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Environmental and spatial factors affecting surface water quality in a
Himalayan watershed, Central Nepal
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A B S T R A C T

Various spatial interrelationships among sampling stations are not well explored in the spatial modeling of water
quality literature. This research explores the relationship between water quality and various social, demographic,
and topographic factors in an urbanizing watershed of Nepal with a comparison of different connectivity matrices
to conceptualize spatial interrelationships. We collected electrical conductivity and dissolved oxygen data from
surface water bodies using a handheld probe and used the data to establish relationships with land use, topog-
raphy, and population density-based explanatory variables at both watershed and 100-m buffer scales. The linear
regression model was compared with different eigenvector-based spatial filtering models. These spatial filtering
models were constructed using five different spatial conceptualizations based on different graph types generated
from the geographic coordinates of the sampling sites. Population density, elevation, and percentage of sand in
the watershed and riparian regions are most important in explaining dissolved oxygen concentration and electric
conductivity. A human signature as population density and increased sand and gravel cover can be detected in this
watershed impacting water quality. Among different graph types compared, the relative graph type provided the
highest model strength signifying a stronger upstream-downstream relationship of dissolved oxygen, while k-
nearest graph types with four neighbors provided the strongest model performance, indicating the impact of local
factors on electrical conductivity. The relationships between socio-environmental factors and water quality and
their spatial interrelationships identified in this work shed light on the source, mobilization, and transport of
dissolved oxygen and electrical conductivity and can assist the water quality management endeavor.

1. Background

A stream’s water quality is a result of a complex interaction of natural
and anthropogenic processes in the watershed. Land-use change, popu-
lation density, geology, and topography affect water quality in rivers
(Baker, 2003; Lintern et al., 2018a). Human-modified land use is
generally associated with degraded water quality and undermines
ecosystem sustainability, including degradation of the freshwater
ecosystem (Allan, 2004; Foley et al., 2005; Zampella et al., 2007). The
anthropogenic impacts on surface water quality are not always
straightforward, as complex interactions among various social, environ-
mental, climatic, and political factors determine the consequences of
these changes (Baker, 2003; Turner and Rabalais, 2003). These impacts
are usually manifested as increased water temperature, increased nutri-
ents (e.g., nitrogen and phosphorus), salt compounds, reduction in oxy-
gen availability, and increased conductivity (Lintern et al., 2018a). The

high concentration of nutrients and increased water temperature typi-
cally results in reduced oxygen levels in the water, as increased tem-
perature reduces the solubility of oxygen, and remaining dissolved
oxygen is also consumed rapidly by aquatic organisms, signifying
eutrophication and deteriorated water quality (Cox, 2003).

Researchers have been using watershed characteristics at different
scales to understand the spatial patterns of different water quality pa-
rameters across the stream network (Allan, 2004; King et al., 2005).
Different landscape characteristics such as landcover types, topography,
and other relevant explanatory features are extracted at scales including
the entire watershed, riparian buffer, or some intermediate scales. The
scale effects are not universal, as some factors are likely to affect water
quality at the riparian scale, while others tend to do that at a watershed
scale (Mainali et al., 2019). These relationships are different among
different sites, seasons, and parameters studied as well. For example,
Uriarte et al. (2011) reported that turbidity and dissolved oxygen (DO)
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responded to land-use change at a larger watershed scale while nitrogen
was affected at the riparian buffer scale. While Mainali and Chang (2018)
found a generally stronger influence on water quality at the stream buffer
scale, the impact of scale in their model performance varied according to
the parameters studied and seasons at which water quality data were
collected. Some studies like Pratt and Chang (2012), Sliva and Williams
(2001), and Zampella et al. (2007) reported a more significant influence
of the whole watershed than a 100m buffer in their analyses.

Regression modeling approaches are commonly used to explore
landscape factors affecting water quality at different scales. As water
quality information is tied to a location, regression modeling approaches
are expected to incorporate spatial interrelationships among different
locations from which water quality information is collected. If spatial
relationships are not considered, regression modeling might violate the
assumption of independence of the residuals of such models. Several
spatial regression models overcome the limitation of ordinary least
square (OLS) models in analyzing the relationship between water quality
and landscape variables. These models include spatial lag and error
models (Anselin, 1988), spatial eigenvector-based models (Borcard and
Legendre, 2002; Tiefelsdorf and Griffith, 2007), geographically weighted
regression (GWR) models (Brunsdon et al., 1998), and spatial stream
network-based models (Peterson and Hoef, 2010; Ver Hoef et al., 2006).
In this work, we use an eigenvector-based spatial filtering-based regres-
sion method to explore the relationships between water quality and
landscape matrices. We use eigenvector-based spatial filters to capture
the spatial heterogeneity in the data and remove any clustering of re-
siduals, which might lead to residual spatial autocorrelation (Getis and
Griffith, 2002). Spatial filtering techniques generate a new set of
explanatory variables representing the response variable’s spatial struc-
ture. A selected set of those eigenvectors are then used as spatial pre-
dictors along with other predictor variables in the regression models.
This approach has been recently used to modelaverages and trends in
water quality (Mainali and Chang, 2018, 2020).

In the water quality modeling literature, different spatial conceptu-
alizations of sampling sites, and their role in model outputs are not
adequately explored (Mainali et al., 2019). Most studies use the spatial
filtering approach with standard neighborhood criteria and weight ma-
trix parameters without any attempt to modify them. In this work, we
aim to explore how spatial conceptualizations of sampling sites rendered
as different graph types in spatial-filtering affect the model output of DO
and conductivity. We generate spatial eigenvector-based filters using five
different graph types – Delaunay, Gabriel, Relative, Minimum Spanning
Tree, and k-nearest—and use respectively fitted spatial filters in the
regression model to compare their effectiveness in modeling dissolved
oxygen and conductivity against the simple linear regression models.

This work uses the Setikhola watershed in central Nepal as a case
study to explore the relationships between water quality and landscape
features in the Nepal Himalaya. In Nepalese Himalaya, different water
quality parameters respond to the differences in land use, land man-
agement, natural vegetation, and atmospheric deposition that are usually
directly affected by elevation (Jenkins et al., 1995). As in most of the
other parts of the world, nutrient loss from forested lands is lower than
non-forested lands in the Himalayan region (Pandey et al., 1983). Collins
and Jenkins (1996) reported that although the agriculture catchments
showed higher ammonium content during the wet season, they were
unlikely to damage aquatic biota in Nepal’s mostly non-commercial
agriculture practices. However, fertilizer input per hectare has since
substantially increased, from 31 kg in 1995 to 131 kg in 2015 (Bista et al.,
2016). As a result, surface water pollution due to agricultural runoff has
also increased, especially in the mid-hill and lowland Terai region of
Nepal (Bista et al., 2016; Sharma et al., 2005). Urbanization has also
significantly increased in Nepal. In the study watershed, the urbanized
area more than doubled from 1990 to 2013 (Rimal et al., 2015). The
impact of urbanization on water quality is sparsely studied in Nepal and
is mostly focused in the capital city of Kathmandu (Kannel et al., 2007a;
2007b; S. Hammoud et al., 2018; Vaidya and Labh, 2017). The spatially

explicit information related to water quality and the role of different
landscape characteristics is not explored in the study watershed.

We assessed the spatial patterns of dissolved oxygen (DO) and elec-
trical conductivity using the data collected from the field in December
2018 and January 2019. DO and electrical conductivity were chosen
because they are important indicators of water pollution and the
ecological integrity of surface water bodies (Cox, 2003; Lintern et al.,
2018a). Data related to conductivity provide us information about the
ability of water to pass electrical current, a measure of the availability of
anions usually sourced from various chemicals, including alkali, chlo-
rides, sulfides, and carbonate compounds. Conductivity is also related to
temperature, as a warmer temperature tends to have higher conductivity
(US EPA, 2013). Conductivity values are important indicators of bio-
logical integrity, as changes in conductivity usually indicate that pollu-
tion from discharge or other sources is entering the water bodies. The
survival of aquatic organisms like fishes, algae, and macrophytes is
directly related to oxygen availability in water. DO provides information
about the human impacts in the water bodies, as increased temperature
from anthropogenic activities leads to the reduction of dissolved oxygen.
Polluted water has lower DO concentration because aquatic plants and
bacteria in the polluted water consume oxygen, as does the decay of
organic materials, which leads to eutrophic conditions (USGS DO, 2006).

A recent review byMainali et al. (2019) reported that different spatial
conceptualizations of the sampling sites to incorporate the neighborhood
impacts on water quality remain unexplored in water quality modeling
literature. In this work, we compare various spatial conceptualizations of
sampling sites by leveraging the graph theory literature and statistical
packages available in R software. We attempt to answer the following
research questions:

(1) How do DO and conductivity spatially vary in this watershed? (2)
How different landscape features like the land cover, topography,
and population density affect the water quality in the study
watershed? and (3) How do different spatial conceptualizations of
the sampling sites affect model results in this watershed?

2. Methods

2.1. Study area

Our study area is the Setikhola watershed, which includes the
Pokhara valley and adjoining hills and mountains in Central Nepal
(Fig. 1). It is an example of an urbanization gradient in Nepal (Rimal
et al., 2015). The City of Pokhara is one of the biggest cities in Nepal, a
famous tourist destination, and a gateway to the popular Annapurna
Conservation Area. The valley floor is a metropolis with a population
greater than 500,000, while the hills are dominated by subsistence
agriculture. The high elevation regions are mostly near-wilderness with
forests, prairies, and snow-covered mountains, protected as a part of the
Annapurna Conservation Area (ACAP, 2017). The area of this watershed
is about 990 km2 and includes 381 km of the river; three major lakes
cover approximately 9 km2 (Baral Gauli et al., 2016). There is a total of 6
lakes with 3 major lakes and other smaller lakes (Fig. 1b).

The elevation of the watershed ranges from 700 m to more than 8000
m above sea level. This watershed is located in one of the wettest regions
of Nepal, with a total annual rainfall of about 4000–5400 mm, most of
which falls during the monsoon season, June–August (CBS, 2013). The
flow of rivers and the volume of lakes respond to the cyclic pattern of
rainfall. The flow rate of the river was recorded at 40 � 37 m3/s during
June and July of 2012 (Pokharel et al., 2018). The lake system of the
valley floor was recently added to the list of important wetlands as a
Ramsar site (Baral Gauli et al., 2016). The water bodies of the proposed
study area are home to dozens of waterbird species, native fishes, en-
dangered otters, and amphibians (Bhandari and GC, 2008; Husen and
Sherpa, 2017; Kafle et al., 2008). Many endangered raptors, including the
slender-billed vulture, also inhabit this area and depend on the water
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resources directly and indirectly.
Most of the recent biodiversity-related studies in this region only

focused on terrestrial systems like forests and rangelands, typically
overlooking aquatic biodiversity (Thapa et al., 2015). The water system
is an important habitat for different aquatic organisms, provides
ecosystem services to people living around it, and is also a major eco-
nomic driver in this valley, including the tourist attractions in lakes and
rivers, and fishery activities in the lakes (Gurung et al., 2005; Husen and
Sherpa, 2017). With increasing development around the lake in sur-
rounding towns, sand gravel mining activities along the riverbanks for
building construction, water quality has become a great concern for
sustaining various human activities and ecological functions. Therefore,
understanding the factors affecting the quality of surface water is of
paramount importance for both people and the ecosystem in this
watershed.

2.2. Data collection

2.2.1. Water quality data
We sampled 93 data points from rivers and lakes of the watershed.

There were 48 river data points and 35 lake data points. These data

points were aggregated to 61 points after combining duplicate sampling
in the river and different locations in the lake (Table 1). The field data
were collected from December 20, 2018, to January 20, 2019. This dry
winter period was chosen to minimize the effect of meteorological factors
on water quality. There was not any precipitation in the watershed
during and preceding the data collection period based on the Pokhara
airport precipitation data acquired from the Department of Hydrology
and Meteorology, Nepal (DHM, 2020, Fig. 2). We collected pH, con-
ductivity, DO, and temperature data using the YSI probe (Professional
Plus #603190). The YSI probe was dipped just below the surface in

Fig. 1. Map of the study area. (a) Study watershed with respect to Nepal country boundary. (b) Details of study watershed with the sampling locations.

Table 1
List of different types of data used in the analysis.

Data Name Type Resolution Source

Water Quality Point Point data Field sampling, 2019
Land Cover
Types

Raster 30-m raster Classified from
Landsat 8, 2017

Elevation and
Slope

Contour layer
converted to raster

30-m raster Department of
Survey, Nepal, 1986

Population Raster 100 m,
resampled to 30
m

WorldPop Nepal
(2015)
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different water bodies. In this work, we use electrical conductivity and
dissolved oxygen (DO) data because they were relatively stable across the
different times of the day in the watershed in winter, thereby allowing
spatial pattern analysis.

2.2.2. Landcover data
A landcover classification of a Landsat 8 image was performed using

the Google Earth Engine (Google Earth Engine, 2020). A cloud-free image
was selected for the year 2017 as there was not any cloud-free image
available for the year 2018 or early 2019 when sampling was performed.
We used the Classification and Regression Tree (CART) classification
method to classify land cover into seven different classes (Urban Light,
Urban Dense, Agriculture, Forest, Sand, Bare, Snow & Glaciers). The
Urban Dense landcover refers to the region with densely developed areas
like downtownwhich are also prevalent in some of the highway junctions
in our study area. The Urban Light land cover refers to the urban sprawl
in the agricultural regions. These lightly dense urban regions usually are
interspersed with agricultural lands.

The overall accuracy of the landcover map was about 82 percentage.
The accuracy was measured by creating an error-matrix with a total of
115 polygons. Based on landcover information collected in the field, a set
of known landcover type polygons were created, covering the entire
watershed. The landcover category of those polygons was compared with
the classified image by creating a confusion matrix (Lewis and Brown,

Fig. 2. Daily precipitation during and before the data collection (DHM, 2020).
Field water quality data were collected during December 20, 2018, and January
20, 2019.

Fig. 3. Spatial patterns of different explanatory variables used in the analysis. (a) Land cover types, (b) elevation from sea level in meters, (c) Slope in degrees, (d)
Population density (number of people per hectare).
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2001). The confusion matrix provides us information about the per-
centage of pixels correctly classified in different landcover types. The
confusion matrix was used to calculate the user’s accuracy and the pro-
ducer’s accuracy, which were averaged to derive an overall accuracy. The
landcover map hence derived was then used to extract different water-
shed level percentage land cover types to use as explanatory variables
(Fig. 3a).

2.2.3. Topographic data
We used the Department of Survey, Government of Nepal’s 20-m

contour data as our elevation dataset. This dataset was interpolated to
the digital elevation model (Fig. 3b) using the topo-to-raster the inter-
polation technique with ArcGIS (ArcGIS 10.5.1, 2020). The elevation
surface was converted into a slope raster using the surface analysis tool of
ArcGIS 10.5.1 (Fig. 3c). The interpolated elevation surface was also used
to delineate the watershed boundary for each sampling station. The
watershed polygons were used to extract the percentage of different
landcover types, human population density, and an average of elevation
and slope.

2.2.4. Population data
The latest population estimate based on WorldPop data was used

(WorldPop Nepal, 2015). This is a 100-m resolution population estimate
for the year 2015 (Fig. 3d). The population raster was clipped with a
watershed boundary shapefile.

2.3. Data processing and analysis

2.3.1. Watershed delineation and predictor variables extraction
The subwatershed boundaries of the study area were delineated for

each sampling point using the watershed hydrology tool of ArcGIS, which
involved calculating flow direction, flow accumulation, and delineation
of watershed boundary based on the user-defined outlet. We used the
zonal statistics tool to calculate an average and standard deviation of
elevation, slope, and population density. The zonal histogram tool was
used to calculate the number of pixels of each landcover type for each
watershed draining to the sampling points. That value was converted to
the percentage of each landcover type. A buffer of 100m from the center
of the stream was calculated using the buffer tool in ArcGIS. We chose a
100m buffer as most of the streams in this watershed are narrow and a
100-m distance from the stream captures the immediate surrounding of
the stream. It is also a standard practice in the water quality modeling
literature to start the buffer distance with 100 m (Allan, 2004; Mainali
and Chang, 2018; Sliva and Williams, 2001). Those buffer polygons were
clipped for each watershed. Predictor variables were extracted for the
buffer of each watershed draining into the sampling point.

2.3.2. Exploratory data analysis
We mapped the spatial patterns of different water quality parameters

and compared the differences between rivers and lakes. There were 48
river data points and 35 lake data points. To test whether there is sig-
nificant spatial clustering, we carried out spatial cluster and outlier
analysis (Anselin’s Local Moran’s I) statistics using ArcGIS. This clus-
tering was used to map high and low-value clusters of the water quality
parameters in the watershed.

2.3.3. Regression analysis
After all the explanatory data sets were extracted for each sampling

point, we used R version 3.6.1 software to analyze the data (Bivand,
2019; R Core Team, 2019). Only stream data points were used during
regression analysis to remove any noise from the lakes.

This spatial linear regression modeling approach attempts to explore
two major things; first, the relationships between various water quality
parameters and landscape features at different scales, and second explore
the impact of various spatial conceptualizations of sampling sites. This
modeling approach attempts to mimic the spatial interrelationships

between sampling sites by comparing several spatial approaches. In
doing so we use both environmental variables related to watershed
characteristics and processes as well as the spatial variables as spatial
eigenvectors derived from distance matrices among sampling sites. The
spatial eigenvectors which are spatial predictors are derived for each
graph type to account for the spatial interrelationships depicted in each
graph type. This will provide us with the model strength as an R2 value,
various model coefficients representing the magnitude and directions of
each environmental variable, and significant spatial predictor as spatial
eigenvectors.

The response data sets (Dissolved Oxygen and Electrical Conductiv-
ity) were evaluated for their distribution using the Shapiro-Wilk test. We
found that DO concentration was normally distributed while electric
conductivity was not. Therefore, electrical conductivity was log-
transformed before the regression modeling. The variation inflation
factor (VIF) statistics were run to identify the predictor variables that
were not autocorrelated. We chose predictor variables having VIF less
than 10. Using the predictor variables, regression analysis was run for
dissolved oxygen and conductivity both at the watershed and buffer
scale.

2.3.4. Spatial regression models and different graph types
In this work, different spatial interrelationships among sampling sites

were explored using graph theory. Graph theory uses the simple math-
ematical concept of nodes connected by the edges that have weights and
directions. These edges connected by nodes can be used to decipher the
processes and mechanisms of the underlying spatial phenomenon being
studied (Dale and Fortin, 2010). Several graph types are being used in
graph theory literature. These different graph types have different levels
of connectivity and result in different adjacency wmatrix (Yan et al.,
2019). We hypothesize that using different connectivity matrices resul-
ted from these graph types allows us to examine the spatial relation
among sampling stations to better understand the underlying process and
mechanism of water quality parameters. A default spatial graph type of
spatial filtering algorithm is the Delaunay graph type, a 6-node degrees
graph type (each node connects to 6 other nodes). The other graph types
used are the subgraphs of the Delaunay that have different node degrees:
Gabriel- 4, Minimum Spanning Tree- 2, k-nearest neighbor- 2, and rela-
tive - 3 (Dale and Fortin, 2010). All the graph types used in this analysis
are undirected maps where edges link two vertices symmetrically
(Fig. 4). Some of the graph types, like Relative and Minimum Spanning
Tree, mimic the stream network to a certain extent.

Spatial-filtering algorithms were implemented using the spatialreg
package in R version 3.6.1 (Bivand, 2019; R Core Team, 2019). The first
step of this process involved creating a weight matrix based on neigh-
borhood criteria using different graph types (Fig. 3). Each weight matrix
was then decomposed and transformed using a set of mathematical
functions to create eigenvalues and corresponding n-1 eigenvectors
(Chun et al., 2016; Tiefelsdorf and Griffith, 2007). A set of fitted spatial
filters that mimics the spatial structure of the response variable and can
reduce the residual spatial autocorrelation was then selected to use as
predictor variables along with other environmental variables in spatial
regression for each graph type (Tiefelsdorf and Griffith 2007).

The eigenvector-based spatial filtering can be expressed as the
following equation.

Y ¼Xβ þ Ekβε þ ε (1)

In equation (1), Y is a dependent variable, X is a matrix of indepen-
dent variables. Ek denotes the selected matrix of fitted spatial-filtering
based eigenvectors, β is a set of regression coefficients for predictor
variables, βε is a set of regression coefficients for selected eigenvectors,
and ε is random noise (error) (Chun et al., 2016; Mainali and Chang,
2018). While identifying coefficients the program uses a t-test to identify
significant variables and the coefficients derived from the regression
model.
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Fig. 4. Schematic representation of spatial patterns of the data points based on different graph types (Data points were created randomly using R software
version 3.6.1).

Fig. 5. Spatial patterns of concentration of a) DO and b) Conductivity.
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3. Results

3.1. Spatial patterns

DO
The DO values of the watershed range from 4.7 to 10.38 mg/L with an

average concentration of about 7.00 mg/L. The DO concentrations are
higher at the main stem of Seti River while they are lower in other
tributaries and lakes (Fig. 5a). There are clusters of high DO values in the
high elevation regions, but no low-low clusters (Fig. 6a). The median
difference of DO is significant (p ¼ 0.00048, H-test) between rivers and
lakes (Fig. 7a), with higher DO in rivers than lakes. The DO values along
the Setikhola stem are the highest. This result shows that the main stem
of Setikhola River has an excellent DO range to support aquatic life, while
DO in lakes and other tributaries are lower.

Conductivity
The conductivity of this watershed ranged from 16.1 to 354 μs/cm

with a mean of about 150 μs/cm. Pokharel et al. (2018) reported an
average of 166 μs/cm conductivity in the Seti-Khola River. In Fig. 5b we
can see that some of the western tributaries have significantly lower
conductivity than the rest of the watershed. Conductivity also substan-
tially differed between rivers and lakes in this watershed, with signifi-
cantly higher values in rivers than lakes (p¼ 1.11*10�8, H-test) (Fig. 7b).

3.2. Correlation analysis

The elevation standard deviation was significantly correlated with
both DO and conductivity at both scales, while slope was positively
correlated with DO at buffer scale only (Table 2). But slope standard
deviation was correlated significantly with DO at the buffer scale while
with conductivity at both scales. The average population density was
significant for conductivity at the buffer scale only, while the standard
deviation was significant at both scales. The forest landcover was
significantly positively correlated with DO at the buffer scale, while
agriculture was significantly positively correlated with both DO and
conductivity at the buffer scale but not at the watershed scale. The

percentage of the sand cover was significantly negatively correlated with
the conductivity at the buffer scale.

3.3. Regression results

The R2 value of the DOmodel ranged from 0.25 to 0.5 while R2 values
of conductivity ranged from 0.3 to 0.85 (Tables 3 and 4). The higher R2

values for both spatial and aspatial models were reported using the 100-
m buffer scale. Fig. 8 displays spatial interrelationships among different
sampling locations. The Relative and Minimum Spanning Tree graph
types are the closest representation of the stream network, while k-
nearest graph types have revealed the local clusters based on the im-
mediate neighbors. The relative graph type yielded the highest model

Fig. 6. Spatial clustering of the data values a) DO and b) Conductivity.

Fig. 7. Range of DO (a) and conductivity (b) values in lakes and river. Kruskal
walis rank sum test for DO.
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performance for DO, while the k-nearest graph type yielded the highest
model performance for conductivity (Fig. 8). The independent co-
efficients associated with the landscape matrix with the different graph
types are the same. It refers to the fact that the intensity and direction of
impacts of those parameters on water quality values are similar. The only
difference being the spatial eigenvectors (vec). We can see from Tables 3
and 4 that there are a different set of spatial eigenvectors loaded in
different graph types even though the coefficients associated with the
landscape level predictor variables are the same. In Tables 3 and 4 we

have reported the variables which are significant with p-value less than
or equal to 0.05.

3.3.1. Dissolved oxygen regression model
Different spatial conceptualizations yielded various model strengths

for DO. The R2 values with explanatory variables at the watershed scale
ranged from 0.25 to 0.48, while it is generally higher at the buffer scale
with values ranging from 0.35 to 0.5 (Table 3, Fig. 9a). All models were
statistically significant with a 95 percent confidence interval (p � 0.05).
As shown in Fig. 9a, spatial filtering-based regression always increases
model performance, but the highest model performance for DO models
was achieved when the relative graph type was used in both watershed
and buffer scales. Only the standard deviation of elevation was a signif-
icant predictor at a watershed level. The standard deviation of the pop-
ulation and percentage of sand/gravel were significant predictors at the
100-m buffer scale (Table 3). The best model was derived using the
relative graph spatial conceptualization at the buffer scale, with predictor
variables % sand, and spatial eigenvector number 6 and 16.

3.3.2. Conductivity regression model
The conductivity model strengths were generally higher than DO. All

models were significant at p � 0.05. The model strengths of conductivity
also varied according to different spatial conceptualization. The R2

values ranged from 0.3 to 0.85 at the watershed scale while the buffer
scale model strength ranged from 0.62 to 0.84 R2 values (Table 4,
Fig. 9b). Buffer scale models were usually weaker for conductivity
models except for the aspatial linear model. The k-nearest graph model

Table 2
Pearson Correlation analysis (n ¼ 54) between landscape matrices and water
quality parameters at different scales. * significant at 0.05, ** significant at 0.01
level of significance.

Dissolved Oxygen Conductivity

Buffer Watershed Buffer Watershed

Elevation 0.48* 0.50** 0.25 0.30*
Elev Std 0.54** 0.55** 0.47** 0.52**
Slope 0.47** �0.08 0.17 �0.04
Slope Std 0.44** �0.18 0.41** �0.08
Population Mean �0.02 �0.03 0.39** 0.05
Pop Std 0.11 0.05 0.59** 0.46**
Urban Dense 0.02 0.10 0.13 0.001
Urban Light �0.46** �0.01 �0.26 0.115
Forest 0.43** 0.01 0.17 �0.19
Agriculture �0.30* �0.01 �0.29* 0.09
Sand �0.23 �0.1 �0.48** 0.1
Bare 0.18 �0.085 0.27 0.085

Table 3
Watershed scale model attributes for Dissolved Oxygen and Conductivity. Full Forms: rsac: Residual Spatial Autocorrelation z value. AIC: Akaike Information Criteria.
elev: average elevation, elev_std: standard deviation of elevation, slope_std, ag_set: percentage agriculture and settlement, pop_mean: average population density,
pop_std: standard deviation of populationS density. vec: significant spatial eigenvector.

Dissolved Oxygen

Model Type rsac R2 AIC intercept Elev*10�6 elev_std slope_std ag_set pop_mean pop_std Spatial Filters

Aspatial 0.032 0.25 125.72 6.98 8.14 0.001 �0.05 0.0042 0.033 �0.02
Delaunay �0.09 0.33 121.79 6.98 8.14 0.001 �0.05 0.0042 0.033 �0.02 vec1
Gabriel �0.13 0.41 118.54 6.98 8.14 0.001 �0.05 0.0042 0.033 �0.02 vec1, vec5, vec16
Relative �0.15 0.47 113.0 6.98 8.14 0.001 �0.05 0.0042 0.033 �0.02 vec1, vec8, vec 16
Minimum Spanning Tree �0.14 0.41 117.7 6.98 8.14 0.001 �0.05 0.0042 0.033 �0.02 vec1, vec8
k-nearest �0.12 0.32 123.1 6.98 8.14 0.001 –0.05 0.0042 0.033 �0.02 vec1
Conductivity
Aspatial 0.50 0.32 104.3 3.43 356 0.00021 0.0098 0.0089 0.0014 0.069*
Delaunay �0.16 0.78 59.7 3.43 356 0.00021 0.0098 0.0089 0.0014 0.069* vec1, vec2, vec3, vec4
Gabriel �0.26 0.88 52.9 3.43 356 0.00021 0.0098 0.0089 0.0014 0.069* vec1, vec2, vec3, vec4, vec5, vec7
Relative �0.26 0.79 54.13 3.43 356 0.00021 0.0098 0.0089 0.0014 0.069* vec1, vec2, vec3, vec5, vec6
Minimum Spanning Tree �0.23 0.79 56.09 3.43 356 0.00021 0.0098 0.0089 0.0014 0.069* vec4, vec7
k-nearest �0.22 0.85 42.6 3.43 356 0.00021 0.0098 0.0089 0.0014 0.069* vec3, vec5, vec8

Table 4
Buffer scale model attributes for Dissolved Oxygen and Conductivity. AIC: Akaike Information Criteria. elev_std: Standard deviation of elevation, pop_std: population
standard Deviation, ag_set: percentage agriculture and settlement land cover, sand: percentage sand cover vec: significant spatial eigenvector.

Dissolved Oxygen

Model Type rsac R2 AIC Intercept elev_std
10–3

pop_std ag_set sand bare Spatial Filters

LM �0.12 0.35 118 7.8 2.4 �0.012 �0.39 �0.066* 0.017
Delaunay �0.12 0.37 119 7.8 2.4 �0.012 �0.39 �0.066* 0.017
Gabriel �0.062 0.34 120 7.8 2.4 �0.012 �0.39 �0.066* 0.017 vec1
Relative �0.142 0.50 109 7.8 2.4 �0.012 �0.39 �0.066* 0.017 vec6, vec16
Minimum Spanning Tree �0.0322 0.32 122 7.8 2.4 �0.012 �0.39 �0.066* 0.017 NA
k-nearest �0.16 0.39 117 7.8 2.4 �0.012 �0.39 �0.066* 0.017 NA
Conductivity
LM 0.038 0.63 79 5.42 1.3* 0.027* �0.2 �0.11* 0.046*
Delaunay �0.08 0.71 70 5.42 1.3* 0.027* �0.2 �0.11* 0.046* vec14
Gabriel �0.1 0.67 75 5.42 1.3* 0.027* �0.2 �0.11* 0.046* vec2
Relative �0.16 0.70 71 5.42 1.3* 0.027* �0.2 �0.11* 0.046* vec11
Minimum Spanning Tree �0.20 0.72 69 5.42 1.3* 0.027* �0.2 �0.11* 0.046* vec11, vec4
k-nearest �0.2 0.84 47 5.42 1.3* 0.027* �0.2 �0.11* 0.046* vec5, vec12
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strength was comparable between watershed and buffer scale models
which also yielded the highest model strengths at both scales. In the
regression model, the population standard deviation was always posi-
tively related to conductivity. When k-nearest spatial conceptualization
was used, the average elevation was also positively associated with
conductivity at the watershed scale. But at the buffer scale, elevation
standard deviation, population standard deviation, and percentage bare
land positively explain the variation of conductivity while percentage
sand predicts it negatively (Table 4). The k-nearest graph at the water-
shed and the buffer scales had an R2 value close to 0.85. However, the
watershed scale model is simpler, with elevation and population stan-
dard deviation along with eigenvectors 3, 5, and 8 as the predictor
variables.

4. Discussions

4.1. Spatial patterns of dissolved oxygen and conductivity

Our DO range falls within the range reported elsewhere in Nepal and
other Asian countries (Adhikari et al., 2017; Su et al., 2012; Yadav et al.,
2019). Pokharel et al. (2018) reported an average of 8.0 mg/L in the
Seti-Khola River from the data collected in July 2012. DO values greater
than 4.0 mg/L are considered fair to support aquatic life, while higher
than 6.5 is good, above 8.0 is excellent (Washington Ecology, 2002). In
our study, DO is generally higher in the mainstream high-flow river,
which is consistent with other studies that report increasing river flows
are associated with high DO (Post et al., 2018). A relatively random
spatial pattern for DO except for a high-high cluster of the high elevation
result suggests that the factors affecting DO concentration are also
randomly distributed in the watershed. The high-high cluster in the high
elevation region might be associated with proximity to forest, cooler
water temperatures coming from the snow and glaciers, the steeper slope,
leading to higher turbulence resulting in rapid re-aeration. (de Mello
et al., 2018; Su et al., 2013).

The conductivity range we reported is within a standard limit (max of
1500 μs/cm) according to the Nepal government (Water Quality Stan-
dard Nepal, 2005). Our conductivity values are within the range of
previous studies like Pokharel et al. (2018) who reported an average of
166 μs/cm in this watershed. The higher range of conductivity in the
high-flowing river like main SetiKhola and its bigger tributaries, and
lower values in the smaller tributaries and lakes, suggest that conduc-
tivity is a function of watershed size and probably in-stream activities
such as the dissolution of salts from bedrock. In a larger watershed, water
delivered to the surface water comes in contact with more soil surface,
thereby washing more ions and increasing conductivity (Water on the
Web, 2020). We also cannot rule out the possibility that the differences in
conductivity in different parts of the watershed might be a consequence
of the differences in underlying geology: rock types with abundant
dissolvable ions tend to increase water conductivity in the stream (Water
on the Web, 2020).

Fig. 8. Different spatial interrelations of the study sites based on different graph types.

Fig. 9. Model strengths of dissolved oxygen and conductivity at different scales
and graph types.
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Water quality in the study lakes was poorer than in the fast-flowing
rivers that recycle nutrients and oxygen quickly. Both DO and conduc-
tivity were lower in the lakes. Notice, however, that there were some
tributaries where conductivity was lower than the lakes, probably
because of their small watershed size and/or underlying geology. In
many cases, lakes have different water quality conditions from rivers
because of their stagnant nature, physicochemical conditions, and re-
sponses to receiving waters that are typically affected by a combination
of natural and human impacts (Low et al., 2016). Lakes hold nutrients
and increase concentration over time, which can lead to eutrophication.
All the lakes in this region also suffered some form of eutrophication,
with such impacts more visible in small lakes (Field visit 2018/2019).
According to local people, the macrophyte growths in bigger lakes are
periodically removed to make room for boats. The aquaculture practices
in the lakes, like fish farming in some of the lakes, and other factors such
as the presence of the river in the watershed, land use, geology, and
climate affect the intensity of human impacts in the lake (Nielsen et al.,
2012; Zang et al., 2011).

4.2. Relationship between landscape matrix and water quality

We report that the riparian forest cover is positively correlated to DO,
which is in line with other studies (e.g., (de Mello et al., 2018). The urban
land cover did not directly correlate with either DO or conductivity. It is
probably because dense urban land only covers a small area and is not
evenly distributed across the entire watershed. The strong correlation of
forest land cover with DO at the buffer scale suggests that all other
human-modified landcover types are detrimental to DO, as expected
according to other studies (Zhou et al., 2012). The effect of land cover in
DO is manifested through increasing temperature, which leads to
increased biological oxygen demand and depleted oxygen in the water
bodies (Schindler et al., 2017). Various other studies have also found
agricultural land use affecting DO significantly, which is consistent with
our finding (Yadav et al., 2019). A negative effect of the built-up area and
population growth on DO are also reported in various parts of the world
(Su et al., 2013).

DO in surface water measures the ability of water to support life; it
can be affected by various watershed factors. Different studies have
found varying levels of success in modeling DO utilize landscape char-
acteristics and statistical approaches (Su et al., 2013). found a maximum
of 0.83 R2 when they compared various spatial statistical models for the
Qintiang river of China, while de Mello et al. (2018) reported 0.72 in the
Sarapui River basin of Brazil (Chang, 2008). reported R2 values in the
range of 0.7 in the study of the Han River Basin, Korea. Although lower
than these studies, we were successful in deriving the model with a
reasonable R2 value of 0.5 using a combination of somewhat limited
socio-environmental (population standard deviation, agriculture, sand,
and bare land cover) and spatial-filter based variables. The remaining
variations might be explained by geology, soil types, and climatic vari-
ables, which are unavailable in the study region. Our result suggests that
the percentage of sand coverage at the stream banks is a significant
determinant of DO. This finding suggests that the sand and gravel mining
rampant in the riparian area of this watershed might be reducing oxygen
availability in the water bodies. Some previous studies have shown that
sand and gravel mining can affect the aquatic ecosystem and also degrade
overbank areas (Sreebha and Padmalal, 2011). However, the exact
mechanisms by which the gravel and sand mines impact surface water
quality remain to be explored.

Conductivity can be modeled with watershed characteristics better
than other water quality parameters because of easier movements of
soluble ions to the water, which are unique to different landscape char-
acteristics under consideration (Lintern et al., 2018b). We found a high of
0.8 R2 value in the current study. Conductivity can be affected by various
watershed levels and in-stream factors like the concentration of phos-
phorus and nitrogen in the water, area of wetland surrounding water
bodies, and climatic factors like precipitation (Fracz and Chow-Fraser,

2013). We also found several of these factors affecting the conductivity
concentration of the river reaches. The presence of agriculture or sand
cover and high population density reduces conductivity significantly in
our watershed, which aligns with the study by Wenner et al. (2003) who
reported that degraded streams usually had lower conductivity.

4.3. Impacts of spatial scales

Various studies have found different results in terms of the scale at
which landscape matrices affect water quality. Studies have found a
stronger effect of watershed characteristics than buffer scale character-
istics on water quality in their models (Houlahan and Findlay, 2004; Pratt
and Chang, 2012; Zhou et al., 2012). In contrast, Mainali and Chang
(2018) reported a 100-m buffer as the best scale in explaining various
water quality parameters in a larger river basin in South Korea. Similarly,
we found generally higher model strength at the buffer scale for DOwhile
similar model strengths between 100-m buffer and watershed scale for
conductivity. Our results also indicate that there was a higher influence
of different factors at the buffer scale than the watershed scale; land cover
in the immediate surrounding of the river like sand and agriculture are
significantly making water quality worse by reducing DO and
conductivity.

4.4. Impacts of different spatial conceptualizations

We report that spatial filters significantly increase model perfor-
mance, and spatial conceptualizations matter when creating spatial fil-
ters because they produce different model outputs. When spatial
eigenvectors are created, the weights are provided based on the values of
the neighborhood, which are different in different graph types. For DO,
the highest model strengths were with Relative Graph type while it was
the k-nearest for conductivity. Relative and Minimum Spanning Tree are
the graph types closest to the real river network of our watershed; a
difference between Relative and Minimum Spanning tree is in the con-
nections between stations on the west side of the watershed. Relative
graph type is closer to the real river network as the edges in this graph
more closely follow the river network. The highest model strength in
Relative Graph type suggests that DO is more directly affected by
upstream-downstream relations along the river network. Many previous
studies also showed that DO concentration was predominantly governed
by various upstream factors like solute concentrations (Bailey and
Ahmadi, 2014) and inclusion of upstream-downstream relationships
improved the model performance of DO (Money et al., 2009).

The k-nearest spatial conceptualization refers to the neighbors
defined around its immediate surroundings in all directions. The higher
conductivity model strength using k-nearest spatial conceptualization
suggests that conductivity is more affected by local than upstream fac-
tors. The local clustering of conductivity could be better captured by k-
nearest clustering than other graph types. Previous studies also reported
that the electric conductivity of the river is influenced by neighbors in all
directions, or upstream values (Lintern et al., 2018b; Peterson and Hoef,
2010). It is also to be noted that the model strengths using other graph
types are also significant, and only slightly lower than the k-nearest
spatial conceptualization.

5. Conclusions

The spatial patterns of DO and conductivity, their relationships with
socio-environmental factors, and various spatial and statistical in-
terrelationships identified in this work elucidate the source, mobiliza-
tion, and transport of DO and conductivity and can guide water quality
management efforts. In this watershed, we report that the spatial clus-
tering pattern of DO is affected by upstream factors, thereby revealing
distinct DO concentrations in the main-stem and tributaries. Conductiv-
ity also revealed distinct spatial variations in main-stem and other trib-
utaries and exhibited local clustering across tributaries.
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The spatial regression models were successfully developed and
compared using water quality data collected in the field, and various
geographic information systems based social and environmental data.
Among the factors considered in the analysis, we found the population
density, agricultural land cover, and sand cover negatively impact the
water quality as revealed by their relationships with DO and conduc-
tivity. The inter-scale comparison revealed a generally stronger impact of
a 100-m riparian scale over the entire watershed in explaining the vari-
ation of DO and conductivity.

Our work provides a novel example of using graph theory in eluci-
dating relationships among water quality measurement sites and their
affinity with landscape processes. The model strengths are usually
different according to the different spatial conceptualization of in-
terrelations among sampling stations, as demonstrated by the graph
types. Among different graph types compared, the relative graph types
provided the highest model strength, signifying stronger up-stream
downstream relation with DO, while k-nearest graph types with four
neighbors provided the strongest model performance, indicating the
greater impact of local factors in electrical conductivity.
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