-units of analysis; and these sub-units generally break down along
the traditional social-natural divide.

For example, researchers wishing to understand ways coastal SESs
changed over the Holocene would consider key variables that likely
guided those changes, such as sea level, ocean productivity, human
population size, technology, the marine and terrestrial resource base,
abrupt environmental forces such as tsunamis, and so forth. Research
could focus at varying spatial and temporal scales, depending on the
question and available records. Scholarship would model, then try to
evaluate, the importance of these variables, using standard practices.
For example, faunal analysis would document changing animal use—-
whether certain resources were used sustainably or not, the extent the
animal resource base was independently affected by bottom-up ocean
conditions (e.g., food and/or habitat availability) or top-down (e.g.,
human and non-human predation and habitat alteration) ecosystem
forces. We might study the landform history—trying to determine the
role of coastal processes (currents, availability of sediments) vs. human
deposition of shellfish, for example, in constructing that landscape—or
the extent to which the two forces were intertwined. We could create
proxies for human population size using radiocarbon models (see
Section 4, below), and then study how trends reflected changing ocean
productivity, changing technology, regional trade networks, and so
forth.

This scenario highlights an important paradox. Embracing the
concept that humans and nature are inextricably bound still allows for,
in fact can demand, that we create conditional units of analysis for the
variables of interest that often still fall into "natural" and "cultural"
categories. This process is part of what is required in establishing cause
and effect relationships.

While these analytical steps may appear to push this scholarship
back to environmental determinism, key ideas in the human ecody-
namics/historical ecology framework mitigate this. Thus, change in
SESs is non-linear and complex, and is the result of the dynamic in-
teraction of variables and historical contingency. Moreover, these fra-
meworks give humans agency, as strategic actors, in structuring their
responses to socio-ecological conditions and, as a result, affecting their
own historical trajectories.

In sum, the scholarship of human ecodynamics and historical
ecology have different intellectual histories, but they have converged
on topical foci and goals—namely research into long-term ecological
change in human/non-human dynamics; and rely on broadly similar

Table 1
Examples of integrated human ecodynamics projects between 2000 and 2015.

Project title Themes explored References

Human ecodynamics in the Hawaiian ecosystem Agroecology; paleodemography; political centralization Kirch et al., 2004, 2007; Ladefoged and Graves,
2008; Ladefoged et al., 2009; Vitousek et al., 2004

The village ecodynamics project Hydrology, agroecology; paleodemography; domestication (turkey) Kohler et al., 2007, 2008, 2012; Varien et al., 2007

Long-term coupled socioecological change in the
American Southwest and Northern Mexico

Resilience; standardization; climate change; ecology paleodemography;
identity

Nelson et al., 2011, 2012

Land-use and landscape socioecology in the
Mediterranean Basin

Intensification; residential mobility; environmental change Barton et al., 2010, 2011, 2013

The Kuril Biocomplexity project Climate change; marine ecology/biogeography; colonization; social
networks; abandonment; geological hazards; political economy;
resilience and vulnerability

Fitzhugh, 2012, 2018; Fitzhugh et al., 2011, 2016;
Gjesfjeld, 2015; Gjesfjeld and Phillips, 2013

The Sanak archaeology project Climate change; marine ecology/biogeography; paleodemography;
resilience

Maschner et al., 2009; Misarti et al., 2011; Reedy-
Maschner and Maschner, 2012, 2013

Comparative island ecodynamics in the North
Atlantic

Colonization; climate change; natural hazards; human impacts and
ecological management; agropastoral and marine economies; resilience
and vulnerability

Ascough et al., 2014; Brewington et al., 2015;
Harrison and Maher, 2014; McGovern, 2014;
Smiarowski, 2014
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premises. We grant that there are places of divergence in scholarship
but suggest the differences are in emphasis rather than substance.
Indeed, many of the scholars cited in Table 1, under human ecody-
namics, have also published on the same themes under historical
ecology (e.g, Kirch and Hunt, 1997 vs. Kirch, 2007; McGovern et al.,
2007 vs. McGovern, 2014).

3. Common goals & questions of human ecodynamics research

Despite their different histories, theoretical inspirations, and ter-
minology, there is much common ground in the approaches outlined
above, both in terms of goals/questions and methods (see Section 4).
Here we provide a brief overview of some common questions pursued
in the name of human ecodynamics research. With limits on space, we
can only highlight a few examples, emphasizing research in coastal
settings (our primary area of expertise and the most relevant literature
for the Čḯxwicən site discussed in this special issue).

3.1. Archaeology of natural hazards

There is a long history in archaeology of studying catastrophic ex-
ternal events, both abrupt (e.g., earthquakes, volcanoes) and more
gradual (e.g., severe drought, onset of the Little Ice Age, sea level rise),
given the obvious potential for ecosystem perturbation, which may
have directly or indirectly affected past peoples (e.g., Baumhoff and
Heizer, 1965; Sheets and Grayson, 1979). In some areas, such as coastal
Peru, people faced convergent catastrophes, including extreme El Niño/
Southern Oscillation events, earthquakes/tsunamis, and volcanic erup-
tions (Mosley, 1999; Sandweiss and Quilter, 2012). Understanding how
people on the edges of human existence, both in terms of these extreme
events or geographically challenging environments (Arctic, deserts),
have adapted and survived is a central focus of much H.E. research
(e.g., Cooper and Sheets, 2012; Harrison and Maher, 2014).

Recent research in anthropology and archaeology has begun to
unpack the concept of "catastrophe" to show that while these are nat-
ural events, their impacts are mediated by various social variables, such
as subsistence strategy, settlement pattern/mobility, population den-
sity, territoriality, infrastructure/technology, and previous experiences
(e.g. Reycraft and Bawden, 2000; Grattan and Torrence, 2007; Oliver-
Smith, 1996). Many studies highlight the resilience, adaptive ability,
flexibility and continuity of foragers facing dramatic natural events.
Losey (2005) found few effects (in terms of diet or settlement patterns)
of the massive 1700 CE Cascadia Zone earthquake on northern Oregon
coastal communities. The resiliency observed in North Pacific foragers
may have been possible because of their mobility, extensive territory,
and widespread kin networks (e.g., Fitzhugh, 2012; Fitzhugh et al.,
2016; Johnson, 2002; Saltonstall and Carver, 2002). In his summary of
Indigenous Caribbean response to hazards such as hurricanes and
floods, Cooper (2012) argued that complex belief systems, transfer of
ecological knowledge over generations, settlement locations, house
structures, diverse food procurement strategies and social networks all
contributed to resiliency. Vanderhoek and Nelson (2007), by contrast,
find that the unique conditions surrounding the frequent catastrophic
volcanic activity of the Aniakchak volcano on the Alaska Peninsula
prevented prehistoric settlement prior to 2200 years ago, despite set-
tlement in adjacent regions as far back as 9000 years ago. Clearly there
are limits to human resilience, something many H.E. projects have at-
tempted to measure.

3.2. Humans in bottom-up, top-down, and integrated SESs

Beyond extreme events and environments, those working on human
ecodynamics research themes have all been interested in how people
both affect, and are affected by, their natural environment. Indeed as-
sessing the relative roles of ‘bottom-up’ versus ‘top-down’ ecological
drivers over time has been a major focus of scholarship. Recent studies

in coastal areas have focused on assessing changes in resource avail-
ability, diet, or settlement strategy during the late Pleistocene/
Holocene transition (e.g., Barton et al., 2013; Fisher et al., 2010; Reitz
et al., 2015), the Medieval Climatic Anomaly (MCA) and Little Ice Age
(LIA; e.g., Jones et al., 2017; Monks, 2017; Rindel et al., 2017; West,
2009). Others have investigated the effects of human hunters removing
apex predators from an ecosystem, such as sea otters in the Aleutians
(Simenstad et al., 1978) and Loco shells in Tierra del Fuego (Jerardino
et al., 1992), or locally overharvesting large mammals or birds (e.g.,
Broughton, 1994; Nagaoka, 2002). Scholars do not always agree on
these impacts given the difficulty in parsing out human hunting from
climatic effects on animal populations (Rose, 2004). In some cases,
scholars have diagnosed ‘sustainability’ or stability in harvesting over
time, supporting the idea that communities with intimate local ecolo-
gical knowledge may manage or otherwise limit their impacts on cri-
tical subsistence resources (Braje et al., 2017; Butler and Campbell,
2004; Campbell and Butler, 2010; Erlandson et al., 2008, 2009; Etnier,
2007; McGovern et al., 2007; McKechnie et al., 2014).

Recent research in human ecodynamics strives to treat humans as
part of (not external to) the ecosystems they model, given the irredu-
cibility of people in their environment (see Simenstad et al., 1978 for an
early version of this point). In the Pacific Northwest coast, integrated
anthropological and archaeological study has revealed intensive ways
that wild resources were managed through habitat alteration (niche
construction), such as the creation of clam beds and anthropogenic
burning (e.g., Deur and Turner, 2005; Lepofsky et al., 2017). Dunne
et al. (2016) used a highly-resolved food web network model to explore
the implications of adding humans as prey-switching omnivores and
find that without technologically intensive predation on 50% or more of
the taxa, the system would remain largely sustainable in the face of
human harvesting.

4. Methodological contributions to the study of human
ecodynamics

The questions just reviewed, common to H.E. research in a broad
sense, require robust methods to address with any confidence. Several
methodological developments have helped to operationalize H.E. re-
search. While these methods are not unique to H.E., their availability is
crucial to our ability to answer questions about long-term human eco-
dynamic change. In particular, developments over the last several
decades have dramatically improved chronological inference, paleoe-
cology and paleoclimate reconstruction, human paleodemography,
migration mapping, and dynamic socioecological modeling.
Particularly relevant developments include refinements in radiocarbon
and luminescence dating, isotope bio- and geo-chemistry, paleoge-
nomics, computational modeling, data management, and comparison/
synthetic analysis of large datasets from multiple projects (so-called ‘big
data’).

4.1. Chronological inference

While for at least a century archaeologists and others have re-
cognized the importance of studying the interactions of climate, phy-
sical environment, ecology and culture change in tandem, efforts have
been hampered by limitations on integration due to incomplete and
imprecise chronologies. Until recently, archaeologists ran few dates and
only used them to supplement typological dating within culture his-
torical systematics. The result was imprecise chronologies of change
and a limited ability to compare archaeological and paleoecological/
climatic proxy sequences. For their part, temporal control for paleo-
climate and paleoecological reconstructions are normally based on a
limited number of age estimates that are used to interpolate age models
through the sequences. With rare exceptions then, regional syntheses
must assume imprecision and correlation (between individual paleo-
environmental proxy records and between them and archaeological
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records), falling back on ‘wiggle matching’ and coarse-scale inter-
pretation. As a result, small sample sizes, sampling protocols, and in-
strumental errors limited chronological precision of human-environ-
mental accounts. For those dependent on radiocarbon dating for most
chronological assessments, the refinement of AMS radiocarbon in-
strumentation and better pretreatments have tightened precision and
enabled dating of smaller samples (Kutschera, 2005). In turn, this has
allowed dating of short-lived specimens that can increase accuracy.
Improved calibration datasets and protocols for both terrestrial and
marine samples (Ramsey, 2009; Reimer et al., 2013; Stuiver and
Braziunas, 1993) further strengthen the comparability of data from
different contexts, sometimes dated by different methods. Innovations
in other chronometric techniques such as single-grained optically sti-
mulated luminescence (OSL) are also helping improve chronological
inferences for both paleoecological and archaeological records. As
much as anything, larger chronology budgets have made it possible to
date paleo-sequences at higher resolution, identifying date incon-
sistencies, stratigraphic disturbance, and sampling errors and facil-
itating better interpretations of sequences. Large chronological datasets
also enable statistical analysis of human settlement duration and in-
tensity at local sites and across regions, which is the basis of a current
growth industry in population modeling.

4.2. Population dynamics

Population trends are critical for many long-term human ecody-
namics studies. The density and distribution of people across a land-
scape influence human effects on ecological processes and, of course,
those ecological processes have direct effects on the sustainability of
human populations who depend on them for food, water, raw materials,
and shelter. For many H.E. projects, population dynamics are placed at
the nexus of the modeled socioecological relationship, and a primary
goal is understanding how population fluctuations may have occurred
in relation to changes in climate, prey availability, crop productivity, or
other factors. As a result, reliable measures of population change are
necessary.

“Archaeological demography is the investigation of the structure
and dynamics of past human populations using the broad spectrum of
evidence provided by the traces of human activities and remnants of
material culture in the archaeological record” (Chamberlain, 2009:
275). Archaeologists often seek to estimate relative population levels in
the past based on the assumption that some quantifiable attribute or
attributes like sites, houses, burials, or artifacts varies in proportion to
populations. Quantification of one or more such attribute as it changes
through time can be used as a ‘temporal frequency distribution’ (tfd)
that can be interpreted to represent change in relative population
through time.

Radiocarbon date samples have been the archaeological target of
choice for a fluorescence of recent paleodemographic models
(Chamberlain, 2009; Rick, 1987; Williams, 2012), or study of human
settlement duration and intensity (Hutchinson et al., this issue).
Radiocarbon datasets have a distinct advantage over other archae-
ological attributes because they simultaneously encode chronology and
something about relative human activity on the landscape. Never-
theless, variables that undermine the reliability of ‘dates as population
data’ include: 1) small numbers of dates in a local or regional dataset
(low numbers bias); 2) differential loss of archaeological sites in the
past (preservation bias); 3) uneven sampling of archaeological deposits
and dates (sampling bias); and 4) changes in modes of living during the
interval under study that alters the rates of per capita production of the
archaeological attribute (cultural bias) (Brown, 2015). Where these
factors are controlled, radiocarbon tfds make excellent population trend
proxies (Fitzhugh et al., 2016).

Methods for quantifying and interpreting large regional radiocarbon
data sets are developing rapidly. Whereas little over a decade ago,
population models were built on histograms of uncalibrated dates,

today summed probability distributions (spds) dominate the literature
(Bamforth and Grund, 2012; Tremayne and Brown, 2017; Williams,
2012) and both modeling procedures and interpretations are becoming
more sophisticated (Brown, 2015, 2017; Crema, 2012; Crema et al.,
2014; Shennan, 2013). Importantly, paleodemographic change is in-
fluenced by a complex array of factors, including changing rates of
fertility, mortality, in/out migration, and intra- and inter-population
interactions, each potentially influenced by and influencing environ-
mental developments in the region in question (Lee and Tuljapurkar,
2008, Lee et al., 2009). Coupled with high-precision dating, radio-
carbon modeling can provide a well-resolved picture of fluctuating
population size. The task becomes trying to explain demographic trends
through close comparison with paleoenvironmental and social changes
(including hazards like earthquakes, volcanic eruptions, population
movements, market expansions, disease transmission, and so on:
Fitzhugh et al., 2016).

In addition to radiocarbon-based models of paleodemography,
complementary methods are developing rapidly in paleogenomics that
may soon add independent data on population dynamics and related-
ness. Where human remains can be ethically sampled, for example,
demographic information on relatedness can be derived from the an-
cient DNA (aDNA) of preserved human samples (Harpending et al.,
1998). Population bottlenecks can also sometimes be identified in iso-
lated populations from studies of aDNA diversity (Chan et al., 2006),
which could also provide key insights about human demographic crises
and possible causes in socioecological variables.

4.3. Paleoenvironment and paleoclimatic inference

Paleoclimate research has been integral to the Earth sciences for
well over a century (Bradley, 1985; Butzer, 1964) and was influential in
the establishment of the scientific discipline of geology in the 19th
century (Grayson, 1984). Since that time, climate scientists have
learned to make increasingly detailed paleoclimatic inferences from
proxy evidence, such as geomorphic features (e.g., glacial moraines,
river terraces and wave-cut coastal benches) and preserved plant and
animal remains (e.g., pollen, insects, marine diatoms as well as the
remains of larger organisms) recovered from stratified sediments and
quantified as evidence for those changes. Late 20th century develop-
ments in geochemistry and the accumulation of multi-proxy records
from tree rings, corals, marine, lake and ice cores around the world
have increased the ability to study aspects of climate change more or
less continuously through time in different regions and connect them to
develop pictures of global changes (Cubasch et al., 2013; Masson-
Delmotte et al., 2013). Studies of stable isotope fractionation, especially
of oxygen (O) isotopes in biological, sedimentary, and glacial ice ar-
chives, have also been critical in paleoclimate interpretations (Chappell
and Shackleton, 1986; Grootes et al., 1993).

The accumulation of proxy climate data has led to revisions in the
understanding of the pace of climate changes (they are often abrupt)
and revealed greater spatial variability in regional and local effects than
previously appreciated. This, in turn, has revealed problems in facile
application of paleoclimate records from one region to represent cli-
mate implications for local ecosystems and cultures in other regions. In
the absence of robust local proxies, presumed global records, like the
Greenland ice sheet proxy records, have sometimes been compared
uncritically to environmental and cultural changes in distant regions
(Jones and Mann, 2004). Unfortunately, good proxy records with sui-
table time depth and temporal resolution are still too few and spatially
disparate to provide solid inferences for many local regions. For this
reason, H.E. projects often must include the independent development
of local/regional proxy records. It is increasingly recognized that pa-
leoclimate and paleoecological proxies drawn from archaeological de-
posits themselves are ideal for many H.E. purposes because the climate
and ecological inferences can be tied directly to changes in human
variables without the use of age models and correlations over distance
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(Sandweiss, 2017).
Paleoclimate series typically track local changes in temperature and

precipitation based on changing micro-plant and animal communities,
organic growth rates, stable isotopes, minerals, and greenhouse gas
concentrations, among other proxies. Of course, paleoclimate inference
depends on establishing that the proxy measure in question changes in
a predictable way because of climate change. Even with good proxy
climate series, interpreting the relationship between climate and socio-
ecological dynamics requires strong inferential arguments. When the
goal is better understanding of socioecological dynamics, it is vital to
move past generalized climate trends to consider how those trends
would manifest at the scales relevant to the SESs under investigation
(Sandweiss, 2017). Advances in global climate models (GCMs) that
incorporate key features of solar insolation, Earth topography, hy-
drology, oceanography, and atmospheric circulation in concert has
made it possible to assemble multiple paleoclimate proxy records into
ensemble models and predict how past climate dynamics should have
varied spatially in the past (e.g., Collins et al., 2006). The availability of
spatially resolved dynamic climate models, in principle, allows re-
searchers to develop models and hypotheses about regional climate
variability and its effects on local ecosystems and people. With im-
provements in climate theory, computing power, and inclusion of new
proxy data sets, we can expect regional climate models (RCMs) to be-
come increasingly precise and appropriate for use in modeling the be-
havior of regional to local scale variables in SESs (Rummukainen,
2010).

4.4. Foodweb dynamics

Any study of long-term human ecodynamics requires robust data on
changing environments in the past. Archaeologists have long collabo-
rated with paleoecologists, who study changing communities of plants
and animals, to better understand the evolution of local/regional eco-
systems. In the 1960s and 1970s, biochemists discovered that heavy
isotopes of carbon (C) and nitrogen (N) are metabolized differently than
their lighter, more abundant counterparts and ‘bioaccumulate’ in suc-
cessively higher trophic levels in the food web (DeNiro and Epstein,
1978, 1981). Differences were also seen in the photosynthetic pathways
of terrestrial plants, including important cultivars such as maize (van
der Merwe, 1982), as well as marine vs. terrestrial organisms
(Schoeninger and DeNiro, 1984). These differences are reflected in the
concentrations of C and N (and a host of other elements) in body tis-
sues, including bone collagen. This allows for the reconstruction of food
web dynamics from ancient (archaeological and paleontological) sam-
ples, and has been used extensively in recent decades to investigate
human diets (Newsome et al., 2004; Schoeninger, 2009) and ecological
relationships among the prey species upon which human populations
depended (Burton and Koch, 1999; Newsome et al., 2010; Misarti et al.,
2009; Szpak et al., 2009).

The study of marine food web dynamics has also benefited greatly
from the pioneering field research of Jim Estes (sea otters, kelp,
urchins—Simenstad et al., 1978) and Robert Paine (intertidal
ecology—Paine, 1966). Their extensive field programs were subse-
quently bolstered by the development of rigorous quantitative models,
which have the capability of examining ecological dynamics by vir-
tually adding or removing one or more key components of the system
(Christensen and Pauly, 1992). Importantly, these applications can
explicitly include humans as part of that system (Dunne et al., 2016;
Simenstad et al., 1978).

4.5. Tracking trade/social networks

For much of the history of archaeological practice, migration and
mobility in pre-literate societies was inferred from relative similarities
in the styles of artifacts, houses, burials, and biological traits—impre-
cise and largely speculative methods at best. Recent developments in

archaeochemistry have made it possible to map movements of artifacts,
people and animals/plants from source areas to the location of their
archaeological deposition. For example, trace element analysis has been
found effective in discriminating the sources of obsidian and other
minerals in lithic artifacts and pottery, which in turn allows us to test
hypotheses about degrees of movement and trade throughout a region
(Gjesfjeld, 2015; Gjesfjeld and Phillips, 2013). When geographic
variability is known in isotopic strontium (Sr), oxygen (O) and lead (Pb)
across terrestrial landscapes, the same isotopes in human, non-human
animal and plant tissues from archaeological deposits can be compared
to map the net displacement of adults from the locations of their
childhoods (Price et al., 2002; Shaw et al., 2010; Turner et al., 2009).
Likewise, spatial gradients in C and N have been used to infer migratory
pathways of various prey species that formed the foundation of coastal
subsistence economies (Burton and Koch, 1999). Future developments
in the combined use of chemical and molecular evidence promise dra-
matic expansion of our abilities to map past movements (e.g., Brown
et al., 2013; Nielsen et al., 2017), with concomitant benefits for our
understandings of past SES dynamics.

4.6. Computational modeling

Advances in computational modeling have been essential to many
recent human ecodynamics projects. At its core, H.E. research seeks to
account for the evolution of complex human behavior patterns and/or
complex adaptive systems. Quantitative modeling of variables seeks to
represent the effects of that behavior on system dynamics. Anthropic
variables such as food choice, mobility, social organization, and tech-
nology are often integrated with environmental parameters and dy-
namics in simulations and other modeling endeavors (e.g., Barton et al.,
2011; Kohler et al., 2012). Various approaches to complex systems
modeling are well-suited to tracking dynamic feedbacks of multiple
variables, including those related to environmental change. Most
computational modeling used in H.E. research relies on optimality logic
(that individuals or groups would operate in certain ways to maximize
benefits), with the understanding that such models are not "true" as
much as they create a standard against which the empirical record can
be measured (Barton et al., 2011). Often the discrepancy between the
modeled result and the archaeological pattern is where real insights
emerge. Human agency and historical contingency are often built into
the models, countering the critique that computational models are
overly deterministic (McGlade, 2014). In fact, one of the key features of
dynamic models is that they represent systems as interconnected and
integrating, which also contradicts the critique that optimality models
are overly deterministic.

Within H.E. research, agent-based models (ABMs; a.k.a. individual-
based models/IBMs) have perhaps seen the most use. ABMs are a class
of models for simulating the actions of autonomous agents (e.g., in-
dividuals or groups), given relatively simple rules, or constraints that
are fed into the model, such as initial group size, age profile, food re-
quirements, technology, trade networks, climate conditions, and so
forth. ABMs draw on game theory, evolutionary programming, and
Monte Carlo methods to simulate the behavior of complex systems. As
with any modeling, the simulation effort is not the end or goal of
scholarship, but rather what is of interest is the comparison of the results
of simulation with the archaeological/ecological record. To the extent
the two are aligned, we can gain insights on the ‘rules’ that guide
complex socio-ecological systems. And, as noted above, discrepancies
point us to components of the cultural system for which we still lack
understanding. Kohler et al., 2012 have used ABMs to elucidate the
socio-ecological factors behind the growth, expansion and collapse of
villages and broader social systems in a part of the prehispanic United
States Southwest between the 9th–13th centuries CE. Barton et al.
(2011) use an ABM to highlight the dynamic forces—including chan-
ging land use and technology, climate change, biological evolution—-
which led to the disappearance of Neanderthals and expansion of
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modern hominins in western Eurasia during the late Pleistocene. Be-
yond ABMs, d'Alpoim Guedes et al. (2016) showcase the use of niche or
species distribution modeling to help explain the spread of early
farming in Europe and the distribution of wild ancestors to maize,
which is key to earliest farming in Mexico.

4.7. Digital archiving and the birth of big data

Starting in the late 20th Century, science communities and funding
agencies began developing the infrastructure for greater data standar-
dization, more explicit data management practices, digital archiving,
and the development of online data assimilation platforms for ag-
gregating, analyzing and synthesizing those data. The first big push
came with the development of GENBANK in 1982 as a platform for
archiving and accessing genetic sequences (NIH, 2008). Although
GENBANK was initially used primarily/exclusively by modern geneti-
cists, the growth of aDNA studies in support of (or in conjunction with)
archaeological analyses has definitely capitalized on the existing data-
base structure. Within more classically historical sciences, the North
Atlantic Biocultural Organization (NABO) was one of the first major
efforts to systematize coding of zooarchaeological data in 1992
(McGovern et al., 2018). Since that time, major federal funding orga-
nizations, like the National Science Foundation (NSF), and publication
outlets have established requirements and guidelines, funded archives,
and worked with research community to develop best practices for
digital archiving of data (Atici et al., 2013).

While the initial thrust of the advocacy behind this move was pre-
servation and accountability, H.E. research has been facilitated by the
meta-analytical potential of these developments. For example, digital
archives, like the Canadian Archaeological Radiocarbon Database
(CARD) is now serving as a digital repository for all North American
archaeological 14C dates (see Hutchinson et al., this issue).
Archaeological paleodemography requires the accumulation of the
most comprehensive radiocarbon datasets available for a given region,
and CARD's centralized online database makes it possible to assemble
data for demographic analysis from potentially hundreds of project
archives. Other notable developments include the Neotoma
Paleoecological Database (Williams et al., 2018), which was itself an
expansion of the FaunMap vertebrate paleontological database
(FAUNMAP Working Group, 1994; Graham and Lundelius Jr., 2010)
but now serves as an online repository for a wide range of paleoeco-
logical data including pollen, diatoms, insects, etc. Open Context
(opencontext.org) and the Digital Archaeological Record (tDAR, core.
tdar.org; Kintigh, 2006) are both archaeology-specific databases and
web platforms that serve primarily as a repository for data and un-
published metadata (field notes, excavation photographs, etc.).

5. Contributions of Indigenous knowledge to human ecodynamics
research

H.E. research is relevant to any socio-ecological context regardless
of scale, location, or social context. However, for those projects focused
on the human-environmental dynamics of subsistence-oriented com-
munities, especially where descent communities remain in place and
continue to live in intimate connection with the environment and to
claim sovereignty over the natural resources and cultural heritage of
ancestral territories, it is both beneficial and essential to work closely
with those communities.

In the past three decades, archaeologists in many parts of the world
have committed to working collaboratively with descent communities
in the regions where they conduct research. This trend has emerged in
reaction to the colonial heritage of earlier archaeology and anthro-
pology and the desire for research to more directly benefit local and
often Indigenous communities. This shift has been accelerated by
landmark legal decisions in countries like the United States (e.g.,
NAGPRA) that legislate consultation and encourage collaboration.

Moreover, many archaeologists, anthropologists, and ecologists believe
that partnering with local and descent communities is an ethical ob-
ligation—at the simplest level, it is the right thing to do because we owe
something to the people and places where we work. At a more prag-
matic level, researchers know that partnering with local communities is
often necessary for accessing sites and opportunities for future study.

Beyond these reasons, engaging with Indigenous knowledge holders
and communities is important because it increases the information,
perspectives, and potential benefits of research. Many Indigenous
communities retain some degree of traditional lifestyle, often involving
the use of knowledge about the ecosystems in which they have been
embedded for generations. For these reasons, the understanding of
human ecodynamics can only be improved with increased Indigenous
engagement.

5.1. Local and traditional knowledge as a bank of socio-environmental
information

Over the past few decades, anthropologists, archaeologists and en-
vironmental scholars have shown a growing appreciation that locally
based knowledge systems can represent sophisticated understanding of
the dynamics of local environmental conditions. The terms ‘traditional
ecological knowledge’ (TEK), ‘local and traditional knowledge’ (LTK),
and ‘Indigenous knowledge’ (IK) have been used to refer to the accu-
mulated wisdom of groups with deep connection to and dependence on
their surroundings (Berkes, 2009; Hunn, 1993; Stump, 2013). Where
university-trained ecologists and anthropologists from outside the re-
gion cumulatively might spend several years in the field and study
various forms of collected evidence, those who grow up, interact, and
base their livelihoods in daily engagement in the local environment
gain deep and practical understanding of the socio-natural systems of
relationships in which they are embedded. Where communities persist
in place and that wisdom is passed down through the generations,
communities can accumulate knowledge over decades, centuries and, in
some cases, millennia (Cruikshank, 2014; Thornton et al., 2010; Turner
et al., 2013). Such knowledge often encodes information about both
frequent and infrequent perturbations and regime shifts in climate and
ecosystem, as it does about the range of social opportunities and ha-
zards experienced in the past (Minc, 1986). We prefer to use the term
‘local and traditional knowledge’ or LTK in this context because it refers
to the two core features of this knowledge, its local or place-based
context, which is key to the intimate experiences that generate and
reinforce it, and its inter-generational transmission primarily, though
not necessarily, through oral modes of communication. The term ‘In-
digenous knowledge’ becomes salient when referring to how this
knowledge comes to be framed in relation to what is sometimes called
‘Western Science’ or in the effort to bridge academic and Indigenous
scholarship (see Stump, 2013).

LTK is important to environmental social science, and H.E. research
more specifically, in at least two ways. The first engages LTK as a source
of expert information about the socio-ecological structures and processes
encoded in that knowledge. Academic and agency-based ecologists and
environmental anthropologists often collaborate with LTK scholars to
supplement field observations. In the context of colonialist histories, in
which outside scholars have often failed to appreciate or respect
Indigenous people or their expert knowledge, bringing LTK into re-
search studies validates the expertise of Indigenous scholars, enables
development of bi-directional learning, and makes for better scholar-
ship. Because the most experienced holders of LTK are also usually full-
time practitioners of environmentally embedded livelihoods—or retired
elders, inclusion of LTK insights in the academic study of local human
ecodynamics usually requires dedicated effort on the part of the re-
search team. When done well, which is difficult, such work has yielded
valuable insights (e.g., Gonzalez, 2016; Lepofsky et al., 2017; Lightfoot
et al., 2013; Silliman, 2008; Welch et al., 2011). Unfortunately, because
Indigenous communities around the world have been victims of
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repeated appropriations of land, resources, and rights, the rush by
outside researchers to record Indigenous knowledge has also triggered
concerns about misuse of information and career profiteering, perpe-
tuating the colonialist mode (Brush, 1993). These are serious ethical
concerns that are overcome only with the development of trust and the
respectful negotiation of protocols for the use of and credit for LTK
before a study begins (Atalay, 2012; Colwell-Chanthaphonh and
Ferguson, 2008; Nicholas and Bannister, 2004).

5.2. Local and traditional knowledge as adaptive mechanism

A second dimension in which LTK is important to H.E. research
concerns the processes of its formation, how it works in different cul-
tural settings, and the extent to which it comes to encode adaptive in-
formation (and for whom or what). These questions fall squarely in the
fields of environmental and cognitive anthropology (Hunn, 1993).

Indigenous knowledge systems are forms of scientific knowledge not
fundamentally different in derivation than so-called Western Science
(Brush, 1993). They are systems that work in practical terms, systems
that make sense of empirical observations and enable effective predic-
tions, even if they do so according to cultural logics that are foreign to
outsiders. Like ecosystems, knowledge systems are products of the eco-
social histories through which they are shaped. Understanding how and
to what extent LTK comes to be effective in guiding adaptive solutions,
and for whom (individual, communities, and societies), should be one
of the core theoretical concerns of an anthropology of human ecody-
namics. To our knowledge, archaeologists have largely ignored this
question of mechanism (but see Stump, 2013), focusing instead on how
Indigenous knowledge systems seem to work.

Some of the most promising research is being done through eth-
nographic fieldwork. For example Eduardo Kohn (2013), in his book
How Forests Think, presents a rich ethnographic account of the socio-
ecological logic of the Runa of Ecuadoran Amazon. Kohn makes sense of
how the Runa understand the jungle as a web of social interactors
embedded in relationships with each other. Humans, dogs, jaguars and
other beings negotiate these relationships through acts of interpretation
with life or death consequences (human or animal? predatory or prey?
spirit? family?). In the process, the jungle comes alive as a system of
interconnected but changeable relationships of meaning situated, not
simply in the heads of people, but in the histories of interactions that
change how they think about those relationships. Through this account
we can begin to imagine how SESs might evolve in ways that include
biological imperatives, cognitive principles, adaptation, and emergent
systemic properties.

If people living intimately with "nature" become experts in it, then it
only makes sense that they might be able to diagnose negative human
impacts and devise ways to mitigate or even reverse those impacts if so
motivated. This logic is behind the push to explore ‘sustainability’ in
SESs. A rigorous debate has surrounded the question of whether or not
Indigenous communities tend to be ‘conservationists’—that is, to put
environmental preservation above short term personal gain (Alcorn,
1993; Balée, 1994, 2013; Berkes, 2017; Erickson, 2008; Kalland, 2003;
Lepofsky and Caldwell, 2013; Redford and Stearman, 1993; Smith and
Wishnie, 2000). Even so, it is not hard to see how small populations
with intimate LTK could recognize the personal advantages of a sus-
tainable relationship with their natural resources and environment.
Archaeological cases contribute to these debates by showing how
communities, with presumably effective LTKs, have sometimes ad-
versely and sometimes beneficially altered their environments or left
evidence of sustainable strategies that mitigated overuse (Brewington
et al., 2015; Broughton, 1994; Etnier, 2007; Groesbeck et al., 2014).

6. Conclusions

Human ecodynamics research today is a reflection of the theoretical
history of ecology and ecological anthropology, insights on human

entanglements in ecological processes, new methods, and political and
ethical perspectives on how to direct socio-ecological insights toward
desirable future environmental and social outcomes. Increasingly, this
is done in collaboration with traditional knowledge experts and
Indigenous communities. Having reviewed the history and application
of the human ecodynamics concepts and related frameworks, we are
now in a position to directly address the questions first posed in the
introduction.

6.1. Where does the H.E. concept come from? What are its influences?
What, if anything, separates H.E. from related frameworks such as historical
ecology or resilience theory?

Human ecodynamics has emerged from a variety of overlapping
frameworks and constructs in ecology, ecological anthropology, his-
torical ecology, resilience theory and similar perspectives. Evolutionary
economist Kenneth Boulding was likely the first scholar to use the term
in the late 1970s, and even in its early uses, human ecodynamics was
already associated with key elements of its current meaning, inspired by
shifts in the interpretive fabric of ecological and social theories. Since
McGlade (1995) brought the term to archaeology, it has been used
primarily by archaeology-centered studies of past human-environ-
mental interactions, embracing elements of environmental and post-
processual archaeologies. Since that time, human ecodynamics has
paralleled and overlapped research efforts defined under the historical
ecology framework, and while there are differences in how the two
terms were introduced, they now are generally treated as synonyms.
One might therefore comfortably speak of historical ecology as a re-
search framework for the study of human ecodynamics, positing one as
in a disciplinary context (perhaps properly an “inter-discipline”), and
the other a subject of interdisciplinary study. One could advocate for
the reverse framing as well. The argument would be polemic at best.
Concepts from resilience theory are incorporated into both frameworks,
further emphasizing overlap across all three frameworks.

‘Human ecodynamics’ particularly draws attention to the dynamic
nature of socio-ecological systems, aptly capturing the expectation that
these systems respond actively and responsively to internal and external
influences, shifts in structural configurations, and unanticipated,
chance confluences of factors whose combinations matter more for the
status of ‘the system’ than any single variable in isolation. Dugmore
et al. (2012) demonstrate this point well in showing how Norse
Greenlanders were able to adapt to a range of climate variability
through the onset of the Little Ice Age, but failed to cope with similar
scale perturbations when additional, unrelated factors co-occurred.

6.2. Does H.E. contain a defined theoretical or methodological commitment
and dedicated set of practitioners?

In response to Holm's query quoted in the Introduction about
whether H.E. has a unifying interpretive theory or model, the short
answer is “no.” H.E. is theoretically agnostic and open to different
conceptual frameworks appropriate for explaining different aspects of
socioecological change. Theoretical assumptions and propositions
cannot all be correct in every instance, and we do not advocate an open-
ended, anything-goes, theoretical pluralism. Nevertheless, we suggest
that H.E. should be viewed as a subject of study and not a paradigm;
human ecodynamic-related questions can be explored through any
theoretical framing that seems relevant to a given question or inter-
pretive issue. This makes the topic fertile ground for comparing the
effectiveness of different approaches and providing a rich interpretive
diversity. Nagaoka and Wolverton (2016:473) make a similar point in
discussing the benefits of ethnobiology as a framework for zooarch-
aeological research. They suggest that subject-centered orientations can
be less divisive than one often finds in the polemic ideological land-
scape of discipline-centered communities like Archaeology and An-
thropology. We are not as convinced that subject-based identities are
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necessarily freer of dissent on theoretical and methodological issues
than other ways of framing research. But certainly, a lack of theoretical
specificity is advantageous for a subject with a potentially diverse array
of research questions about systems affected by a range of forces. It also
may be the case that the most divisive epistemological and ontological
debates have been excluded by the way H.E. research has attracted or
repelled potential practitioners.

Even though it may be untethered to any specific theory, H.E. re-
search has tended to share several common principles, for example
embracing dynamism and challenging determinism. H.E. research also
tends to recognize historical contingency, human agency, and the key
notion of social-natural systems (that humans are not separate or iso-
lated from the environment). Many scholars rely on optimality models
for predicting a range of human behaviors; some extend this to com-
puter modeling. Many embrace the analytical concepts of complexity
and engage in systems thinking.

As with theory, human ecodynamics has no specific claim on
methods of practice, per se. Even so, the study of human-environmental
interactions and change has been fundamentally shaped and—in its
current form—made possible by a range of methodological advance-
ments in paleoecology/paleoclimate, molecular zooarchaeology and
archaeobotany including isotopic ecology and aDNA analyses. These
methods are often paired with synthetic paleodemography, made more
robust—if not less controversial—by the accumulation of large radio-
carbon data sets and the development of methods for modeling changes
in the intensity of archaeological deposition and arguably, population.
With the ability to connect climate, ecology, demography, mobility and
exchange through archaeological deposits, it is increasingly possible to
correlate social and ecological variability within the same stratigraphic
settings, reducing the dependence on correlations between proxy series,
such as lake pollen or glacial cores, over great distances.

With these improved methods and data sets informing interpreta-
tions about environmental, demographic, and social dimensions of the
past, it is possible to identify patterns and ask questions about human
resilience to environmental and social influences. It is also possible to
reverse the question and ask about the resilience of non-human popu-
lations and ecosystems to human perturbations due to factors such as
human immigration, increased density, technological change, adoption
of domesticates, changes in political organization, urbanization, and
warfare.

6.3. Is the human ecodynamics term useful in other ways, for example in
facilitating interdisciplinary collaborations?

Our overview should make clear that human ecodynamics captures
and summarizes a frame of reference that has yielded a flurry of pro-
ductive, interdisciplinary research into integrated human-environ-
mental change. This flurry has been led by archaeologists, who have
drawn willing collaborators from other fields into the fray. The re-
sulting scale and scope of interdisciplinary research has been possible
for several reasons. First, the unique availability of large funding
packages from NSF CNH initiative and other funding streams, created a
unique catalyst to develop human ecodynamics case studies and ad-
vance the theory and methods around the dynamics of socio-ecological
system change. Second, H.E. research has benefited from the growth of
large-scale digital databases and coordinating research networks—that
allow for the opportunity to synthesize records from multiple small-
scale projects. Both scales of projects have hugely benefited from
methodological advances in disciplines outside of archae-
ology—geosciences, genetics, and more.

6.4. What can Indigenous knowledge contribute to human ecodynamics
research?

As archaeologists today are aware, many Indigenous and local
communities are culturally and spiritually committed to maintaining

lifestyles in landscapes and ecosystems long part of their cultural
heritage. These groups have robust and intimate knowledge about the
ecosystem processes, variabilities, and dynamics often inaccessible to
outside research methods. They have insights into environmental his-
tories and cultural responses in the past (e.g., Crowell, 2016). Com-
munity historians and leaders are also keenly aware of the hazards of
socio-ecological change and often eager to document long-term his-
tories of natural and cultural change to better prepare for the future and
to support traditional claims whose violation only undermines com-
munity resilience in today's complex globalized world. Collaborative
human ecodynamics research is a way for outside archaeologists and
their collaborators to help serve these goals and participate pragmati-
cally in the research of a “usable past” (Stump, 2013), that is, where
communities see an interest in pursuing such research.

6.5. How can human ecodynamics research contribute to society?

Archaeologists are increasingly eager to put their understanding of
the past to use in the present. H.E. research and the synthesis of what
Nelson et al. (2016:299) call “completed experiments in human eco-
dynamics” is a key way to make these contributions. From local to
global scales, H.E. is often promoted as a source of long-term in-
formation on integrated socio-ecological changes that should be re-
levant to contemporary society. There are at least three general ways
that H.E. can make contributions to our contemporary world. First,
understanding of human ecodynamics can contribute to issues in con-
temporary conservation and habitat management. Historic collapses of
the stocks of herring (McKechnie et al., 2014; McKechnie and Moss,
2016), sea otters (Larson et al., 2002, 2012; Springer et al., 2003), and
elk or the ‘out-of-control’ deer populations across eastern North
America (e.g., Wolverton et al., 2007) can best be understood by
comparison to long-term case studies in human ecodynamics, drawing
on zooarchaeology, paleoclimate research, and land use evidence. More
broadly, human ecodynamics themes run through the core of what
archaeologists today consider to be the most important grand challenges
in archaeology (Kintigh et al., 2014). These include issues of resilience,
complexity, mobility and human-environmental interactions. Third, as
part of historical science, H.E. research can affect change in cultural
values, through the perspective of ‘disclosure’ (e.g., Borgmann, 2000, as
cited in Wolverton and Lyman, 2012). According to this philosophical
concept, humans mainly make sense of the world through day-to-day
experiences and those accumulated over a lifetime. The vastness of time
and space—as understood from geology, paleobiology, and archae-
ology—are not readily ‘disclosed’ to the human imagination. To the
extent that historical science helps people conceptualize deep time and
worlds beyond their own lives, such scholarship can promote a shift in
values, especially regarding the impact of current actions on the future.
The thinking goes: if we can change the way people feel about the past,
we may be able to get them to think differently about their impact on
the present and the future. How can H.E. research begin to address this
need? A starting place is to devote more resources to translating sci-
entific understanding from H.E. research into formats that engage the
broader public, which can take a range of forms. If we agree that en-
gaging the public about human-environmental history is important,
then there is a clear need for more incentives to support such engage-
ment (from research funding agencies, professional organizations, and
agencies that fund archaeological mitigation).

In closing, we are optimistic for the future of H.E. research, carried
out as such or under the banner of historical ecology or any other re-
lated term. As archaeologists, it is invigorating to collaborate with
scholars and students with different training and experiences on ques-
tions that require our mutual engagement. H.E. research gives us the
opportunity to cross the artificial but ingrained natural and human
divide. It is not easy, but it is intellectually rewarding and holds sig-
nificance for a globalized society facing dramatic climate change, re-
source management crises, endangered lifestyles, and social unrest.
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