
Portland State University Portland State University

PDXScholar PDXScholar

Electrical and Computer Engineering Faculty
Publications and Presentations Electrical and Computer Engineering

8-2001

Fast Heuristic Minimization of Exclusive-Sums-of-Fast Heuristic Minimization of Exclusive-Sums-of-

Products Products

Alan Mishchenko
Portland State University

Marek Perkowski
Portland State University

Follow this and additional works at: https://pdxscholar.library.pdx.edu/ece_fac

 Part of the Electrical and Computer Engineering Commons

Let us know how access to this document benefits you.

Citation Details Citation Details
Alan Mishchenko and Marek Perkowski, "Fast Heuristic Minimization of Exclusive Sums-of-Products,"
Proc. RM'2001 Workshop, August 2001.

This Conference Proceeding is brought to you for free and open access. It has been accepted for inclusion in
Electrical and Computer Engineering Faculty Publications and Presentations by an authorized administrator of
PDXScholar. Please contact us if we can make this document more accessible: pdxscholar@pdx.edu.

https://pdxscholar.library.pdx.edu/
https://pdxscholar.library.pdx.edu/ece_fac
https://pdxscholar.library.pdx.edu/ece_fac
https://pdxscholar.library.pdx.edu/ece
https://pdxscholar.library.pdx.edu/ece_fac?utm_source=pdxscholar.library.pdx.edu%2Fece_fac%2F195&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/266?utm_source=pdxscholar.library.pdx.edu%2Fece_fac%2F195&utm_medium=PDF&utm_campaign=PDFCoverPages
http://library.pdx.edu/services/pdxscholar-services/pdxscholar-feedback/?ref=https://pdxscholar.library.pdx.edu/ece_fac/195
mailto:pdxscholar@pdx.edu

Fast Heuristic Minimization of Exclusive-Sums-of-Products∗

Alan Mishchenko and Marek Perkowski
Department of Electrical and Computer Engineering
Portland State University, Portland, OR 97207, USA

[alanmi,mperkows]@ee.pdx.edu

∗ This work was supported by a research grant from Intel Corporation.

Abstract

Exclusive-Sums-Of-Products (ESOPs) play an important
role in logic synthesis and design-for-test. This paper
presents an improved version of the heuristic ESOP
minimization procedure proposed in [1,2]. The
improvements concern three aspects of the procedure:
(1) computation of the starting ESOP cover; (2) increase of
the search space for solutions by applying a larger set of
cube transformations; (3) development of specialized data-
structures for robust manipulation of ESOP covers.
Comparison of the new heuristic ESOP minimizer
EXORCISM-4 with other minimizers (EXMIN2 [3],
MINT [4], EXORCISM-2 [1] and EXORCISM–3 [2]) show
that, in most cases, EXORCISM-4 produces results of
comparable or better quality on average ten times faster.

Introduction

Two-level Sums-Of-Products (SOPs) have been widely
used to represent and manipulate Boolean functions. Exact
and heuristic SOP minimization has traditionally attracted
attention of researchers because in many applications it is
important to have as compact SOP representation as
possible. The value of Exclusive-Sums-Of-Products
(ESOPs) and ESOP minimization, on the other hand, has
been underestimated for the following reasons:
• The EXOR gate, as implemented in the widely used

standard cell libraries, is almost two times larger and
slower compared to NAND and NOR gates.

• Relatively few algorithms use ESOPs for internal
representation of Boolean functions.

• The exact minimization of ESOPs is practical only for
arbitrary functions of five input variables and special
classes of functions up to ten variables [5], while the
heuristic minimization is based on search algorithms

and is computationally more expansive than SOP
minimization.
However, the EXOR gate and ESOPs play an

important role in logic synthesis, design for test, and other
areas of computer technology:
• For many Boolean functions, the number of cubes in

minimal ESOPs is less then the number of cubes in
minimal SOPs [6].

• The EXOR gate has excellent testability properties
leading to efficient methods for automatic test pattern
generation and design for test [7].

• For many types of practical circuits, the selective use of
EXOR gates in logic synthesis yields better
implementations in terms of both area and delay [8,9].
Over the years, several ESOP minimization strategies

and ESOP minimizers have been created but none of them
matched well with our research purposes. Some of the tools
did not belong to the public domain; others had limitations
on the input data format. Above all, the available tools had
performance limitations when applied to large Boolean
functions. This motivated our work on a new user-friendly
minimizer EXORCISM-4, which follows the tradition of
previous ESOP minimizers, EXORCISM-2 [1] and
EXORCISM-3 [2], developed at Portland State University.

This paper presents the results of research directed
towards the development of a new ESOP minimization tool.
We have experimented with a number of approaches and
algorithms and selected those that proved to be practically
efficient. In our presentation below, both the successful and
the unsuccessful attempts to improve the performance of
ESOP minimization will be mentioned.

The rest of the paper is organized as follows. Section 1
discusses the previous work in ESOP minimization. Section
2 gives the main definitions. Section 3 discusses the general
data-flow in our minimization procedure. Section 4 reviews
the starting cover computation. Section 5 introduces and
illustrates the ExorLink operation. Section 6 presents the

look-ahead strategies. Section 7 discusses data structures
and implementation issues. Section 8 gives experimental
results comparing the new tool with other tools. Section 9
concludes the paper and outlines the future research
directions.

1 Previous Work

Exclusive-Sums-of-Products have been introduced by
I. I. Zhegalkin in 1927 [10,11] and later independently
rediscovered by S. M. Reed [12] and D. E. Muller [13].
A systematic classification of various families of Reed-
Muller (Zhegalkin) expresions has been given in [14].

The approaches to heuristic ESOP minimization can be
roughly classified as follows:
• Iterative cube transformation [1-4,15-18]
• Minimization of families of ESOP expansions [19-21]
• Simplification based on term rewriting [22]
• Zakrevskij stair-case method [23]

Most of the ESOP minimizers use the first strategy.
They iteratively apply a set of selected cube transformations
to single cubes, cube pairs, or larger cube groups.
If replacement of the starting cubes by the resulting cubes
leads to simplification or some other desirable
improvement, the cover is modified without changing the
function represented by it.

The approach developed in this paper also uses cube
transformations. The difference is that we use one but very
general cube transformation, distance-k ExorLink. When
applied in the context of limited look-ahead discussed in
Section 7, ExorLink subsumes many other (possibly all)
cube transformations known to date.

Relevant to our approach (in particular, to the
computation of a starting cover) is the second minimization
approach listed above. This approach attempts heuristic
ESOP minimization by developing efficient algorithms to
minimize specialized classes of AND-EXOR expressions:
Positive Polarity Reed-Muller Forms (PPRMs), Kronecker
and Pseudo-Kronecker Forms (KRMs and PKRMs),
Generalized Reed-Muller Forms (GRMs), etc. These
classes differ from ESOPs in restrictions applied to
polarities of literals or in the type of canonical expansions
used to the generic decision diagrams. The reader is
referred to [6,14] for definitions of these classes.

Because the set of all ESOPs is a superset of
expressions belonging to any of the above mentioned
classes, an exact or heuristic minimization procedure
developed for a class of functions may be used as an
approximation, or a starting point, for ESOP minimization.

Of particular importance to the research in this paper is
the algorithm for exact minimization of Pseudo-Kronecker
expressions for symmetric functions [21]. This algorithm

gives a good trade-off between the quality and the runtime.
On the one hand, Pseudo-Kronecker forms are a relatively
comprehensive subclass of ESOPs and therefore finding the
exact minimum in this class yields relatively good quality.
On the other hand, the Pseudo-Kronecker minimization
algorithm exploits the BDD representation and therefore
can be applied to a wide range of benchmarks, for which
shared BDDs can be constructed. This algorithm is
discussed in detail in Section 4.

2 Preliminaries

This section gives the basic definitions used in the paper.
The truth tables and Karnaugh maps of OR and

Exclusive-OR (EXOR) operations are shown in Fig. 1.

 a b + a b ⊕⊕⊕⊕
 0 0 0 a b 0 1 0 0 0 a b 0 1
 0 1 1 0 0 1 0 1 1 0 0 1
 1 0 1 1 1 1 1 0 1 1 1 0
 1 1 1 1 1 0

Figure 1. OR and EXOR operations.

A literal is a Boolean variable in the negative or positive
polarity. A cube is a product term composed of literals
using Boolean AND operation.

Two cubes coincide in variable x if x does not appear in
the cubes or if x appears in the cubes in the same polarity.
Two cubes differ in variable x if they do not coincide in
variable x. The distance between two cubes is the number
of variables, in which the cubes differ.

A variable appears in the cube in one of the three forms:
(1) negative polarity; (2) positive polarity; (3) don’t-care.

For example, assuming that cube dba belongs to
function with input variables (a,b,c,d), variable a appears in
positive polarity, variables b and d appear in negative
polarity, and variable c appears as a don’t-care.

An Exclusive-Sum-Of-Produces (ESOP) is an Exclusive-
OR of zero or more cubes. An ESOP is reduced if it does
not contain identical cubes. An ESOP is minimal if all cube
pairs have distance 2 or more. An ESOP is exact minimum
if it contains the minimum number of cubes among all
ESOPs representing the given function.

The following propositions can be proved using the
fundamental property of EXOR operation.

Proposition 1: Two identical cubes (distance-0 cubes)
can be added to any ESOP without changing the function
represented by it.

Proposition 2: The EXOR of two cubes that have
distance 1 can be represented by a single cube.

The ExorLink operation discussed in Section 5 extends
these two propositions to cube pairs with arbitrary distance
between the cubes.

3 ESOP Minimization Algorithm

This section outlines the main steps of the heuristic
ESOP minimization procedure and data representations
used to implement these steps.

Minimization Algorithm
The pseudo-code of the minimization algorithm is

shown in Fig. 2. The minimization procedure takes the
multi-output function and the quality parameter, which
determines how many minimization loops are performed.
esop HeuristicMinimization(func F, quality Q)
{

esop Cover = GenerateStartingCover(F);
while (Q > 0) {
ResetCubePairs(Cover);
do {

do {
Cover= AgressiveMinimization(Cover);

} while (there is improvement);
Cover= LastGaspMinimization(Cover);

} while (there is improvement);
Q = Q-1;

}
Cover = RefinementMinimization(Cover);
return Cover;

}

Figure 2. Pseudo-code of ESOP minimization algorithm.

After computing the starting cover using the BDD-
based algorithm [21], the data flow enters the main
minimization loop. Each time the main loop is entered
internal data structures storing the candidate pairs for the
application of distance-2, distance-3 and distance-4
Exorlink are reset.

Inside the main loop, there is another loop that applies
aggressive minimization strategy, as described in section 6,
“Look-Ahead Strategies”. When aggressive minimization
does not lead to improvement, the last gasp is applied,
which tries to get the cover out of the local minimum by
several additional rounds of distance-4 ExorLink.

Finally, when the minimization loops terminate, there
is a call to the procedure RefinementMinimization() which
tries to improve the literal count of the cover without
attempting to reduce the number of cubes.

This structure of the minimization procedure was found
as a result of extensive experimentation having the goal of
finding a sequence of minimization operations that perform
relatively well on a wide selection of benchmarks.

Data Representation
The input to the ESOP minimization software is the

text file in standard PLA or BLIF formats, representing a
multi-output Boolean function. In the current version of the

minimizer, the don’t-cares of the input function are ignored
and only the on-set of the function is considered.

The processing starts by creating the shared BDDs for
the input function. Dynamic reordering of variables is
enabled during the BDD construction, which allows us to
work with relatively large multi-output functions.

In general, the minimizer uses mixed explicit and
implicit data representations. After computing the starting
cover using shared BDDs, the representation switches to
cubes encoded in positional notation and stored explicitly
using bit strings. The subsequent cube operations and cover
transformations are carried out using the explicit
representation, except the verification step at the end.
During verification, the resulting cover is again converted
into shared BDDs and compared with the BDDs
constructed for the input function.

We experimented trying to replace the explicit
representation of cubes as bit strings by their implicit
representation using Zero-Suppressed Binary Decision
Diagrams (ZDDs) [26]. This attempt did not succeed
because ZDDs speed-up computation only if there is a way
to process many cubes in parallel. Meanwhile cube
transformations used in our approach, in particular, finding
all distance-k cube pairs and performing ExorLink
operation, requires processing cubes one at a time.

4 Starting Cover Computation

This section summarizes the BDD-based algorithm for
efficient minimization of the Pseudo-Kronecker expressions
used to compute the starting cover. A detailed discussion of
the algorithm, including the proof that it computes the exact
minimum of the Pseudo-Kronecker expressions for
symmetric functions, is given in [21].

The algorithm works in two passes. During the first
pass, the shared BDD of the input function is traversed
depth-first and in each node the best expansion is found and
saved in the lossless cache. The expansions are selected out
of the three canonical expansions (Shannon, Positive Davio
or Negative Davio) and the number of cubes they add to the
solution is used to evaluate their cost. It is possible to count
the number of cubes in the resulting Pseudo-Kronecker
expressions because they result from “flattening” the
Pseudo-Kronecker decision diagrams, which are simulated
(not explicitly constructed) by the algorithm presented in
Fig. 3. This algorithm also minimizes the number of literals
in the minimal Pseudo-Kronecker expression by preferring
Positive or Negative Davio to Shannon expansion whenever
it does not increase the cube count.

During the second pass, the enumeration of all paths in
the diagram is performed (Fig. 4). In each node, the best
expansion is retrieved from the lossless cache and,
depending on the expansion, one literal is added to the

array of the variable values representing the current cube.
When the traversing procedure reaches the bottom of the
diagram, it has the values of all variables collected in the
array, which is now used to generate the cube and add it to
the resulting cover. At the end of the traversal, the resulting
cover contains all cubes belonging to the exact minimum of
the Pseudo-Kronecker expression.

(exptype,int) CountCubesInExactPseudoKro(func F)
{

extype Exp; int Cost;

// consider the terminal cases
if (F == 0) return (pDavio, 0);
if (F == 1) return (pDavio, 1);
if ((Exp, Cost) = CheckCacheForResult(F))

return (Exp, Cost);

// determine the cofactors
(F0, F1) = DecomposeBdd(F, TopVar(F));

// recursively solve subproblems
int N0, N1, N2, Nmax, Cost;
N0 = CountCubesInExactPseudoKro(F0);
N1 = CountCubesInExactPseudoKro(F1);
N2 = CountCubesInExactPseudoKro(F0 ⊕ F1);

// determine the most costly expansion
MaxN = max(N0, N1, N2);

// choose the least constly expansion
if (MaxN == N0)

Exp = pDavio; Cost = N1 + N2;
else if (MaxN == N1)

Exp = nDavio; Cost = N0 + N2;
else /* if (MaxN == N2) */

Exp = Shannon; Cost = N0 + N1;

// cache and return the result
InsertIntoCache(F, Exp, Cost);
return (Exp, Cost);

}

Figure 3. A procedure for counting the number of cubes in
minimal Pseudo-Kronecker expansions.

5 ExorLink Operation

ExorLink operation has been introduced in [24] as a
generalization of several simple cube transformations used
in various approaches to ESOP minimization. The main
idea of ExorLink is to replace two cubes by a set of cubes
without changing the function.

The number of cubes to be substituted instead of the
initial cube pair is equal to the distance between the starting
cubes. If the distance between the cubes is more than 1,
there are several possibilities of performing ExorLink, each
of them leading to functionally equivalent representation
composed of different cubes.

For example, consider the following equivalent
transformations of cubes ba and ba constituting the
distance-2 ExorLink operation:

GenerateExactPseudoKro(bdd F, char * VarValues)
{

// consider the terminal cases
if (F == 0) return;
if (F == 1) {

cube NewCube = CreateCube(VarValues);
AddCubeToCover(NewCube);
return;

}

// find the best expansion by a cache lookup
extype Exp = CheckCacheForResult(F);

// determine the top-most variable
var X = TopVar(F);

// determine the cofactors
(F0, F1) = DecomposeBdd(F, X);

// generate cubes in the left/right branches
if (Exp = pDavio) {

VarValues[X] = VAR_ABSENT;
GenerateExactPseudoKro(F0, VarValues);
VarValues[X] = VAR_POSITIVE;
GenerateExactPseudoKro(F0⊕ F1, VarValues);

}
else if (Exp = nDavio) {

VarValues[X] = VAR_ABSENT;
GenerateExactPseudoKro(F0, VarValues);
VarValues[X] = VAR_NEGATIVE;
GenerateExactPseudoKro(F0⊕ F1, VarValues);

}
else /* if (Exp = Shannon) */ {

VarValues[X] = VAR_NEGATIVE;
GenerateExactPseudoKro(F0, VarValues);
VarValues[X] = VAR_POSITIVE;
GenerateExactPseudoKro(F1, VarValues);

}
}

Figure 4. A procedure for the generation of minimal
Pseudo-Kronecker expansions.

ba ⊕⊕⊕⊕ ba = a ⊕⊕⊕⊕ b = a ⊕⊕⊕⊕ b .
In general, distance-k ExorLink operation produces k! cube
groups containing k cubes each. In all the cube groups there
are k*2k-1 different cubes, some of them appearing is more
than one group. The cube set generation is illustrated by
distance-3 ExorLink applied to cubes abc and cba in Fig.
5. Zeros are not shown.

 Set 1 Set 2 Set 3 Set 4 Set 5 Set 6
 0 1 0 1 0 1 0 1 0 1 0 1

 00 1 1 1 1 1 1
 01
 11 1 1 1 1 1 1
 10

Figure 5. Example of distance-3 Exorlink.

Observe that cube groups correspond to different paths
in the Boolean space connecting minterms abc and cba . If
the distance between the starting cubes is k, there are k
directions to make the first step, k-1 directions to make the
second step, and so on. As a result, there are k! paths each
of them corresponding to one cube group.

6 Look-Ahead Strategies

The previous ESOP minimization algorithms [1,2] used
a combination of full backtracking and limited
backtracking. Full backtracking means exploring all the
branches of the search tree up to a certain depth, selecting
the best way to modify the cubes, and performing the
required transformation. Limited backtracking stands for
exploring a fixed number of branches in the search tree up
to a certain depth. The branches to explore may be selected
randomly or found heuristically.

For ESOP minimization with ExorLink as a basic cube
transformation routine, it was found that “large-depth look-
ahead with a small number of backtracks is much faster and
usually gives better results than the small-depth look-ahead
and a large number of backtracks, although the latter is also
sometimes very helpful”. [25]

We tested these and other look-ahead strategies and
finally adopted the one described as “backtrack until the
first success”. “Success” is defined differently depending
on the minimization strategy and the distance between the
cubes, to which ExorLink is applied.

Table 1 lists the criteria, which our algorithm uses to
determine whether the transformation is successful and
should be applied, or whether backtracking should continue
by testing the next available cube group. The next available
group may result from the same ExorLink (recall that
distance-k ExorLink produces k! cube groups) or from
ExorLink applied to the next cube pair in the queue of pairs
to be considered.

Table 1. The criteria for accepting cube transformations
resulting from the ExorLink operation.

Criteria for Accepting Cube Transformations ExorLink
Distance Aggressive Strategy Refinement Strategy

2 Leads to reduction in
the number of cubes.

Does not increase the
number of cubes.
Leads to reduction in
the number of literals.

3 Does not increase the
number of cubes.

Does not increase the
number of cubes.
Leads to reduction in
the number of literals.

4 Does not increase the
number of cubes.

Not used

In different modes of operation our algorithm applies a
different combination of aggressive and refinement
minimization. The general rule is that in each minimization
loop, aggressive strategy is applied several times to all cube

pairs starting from distance-2 ExorLink up to distance-4
ExorLink.

Depending on the requested minimization quality the
algorithm performs different number of minimization loops.
This number roughly corresponds to the value of the quality
parameter specified on the command line by the switch
“-q”. For example, “-q5” results in five minimization loops.

The trade-off between the quality and the computation
time is illustrated in Table 2 using benchmark “alu4.pla”,
which has 14 inputs and 8 outputs. The shared BDD node
count is 804. The input file reading and the starting cover
computation time are 0.07 sec and 0.03 sec, respectively.
The experiment is performed on a 933MHz Pentium III PC.

Table 2. Quality/runtime trade-off for alu4.pla.

Quality level (“-qN” switch), N
0 1 2 3 4 5 6 7 8 9 10

Cubes 440 440 435 435 415 415 415 414 411 411 411
Time, c 2.1 2.3 5.9 6.8 16.216.717.120.921.822.122.9

Using the above minimization strategy in the context of
ExorLink-4 allows us to make the following statement
about the minimization quality achieved by the algorithm.

Theorem. If the program runs long enough to
completely explore the subspace of each local minimum,
the above minimization strategy always escapes from any
local minimum that is one or two cubes deep.

Compared to this, distance-3 ExorLink [25] can only
guarantee getting out of the local minima one cube deep.
This difference explains why in some cases our minimizer
has found ESOP covers of smaller cardinality compared to
other minimizers (see section “Experimental Results”).

The following example illustrates the application of the
look-ahead strategies in the heuristic ESOP minimization.
Consider the function F = c a ⊕ dcba ⊕ ab ⊕ dca , shown
in Fig. 6 (left). The goal is to find the ESOP of this function
composed of the three cubes, dcba ⊕ dc ⊕ ab, shown in
Fig. 6 (right). It is easy to see that the desired cube
transformation consists of reshaping two cubes (c a ,

dcba), as shown in Fig. 6 (center), followed by combining
two distance-1 cubes (dc a , dc a) into one cube, dc .

 ab ab ab
 cd 00 01 11 10 cd 00 01 11 10 cd 00 01 11 10
 00 00 00
 01 01 01
 11 11 11
 10 10 10

Figure 6. Example illustrating the look-ahead strategies in
the heuristic ESOP minimization.

When the look-ahead is applied automatically by the
program, it will detect the distance-2 and distance-3 cube
pairs and apply the ExorLink operation to them. The
resulting cubes will be checked for being distance-0 or
distance-1 away from the cubes currently in the cover.

In the example of Fig. 6 (left), suppose the program
first applies the ExorLink operation to distance-2 cubes.
There is only one pair of distance-2 cubes, c a and dcba ,
shown in Fig. 7 (left). Two cube groups derived by
ExorLink-2 are given in Fig. 7 (center) and Fig. 7 (right).
Obviously, the second group will be accepted as the one
leading to the reduction in the number of cubes.

 ab ab ab
 Cd 00 01 11 10 cd 00 01 11 10 cd 00 01 11 10
 00 00 00
 01 01 01
 11 11 11
 10 10 10

Figure 7. Two cube groups resulting from ExorLink of the

distance-2 cubes, c a and dcba .

Suppose the program first applies the ExorLink
operation to distance-3 cubes. There are several pairs of
distance-3 cubes. Here we discuss only one pair, ab and

dca . Consideration for other cube pairs is similar. The
resulting six cube groups, each composed of three cubes,
are given in Fig. 8. Only one cube group features a cube
(dcab) that is distance-1 removed from a cube in the cover
(dcba). If this cube group is accepted, then the cover is
reshaped but the number of cubes is not reduced. The
reduction will be achieved in the future iterations by
applying the ExorLink operation to other cube pairs.

 ab ab ab
 cd 00 01 11 10 cd 00 01 11 10 cd 00 01 11 10
 00 00 00
 01 01 01
 11 11 11
 10 10 10

 ab ab ab
 cd 00 01 11 10 cd 00 01 11 10 cd 00 01 11 10
 00 00 00
 01 01 01
 11 11 11
 10 10 10

Figure 8. Six cube groups resulting from ExorLink of the
distance-3 cubes, ab and dca .

7 Implementation Issues

The following general principles of high-performance
programming have been used in the implementation of
EXORCISM-4.

Allocate Memory With Caution
The heuristic minimization algorithm described in this

paper generates a large set of intermediate cubes, which
only reshape the cover without improving its cardinality.
Because calls to system memory allocation are relatively
expensive in terms of runtime, EXORCISM-4 performs
efficient memory recycling. Memory allocated at the
beginning for the starting cover is never reallocated because
the size of the cover cannot increase during minimization.
To ensure efficient memory recycling, cubes that are not
currently in use are kept in a linked list. Adding and
removing cubes in the linked list is much more efficient
than calling systems memory allocation whenever a new
cube is created or deleted.

Terminate Computation As Early As Possible
In many cases, it is possible to speed up computation

by early detection of a situation when the result of
computation is useless for whatever reason. The
performance improvement is more or less substantial
depending on how often this situation occurs and how large
is the part of computation that can be skipped.

EXORCISM-4 uses early termination of computation
in the several cases.
• One of the operations repeated very often is computing

the distance between two cubes. The algorithm
considers only cube pairs with distance four or less. It
means that as soon as at least five different variables
are detected in the cubes, the rest of computation can
be skipped. This simple idea gives up to 20%
improvement in runtime for benchmarks with many
inputs and outputs.

• As shown in Section 6, distance-k ExorLink operation
produces k*2k-1 new cubes grouped into k! groups in
such a way that some of the cubes are encountered in
more than one group. Our algorithm considers cube
groups one by one and as soon as it find the matching
group, this group is used to reshape the cover.
Consequently, ExorLink is implemented in such a way
that instead of generating all k*2k-1 cubes at once, it
generates them “on demand”. This trick is responsible
for speeding up distance-4 ExorLink by at least 50%,
because in practice only 10 cubes on average out of 32
are often enough.

Reuse Results of Previous Computation
The importance of this principle can hardly be

overestimated, as witnessed by the success of caching
techniques speeding-up computation by many orders of
magnitude in BDD-based applications.

In case of EXORCISM-4, the standard BDD caching
techniques are used during the starting cover computation.
There are two other cases when caching helps reduce
unnecessary computation:
• Each new cube generated by ExorLink is tested for

distances with all other cubes present in the cover.
Even though at the beginning of testing it is not known
whether the cube will be taken into the cover, the
testing procedure stores information about those cubes
currently in the cover that have distances 2, 3, and 4
with the given cube. As a result, if the cube is
eventually accepted into the cover, there is no need to
compute candidate pairs for distance 2, 3, or 4
ExorLink in the following iterations.

• Finally, there is a way to reduce computation by saving
the results of distance-testing for those cubes that are
generated by ExorLink and included into more than
one out of k! groups.

Use Sorted Data Structures
Using sorted data structures (ordered lists, heaps, tries,

Patricia trees, etc.) often leads to faster search and
reduction of the access time.

We tried to store the cubes in an ordered list and in an
ordered matrix (sorting them by the number of positive and
negative literals). The rationale for doing this would be to
facilitate finding small-distance cube pairs, and thereby to
speed up cube selection for ExorLink. However, in practice
it turned out that sorting cubes does not help reducing the
runtime, and eventually we switched back to representing
the cover as an unsorted linked list cubes.

8 Experimental results

EXORCIMS-4 has been implemented in platform-
independent C++ using the BDD package CUDD [27] and
tested extensively on Unix and Windows workstations. The
experimental results below have been received on a
933MHz Pentium III PC under Microsoft Windows 2000.
At all times the program used no more than 50Mb of RAM.

A BDD-based verifier built into EXORCISM-4 has
been used to check the correctness of the minimization
results for all the benchmark.

To make a fair runtime comparison with earlier
programs, the time measurements of our program have been

normalized to reflect the speed of computers used to run the
programs. In particular, for comparison with EXMIN2 and
MINT, the computer used to get experimental result in [4]
has been considered 58 time slower then 933MHz Pentium
III. In case of EXORCISM-2 and -3, the coefficient was 24.
The normalization coefficient was determined by
considering benchmark “9sym.pla”.

Table 3 compares the results of minimization by
EXORCISM-4 with those of EXMIN2 [3] and MINT [4].
Table 4 compares EXORCISM-4 with EXORCISM-2 [1]
and EXORCISM-3 [2]. The comparison is in terms of the
number of cubes and literals in the final solution and the
CPU time spent for minimization. The last two columns in
Tables 3 and 4 give the ratio of the runtime needed by the
specified minimizer and the runtime of EXORCISM-4.

It follows from the tables that on small examples,
EXORCISM-4 is on average 6 times faster than EXMIN2
and 25 times faster than MINT. On larger examples, for
which the experimental results of EXMIN2 and MINT are
not available, EXORCISM-4 is 50 times faster than
EXORCISM-2 and 2 times faster than EXORCISM-3. In a
few cases, EXORCISM-4 was slower than EXORCSIM-3,
in particular, for benchmark “apex3.pla” not shown in
Table 3.

9 Conclusions

Research described in this paper resulted in the
development of a new heuristic ESOP minimizer,
EXORCISM-4. EXORCISM-4 compares favorably to other
minimizers in terms of minimization quality, is faster and
allows us to process larger multi-output Boolean functions.
The new tool accepts a wide spectrum of input data formats
(PLA, ESOP PLA, BLIF) and unlike EXORCISM-2 and
EXORCISM-3, does not require the input to be in the form
of a disjoint cover.

The disadvantages of the current implementation are
the following: (1) it considers only binary-input data,
(2) it does not take don’t-cares into account, and (3) it uses
explicit data structures (bit strings) to represent cubes on
the cover reshaping stage. The explicit data structures
explain why the performance degrades with the increase of
the size of the cube cover. However, even functions with
covers composed of several thousand cubes can be
processed in reasonable time (5-10 minutes).

We developed the new efficient ESOP minimizer
hoping that it will serve a variety of applications, and in
particular that it will open new opportunities for combining
the power of SOP and ESOP minimization to produce
efficient implementation of large logic functions.

References

[1] N. Song, M. Perkowski, "EXORCISM-MV-2: Minimization
of Exclusive Sum of Product Expressions for Multiple-Valued
Input Incompletely Specified Functions," Proc. ISMVL 1993,
pp. 132-137.

[2] N. Song, M. Perkowski, "Minimization of Exclusive Sum of
Products Expressions for Multi-Output Multiple-Valued
Input, Incompletely Specified Functions," IEEE Trans. on
CAD, Vol. 15, No. 4, April 1996, pp. 385-395.

[3] T. Sasao. “EXMIN2: A Simplified Algorithm for Exclusive-
OR-Sum-of Products Expressions for Multiple-Valued-Input
Two-Valued-Output Functions”. IEEE Trans. on CAD. Vol.
12, No. 5, May 1993. pp. 621-632.

[4] T. Kozlowski. Application of exclusive-OR logic in technology
independent logic optimisation. Ph.D. Thesis. January 1996.

[5] T. Sasao, “An Exact Minimization of AND-EXOR
Expressions Using BDDs”. Proc. of IFIP WG 10.5 Workshop
on Applications of the Reed-Muller Expansion in Circuit
Design, 1993, Germany, pp. 91-98.

[6] T. Sasao, ed., Representation of Discrete Functions, Kluwer
Academic Publishers, May 1996.

[7] U. Kalay, M. Perkowski, D. Hall, “A Minimal Universal Test
Set for Self Test of EXOR-Sum-Of-Products Circuits,'' IEEE
Trans. Comp. Vol. 49, #3, March 1999, pp.267-276.

[8] C. Yang, M. Ciesielski, V. Singhal. "BDS: A BDD-based
Logic Optimization System". Proc. of DAC 2000, pp. 92-97.

[9] A. Mishchenko, B. Steinbach, M. Perkowski. “An algorithm
for Bi-Decomposition of Logic Functions”. Accepted to DAC
2001.

[10] I. I. Zhegalkin, “O tekhnike vychisleniy predlozheniy v
simvolicheskoy logike” (About a Technique of Computation
of Expressions in Symbolic Logic), Mat. Sb. Vol. 34, pp. 9-
28, 1927.

[11] I. I. Zhegalkin, “Arifmetizatsiya simvolicheskoy logiki”
(Arythmetization of Symbolic Logic), Mat. Sb. Vol. 35, pp.
311-377, 1928.

[12] S. M. Reed. “A class of multiple-error-correcting codes and
their decoding scheme”, IRE Trans. Information Theory. Vol.
PGIT-4, pp. 38-49. 1954.

[13] D. E. Muller. “Application of Boolean algebra to switching
circuit design and to error detection”. IRE Trans. on Electron.
Comp. Vol. EC-3, pp. 6-12, 1954.

[14] D. H. Green, “Families of Reed-Muller canonical forms,” Int.
J. Electron. (UK), vol.70, no.2, 259-280, Feb. 1991.

[15] H. Fleisher, M. Tavel, J. Yeager. “A Computer Algorithm for
Minimizing Reed-Muller Canonical Forms”. IEEE Trans.
Comp. Vol. 36. No. 2, pp. 247-250. February 1987.

[16] M.Helliwell, M.A. Perkowski. “A Fast Algorithm to
Minimize Multi-Output Mixed-Polarity Generalized Reed-
Muller Forms. Proc. DAC’88. pp. 427-432.

[17] J. M. Saul. “An Improved Algorithm for the Minimization of
Mixed Polarity Reed-Muller Representations”. Proc.
ICCD’90. pp. 372-375.

[18] T. Kozlowski, E. L. Dagless, J. M. Saul. “An enhanced
algorithm for the minimization of exclusive-OR sum of
products for incompletely specified functions”. Proc. of
ICCD’95, pp. 244-249.

[19] D. Debnath, T. Sasao. “GRMIN: Heuristic Minimization
Algorithm for Generalized Reed-Muller Expressions”. Proc.
of IFIP WG 10.5 Workshop on Applications of the Reed-
Muller Expansion in Circuit Design 1995. Japan,
pp. 257-264.

[20] R. Drechsler and B. Becker. “Sympathy: Fast Exact
Minimization of Fixed Polarity Reed-Muller Expressions for
Symmetric Functions.” IEEE Trans. CAD, Vol. 16, #1, pp.
1-5, Jan. 1997

[21] R. Drechsler, “Pseudo-Kronecker Expressions for Symmetric
Functions”. IEEE Trans. Comp. Vol. 48. No. 8, Sept. 1999,
pp. 987-990.

[22] D. Brand, T. Sasao. “Minimization of AND-EXOR
expressions using rewriting rules”. IEEE Trans. Comp. Vol.
C42. No. 5, pp. 568-576, May 1993.

[23] A. Zakrevskij. “Minimum Polynomial Implementation of
Systems of Incompletely Specified Functions”. Proc. of IFIP
WG 10.5 Workshop on Applications of the Reed-Muller
Expansion in Circuit Design 1995. Japan, pp. 250-256.

[24] N. Song. Minimization of Exclusive Sum of Product
Expressions for Multi-Valued Input Incompletely Specified
Functions. M.S. Thesis. EE Dept. Portland State University.
Portland, OR, 1992.

[25] N. Song. A New Design Methodology for Two-Dimensional
Logic Cell Arrays. Ph.D. Thesis. EE Dept. Portland State
University. Portland, OR, 1997.

[26] S. Minato. Zero-Suppressed BDDs for Set Manipulation in
Combinatorial Problems. Proc. of DAC ‘93, pp. 272-277.

[27] F. Somenzi, BDD/ADD/ZDD package "CUDD", v.2.3.0,
http://vlsi.colorado.edu/~fabio/

Table 3. Comparison of ESOP minimization results with EXMIN2 [3] and MINT [4]

Benchmark Cubes Literals CPU time, c Comparison
Name Ins Outs EXM2 MINT Exor4 EXM2 MINT Exor4 EXM2 MINT Exor4 w/EXM2 w/MINT
5xp1 7 10 34 32 31 186 181 175 13 25 3 0.23 0.12
9sym 9 1 53 51 51 433 427 426 25 52 13 0.52 0.25
add6 12 7 127 127 127 872 936 859 430 320 31 0.01 0.10

addm4 9 8 91 90/89 90/89 654 651 624 129 355 39 0.30 0.11
b12 15 9 28 28 28 164 167 166 4 17 1 0.25 0.06
clip 9 5 68 64 64/63 517 492 479 55 140 11 0.20 0.79
ex7 16 5 81 81 81 601 592 584 46 166 13 0.28 0.08

f51m 8 8 32 31 31 161 185 162 10 22 5 0.50 0.23
in7 26 10 35 35 35 333 352 343 12 56 3 0.25 0.05
intb 15 7 307 267 268 3036 2519 2527 1353 2476 134 0.10 0.05
life 9 1 54 52/51 50/48 415 391 370 23 32 9 0.39 0.28

m181 15 9 29 29 29 169 172 171 5 18 1 0.20 0.06
m4 8 16 84 83 77/76 783 897 714 189 178 120 0.63 0.67

max512 9 6 89 88/83 84/82 696 723 672 71 187 64 0.90 0.34
rd53 5 3 15 16/15 14 60 69 57 2 2 1 0.50 0.50
rd73 7 3 42 36 36 221 194 197 20 36 9 0.45 0.25
rd84 8 4 59 55/54 59/58 330 303 333 45 11 17 0.37 1.54
ryy6 16 1 40 40 40 368 368 368 13 18 2 0.15 0.11
sao2 10 4 29 29/27 28 308 311 288 8 12 1 0.13 0.08
seq 41 35 259 249/248 246 5305 5187 5048 2797 15182 378 0.14 0.02

sym10 10 1 84 82 79 751 735 702 154 176 20 0.13 0.11
t3 12 8 25 25 24 209 214 216 5 10 1 0.20 0.10

t481 16 1 13 13 13 53 53 53 677 377 1 0.01 0.01
vg2 25 8 184 184 184 1992 2033 2010 163 1655 42 0.26 0.03
z4 7 4 29 29 29 145 148 133 4 9 3 0.75 0.33

Total 1891 1804 1791 18762 18300 17677 6253 21532 922 0.15 0.04
Gain 0 -87 -100 0 -462 -1085

 -4.6% -5.3% -2.5% -5.8%

Table 4. Comparison of ESOP minimization results with EXORCISM-2 [1] and EXORCISM-3 [2].

Bench mark Cubes Literals Time Comparison
Name Ins Outs Ex2 Ex3 Ex4 Ex4b Ex2 Ex3 Ex4 Ex2 Ex3 Ex4 w/Ex2 w/Ex3
add6 12 7 127 127 127 127 819 800 832 105 24 5 0.05 0.20
alu4 14 8 447 422 435 411 4816 4430 4520 6828 506 140 0.02 0.28

apex1 45 45 285 286 287 285 3796 3820 3998 4697 109 51 0.01 0.48
apex5 117 88 400 399 398 398 4038 4027 4065 20156 457 544 0.03 1.19

cps 24 109 135 135 140 135 2462 2625 3546 467 37 24 0.05 0.64
dule2 22 29 79 78 78 78 920 909 935 72 12 3 0.04 0.25
e64 65 65 65 65 65 65 2210 2272 2270 79 12 1 0.01 0.08
ex5 8 63 72 72 72 71 920 904 975 62 10 5 0.08 0.50

misex3 14 14 545 535 510 501 6837 6632 6141 18897 670 418 0.02 0.62
seq 41 35 245 248 247 246 4833 4822 5063 2996 77 52 0.02 0.68
spla 16 46 260 262 267 259 3420 3393 3969 1223 83 83 0.07 1.00

table3 14 14 166 166 166 166 2491 2491 2630 190 24 17 0.09 0.70
table5 17 15 156 156 156 156 2453 2449 2545 150 33 8 0.05 0.24
vg2 25 8 184 184 184 184 1993 1988 2017 225 29 8 0.04 0.28

Total 3166 3145 3132 3082 43008 41562 43506 59147 2083 1359 0.02 0.51
Gain 0 -21 -34 -84 0 -1446 +498

 -0.7% -1.0% -2.7% -3.4% +1.2%

	Fast Heuristic Minimization of Exclusive-Sums-of-Products
	Let us know how access to this document benefits you.
	Citation Details

	tmp.1415059508.pdf.DZd4H

