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Abstract 

Exclusive-Sums-Of-Products (ESOPs) play an important 
role in logic synthesis and design-for-test. This paper 
presents an improved version of the heuristic ESOP 
minimization procedure proposed in [1,2]. The 
improvements concern three aspects of the procedure: 
(1) computation of the starting ESOP cover; (2) increase of 
the search space for solutions by applying a larger set of 
cube transformations; (3) development of specialized data-
structures for robust manipulation of ESOP covers. 
Comparison of the new heuristic ESOP minimizer 
EXORCISM-4 with other minimizers (EXMIN2 [3], 
MINT [4], EXORCISM-2 [1] and EXORCISM–3 [2]) show 
that, in most cases, EXORCISM-4 produces results of 
comparable or better quality on average ten times faster.  

Introduction 

Two-level Sums-Of-Products (SOPs) have been widely 
used to represent and manipulate Boolean functions. Exact 
and heuristic SOP minimization has traditionally attracted 
attention of researchers because in many applications it is 
important to have as compact SOP representation as 
possible. The value of Exclusive-Sums-Of-Products 
(ESOPs) and ESOP minimization, on the other hand, has 
been underestimated for the following reasons: 
•  The EXOR gate, as implemented in the widely used 

standard cell libraries, is almost two times larger and 
slower compared to NAND and NOR gates. 

•  Relatively few algorithms use ESOPs for internal 
representation of Boolean functions. 

•  The exact minimization of ESOPs is practical only for 
arbitrary functions of five input variables and special 
classes of functions up to ten variables [5], while the 
heuristic minimization is based on search algorithms 

and is computationally more expansive than SOP 
minimization. 
However, the EXOR gate and ESOPs play an 

important role in logic synthesis, design for test, and other 
areas of computer technology: 
•  For many Boolean functions, the number of cubes in 

minimal ESOPs is less then the number of cubes in 
minimal SOPs [6]. 

•  The EXOR gate has excellent testability properties 
leading to efficient methods for automatic test pattern 
generation and design for test [7]. 

•  For many types of practical circuits, the selective use of 
EXOR gates in logic synthesis yields better 
implementations in terms of both area and delay [8,9]. 
Over the years, several ESOP minimization strategies 

and ESOP minimizers have been created but none of them 
matched well with our research purposes. Some of the tools 
did not belong to the public domain; others had limitations 
on the input data format. Above all, the available tools had 
performance limitations when applied to large Boolean 
functions. This motivated our work on a new user-friendly 
minimizer EXORCISM-4, which follows the tradition of 
previous ESOP minimizers, EXORCISM-2 [1] and 
EXORCISM-3 [2], developed at Portland State University. 

This paper presents the results of research directed 
towards the development of a new ESOP minimization tool. 
We have experimented with a number of approaches and 
algorithms and selected those that proved to be practically 
efficient. In our presentation below, both the successful and 
the unsuccessful attempts to improve the performance of 
ESOP minimization will be mentioned. 

The rest of the paper is organized as follows. Section 1 
discusses the previous work in ESOP minimization. Section 
2 gives the main definitions. Section 3 discusses the general 
data-flow in our minimization procedure. Section 4 reviews 
the starting cover computation. Section 5 introduces and 
illustrates the ExorLink operation. Section 6 presents the 



  

look-ahead strategies. Section 7 discusses data structures 
and implementation issues. Section 8 gives experimental 
results comparing the new tool with other tools. Section 9 
concludes the paper and outlines the future research 
directions. 

1 Previous Work 

Exclusive-Sums-of-Products have been introduced by 
I. I. Zhegalkin in 1927 [10,11] and later independently 
rediscovered by S. M. Reed [12] and D. E. Muller [13]. 
A systematic classification of various families of Reed-
Muller (Zhegalkin) expresions has been given in [14].  

The approaches to heuristic ESOP minimization can be 
roughly classified as follows: 
•  Iterative cube transformation [1-4,15-18] 
•  Minimization of families of ESOP expansions [19-21] 
•  Simplification based on term rewriting [22] 
•  Zakrevskij stair-case method [23] 

Most of the ESOP minimizers use the first strategy. 
They iteratively apply a set of selected cube transformations 
to single cubes, cube pairs, or larger cube groups. 
If replacement of the starting cubes by the resulting cubes 
leads to simplification or some other desirable 
improvement, the cover is modified without changing the 
function represented by it. 

The approach developed in this paper also uses cube 
transformations. The difference is that we use one but very 
general cube transformation, distance-k ExorLink. When 
applied in the context of limited look-ahead discussed in 
Section 7, ExorLink subsumes many other (possibly all) 
cube transformations known to date. 

Relevant to our approach (in particular, to the 
computation of a starting cover) is the second minimization 
approach listed above. This approach attempts heuristic 
ESOP minimization by developing efficient algorithms to 
minimize specialized classes of AND-EXOR expressions: 
Positive Polarity Reed-Muller Forms (PPRMs), Kronecker 
and Pseudo-Kronecker Forms (KRMs and PKRMs), 
Generalized Reed-Muller Forms (GRMs), etc. These 
classes differ from ESOPs in restrictions applied to 
polarities of literals or in the type of canonical expansions 
used to the generic decision diagrams. The reader is 
referred to [6,14] for definitions of these classes. 

Because the set of all ESOPs is a superset of 
expressions belonging to any of the above mentioned 
classes, an exact or heuristic minimization procedure 
developed for a class of functions may be used as an 
approximation, or a starting point, for ESOP minimization.  

Of particular importance to the research in this paper is 
the algorithm for exact minimization of Pseudo-Kronecker 
expressions for symmetric functions [21]. This algorithm 

gives a good trade-off between the quality and the runtime. 
On the one hand, Pseudo-Kronecker forms are a relatively 
comprehensive subclass of ESOPs and therefore finding the 
exact minimum in this class yields relatively good quality. 
On the other hand, the Pseudo-Kronecker minimization 
algorithm exploits the BDD representation and therefore 
can be applied to a wide range of benchmarks, for which 
shared BDDs can be constructed. This algorithm is 
discussed in detail in Section 4. 

2 Preliminaries 

This section gives the basic definitions used in the paper. 
The truth tables and Karnaugh maps of OR and 

Exclusive-OR (EXOR) operations are shown in Fig. 1. 

  a b +        a b ⊕⊕⊕⊕        
  0 0 0  a b 0 1   0 0 0  a b 0 1   
  0 1 1  0 0 1   0 1 1  0 0 1   
  1 0 1  1 1 1   1 0 1  1 1 0   
  1 1 1       1 1 0       

Figure 1. OR and EXOR operations. 

A literal is a Boolean variable in the negative or positive 
polarity. A cube is a product term composed of literals 
using Boolean AND operation.  

Two cubes coincide in variable x if x does not appear in 
the cubes or if x appears in the cubes in the same polarity. 
Two cubes differ in variable x if they do not coincide in 
variable x. The distance between two cubes is the number 
of variables, in which the cubes differ. 

A variable appears in the cube in one of the three forms: 
(1) negative polarity; (2) positive polarity; (3) don’t-care. 

For example, assuming that cube dba  belongs to 
function with input variables (a,b,c,d), variable a appears in 
positive polarity, variables b and d appear in negative 
polarity, and variable c appears as a don’t-care. 

An Exclusive-Sum-Of-Produces (ESOP) is an Exclusive-
OR of zero or more cubes. An ESOP is reduced if it does 
not contain identical cubes. An ESOP is minimal if all cube 
pairs have distance 2 or more. An ESOP is exact minimum 
if it contains the minimum number of cubes among all 
ESOPs representing the given function. 

The following propositions can be proved using the 
fundamental property of EXOR operation. 

Proposition 1: Two identical cubes (distance-0 cubes) 
can be added to any ESOP without changing the function 
represented by it. 

Proposition 2: The EXOR of two cubes that have 
distance 1 can be represented by a single cube. 



  

The ExorLink operation discussed in Section 5 extends 
these two propositions to cube pairs with arbitrary distance 
between the cubes. 

3 ESOP Minimization Algorithm 

This section outlines the main steps of the heuristic 
ESOP minimization procedure and data representations 
used to implement these steps.  

Minimization Algorithm 
The pseudo-code of the minimization algorithm is 

shown in Fig. 2. The minimization procedure takes the 
multi-output function and the quality parameter, which 
determines how many minimization loops are performed. 
esop HeuristicMinimization( func F, quality Q )
{

esop Cover = GenerateStartingCover( F );
while ( Q > 0 ) {
ResetCubePairs( Cover );
do {

do {
Cover= AgressiveMinimization(Cover);

} while (there is improvement);
Cover= LastGaspMinimization(Cover);

} while (there is improvement);
Q = Q-1;

}
Cover = RefinementMinimization(Cover);
return Cover;

}

Figure 2. Pseudo-code of ESOP minimization algorithm. 

After computing the starting cover using the BDD-
based algorithm [21], the data flow enters the main 
minimization loop. Each time the main loop is entered 
internal data structures storing the candidate pairs for the 
application of distance-2, distance-3 and distance-4 
Exorlink are reset.  

Inside the main loop, there is another loop that applies 
aggressive minimization strategy, as described in section 6, 
“Look-Ahead Strategies”. When aggressive minimization 
does not lead to improvement, the last gasp is applied, 
which tries to get the cover out of the local minimum by 
several additional rounds of distance-4 ExorLink.  

Finally, when the minimization loops terminate, there 
is a call to the procedure RefinementMinimization() which 
tries to improve the literal count of the cover without 
attempting to reduce the number of cubes. 

This structure of the minimization procedure was found 
as a result of extensive experimentation having the goal of 
finding a sequence of minimization operations that perform 
relatively well on a wide selection of benchmarks.  

Data Representation 
The input to the ESOP minimization software is the 

text file in standard PLA or BLIF formats, representing a 
multi-output Boolean function. In the current version of the 

minimizer, the don’t-cares of the input function are ignored 
and only the on-set of the function is considered. 

The processing starts by creating the shared BDDs for 
the input function. Dynamic reordering of variables is 
enabled during the BDD construction, which allows us to 
work with relatively large multi-output functions. 

In general, the minimizer uses mixed explicit and 
implicit data representations. After computing the starting 
cover using shared BDDs, the representation switches to 
cubes encoded in positional notation and stored explicitly 
using bit strings. The subsequent cube operations and cover 
transformations are carried out using the explicit 
representation, except the verification step at the end. 
During verification, the resulting cover is again converted 
into shared BDDs and compared with the BDDs 
constructed for the input function. 

We experimented trying to replace the explicit 
representation of cubes as bit strings by their implicit 
representation using Zero-Suppressed Binary Decision 
Diagrams (ZDDs) [26]. This attempt did not succeed 
because ZDDs speed-up computation only if there is a way 
to process many cubes in parallel. Meanwhile cube 
transformations used in our approach, in particular, finding 
all distance-k cube pairs and performing ExorLink 
operation, requires processing cubes one at a time. 

4 Starting Cover Computation 

This section summarizes the BDD-based algorithm for 
efficient minimization of the Pseudo-Kronecker expressions 
used to compute the starting cover. A detailed discussion of 
the algorithm, including the proof that it computes the exact 
minimum of the Pseudo-Kronecker expressions for 
symmetric functions, is given in [21]. 

The algorithm works in two passes. During the first 
pass, the shared BDD of the input function is traversed 
depth-first and in each node the best expansion is found and 
saved in the lossless cache. The expansions are selected out 
of the three canonical expansions (Shannon, Positive Davio 
or Negative Davio) and the number of cubes they add to the 
solution is used to evaluate their cost. It is possible to count 
the number of cubes in the resulting Pseudo-Kronecker 
expressions because they result from “flattening” the 
Pseudo-Kronecker decision diagrams, which are simulated 
(not explicitly constructed) by the algorithm presented in 
Fig. 3. This algorithm also minimizes the number of literals 
in the minimal Pseudo-Kronecker expression by preferring 
Positive or Negative Davio to Shannon expansion whenever 
it does not increase the cube count.   

During the second pass, the enumeration of all paths in 
the diagram is performed (Fig. 4). In each node, the best 
expansion is retrieved from the lossless cache and, 
depending on the expansion, one literal is added to the 



  

array of the variable values representing the current cube. 
When the traversing procedure reaches the bottom of the 
diagram, it has the values of all variables collected in the 
array, which is now used to generate the cube and add it to 
the resulting cover. At the end of the traversal, the resulting 
cover contains all cubes belonging to the exact minimum of 
the Pseudo-Kronecker expression. 

 
(exptype,int) CountCubesInExactPseudoKro( func F )
{

extype Exp; int Cost;

// consider the terminal cases
if ( F == 0 ) return ( pDavio, 0 );
if ( F == 1 ) return ( pDavio, 1 );
if ( ( Exp, Cost ) = CheckCacheForResult( F ) )

return ( Exp, Cost );

// determine the cofactors
( F0, F1 ) = DecomposeBdd( F, TopVar(F) );

// recursively solve subproblems
int N0, N1, N2, Nmax, Cost;
N0 = CountCubesInExactPseudoKro( F0 );
N1 = CountCubesInExactPseudoKro( F1 );
N2 = CountCubesInExactPseudoKro( F0 ⊕ F1 );

// determine the most costly expansion
MaxN = max( N0, N1, N2 );

// choose the least constly expansion
if ( MaxN == N0 )

Exp = pDavio; Cost = N1 + N2;
else if ( MaxN == N1 )

Exp = nDavio; Cost = N0 + N2;
else /* if ( MaxN == N2 ) */

Exp = Shannon; Cost = N0 + N1;

// cache and return the result
InsertIntoCache( F, Exp, Cost );
return ( Exp, Cost );

}

Figure 3. A procedure for counting the number of cubes in 
minimal Pseudo-Kronecker expansions. 

5 ExorLink Operation 

ExorLink operation has been introduced in [24] as a 
generalization of several simple cube transformations used 
in various approaches to ESOP minimization. The main 
idea of ExorLink is to replace two cubes by a set of cubes 
without changing the function. 

The number of cubes to be substituted instead of the 
initial cube pair is equal to the distance between the starting 
cubes. If the distance between the cubes is more than 1, 
there are several possibilities of performing ExorLink, each 
of them leading to functionally equivalent representation 
composed of different cubes.  

For example, consider the following equivalent 
transformations of cubes ba  and ba  constituting the 
distance-2 ExorLink operation: 

GenerateExactPseudoKro( bdd F, char * VarValues )
{

// consider the terminal cases
if ( F == 0 ) return;
if ( F == 1 ) {

cube NewCube = CreateCube( VarValues );
AddCubeToCover( NewCube );
return;

}

// find the best expansion by a cache lookup
extype Exp = CheckCacheForResult( F );

// determine the top-most variable
var X = TopVar(F);

// determine the cofactors
( F0, F1 ) = DecomposeBdd( F, X );

// generate cubes in the left/right branches
if ( Exp = pDavio ) {

VarValues[ X ] = VAR_ABSENT;
GenerateExactPseudoKro( F0, VarValues );
VarValues[ X ] = VAR_POSITIVE;
GenerateExactPseudoKro( F0⊕ F1, VarValues);

}
else if ( Exp = nDavio ) {

VarValues[ X ] = VAR_ABSENT;
GenerateExactPseudoKro( F0, VarValues );
VarValues[ X ] = VAR_NEGATIVE;
GenerateExactPseudoKro( F0⊕ F1, VarValues);

}
else /* if ( Exp = Shannon ) */ {

VarValues[ X ] = VAR_NEGATIVE;
GenerateExactPseudoKro( F0, VarValues );
VarValues[ X ] = VAR_POSITIVE;
GenerateExactPseudoKro( F1, VarValues );

}
}

Figure 4. A procedure for the generation of minimal 
Pseudo-Kronecker expansions. 

ba ⊕⊕⊕⊕ ba  = a ⊕⊕⊕⊕  b = a ⊕⊕⊕⊕ b . 
In general, distance-k ExorLink operation produces k! cube 
groups containing k cubes each. In all the cube groups there 
are k*2k-1 different cubes, some of them appearing is more 
than one group. The cube set generation is illustrated by 
distance-3 ExorLink applied to cubes abc  and cba  in Fig. 
5. Zeros are not shown. 

     Set 1     Set 2     Set 3     Set 4     Set 5     Set 6
 0  1  0  1  0  1  0  1  0  1  0  1 

 00  1    1    1    1    1    1   
 01                         
 11    1    1    1    1    1    1
 10             

Figure 5. Example of distance-3 Exorlink. 

Observe that cube groups correspond to different paths 
in the Boolean space connecting minterms abc  and cba . If 
the distance between the starting cubes is k, there are k 
directions to make the first step,  k-1 directions to make the 
second step, and so on. As a result, there are k! paths each 
of them corresponding to one cube group. 



  

6 Look-Ahead Strategies 

The previous ESOP minimization algorithms [1,2] used 
a combination of full backtracking and limited 
backtracking. Full backtracking means exploring all the 
branches of the search tree up to a certain depth, selecting 
the best way to modify the cubes, and performing the 
required transformation. Limited backtracking stands for 
exploring a fixed number of branches in the search tree up 
to a certain depth. The branches to explore may be selected 
randomly or found heuristically. 

For ESOP minimization with ExorLink as a basic cube 
transformation routine, it was found that “large-depth look-
ahead with a small number of backtracks is much faster and 
usually gives better results than the small-depth look-ahead 
and a large number of backtracks, although the latter is also 
sometimes very helpful”. [25] 

We tested these and other look-ahead strategies and 
finally adopted the one described as “backtrack until the 
first success”. “Success” is defined differently depending 
on the minimization strategy and the distance between the 
cubes, to which ExorLink is applied.  

Table 1 lists the criteria, which our algorithm uses to 
determine whether the transformation is successful and 
should be applied, or whether backtracking should continue 
by testing the next available cube group. The next available 
group may result from the same ExorLink (recall that 
distance-k ExorLink produces k! cube groups) or from 
ExorLink applied to the next cube pair in the queue of pairs 
to be considered. 

Table 1. The criteria for accepting cube transformations 
resulting from the ExorLink operation. 

Criteria for Accepting Cube Transformations ExorLink 
Distance Aggressive Strategy Refinement Strategy 

2 Leads to reduction in 
the number of cubes. 

Does not increase the 
number of cubes. 
Leads to reduction in 
the number of literals. 

3 Does not increase the 
number of cubes. 

Does not increase the 
number of cubes. 
Leads to reduction in 
the number of literals. 

4 Does not increase the 
number of cubes. 

Not used 

In different modes of operation our algorithm applies a 
different combination of aggressive and refinement 
minimization. The general rule is that in each minimization 
loop, aggressive strategy is applied several times to all cube 

pairs starting from distance-2 ExorLink up to distance-4 
ExorLink.  

Depending on the requested minimization quality the 
algorithm performs different number of minimization loops. 
This number roughly corresponds to the value of the quality 
parameter specified on the command line by the switch 
“-q”. For example, “-q5” results in five minimization loops. 

The trade-off between the quality and the computation 
time is illustrated in Table 2 using benchmark “alu4.pla”, 
which has 14 inputs and 8 outputs. The shared BDD node 
count is 804. The input file reading and the starting cover 
computation time are 0.07 sec and 0.03 sec, respectively. 
The experiment is performed on a 933MHz Pentium III PC. 

Table 2. Quality/runtime trade-off for alu4.pla. 

Quality level (“-qN” switch), N  
0 1 2 3 4 5 6 7 8 9 10

Cubes 440 440 435 435 415 415 415 414 411 411 411
Time, c 2.1 2.3 5.9 6.8 16.216.717.120.921.822.122.9

Using the above minimization strategy in the context of 
ExorLink-4 allows us to make the following statement 
about the minimization quality achieved by the algorithm.  

Theorem. If the program runs long enough to 
completely explore the subspace of each local minimum, 
the above minimization strategy always escapes from any 
local minimum that is one or two cubes deep.  

Compared to this, distance-3 ExorLink [25] can only 
guarantee getting out of the local minima one cube deep. 
This difference explains why in some cases our minimizer 
has found ESOP covers of smaller cardinality compared to 
other minimizers (see section “Experimental Results”). 

The following example illustrates the application of the 
look-ahead strategies in the heuristic ESOP minimization. 
Consider the function F = c a ⊕ dcba ⊕  ab ⊕ dca , shown 
in Fig. 6 (left). The goal is to find the ESOP of this function 
composed of the three cubes, dcba ⊕ dc ⊕  ab, shown in 
Fig. 6 (right). It is easy to see that the desired cube 
transformation consists of reshaping two cubes ( c a , 

dcba ), as shown in Fig. 6 (center), followed by combining 
two distance-1 cubes ( dc a , dc a ) into one cube, dc . 
 
   ab        ab        ab      
 cd 00 01 11 10  cd 00 01 11 10  cd 00 01 11 10  
 00      00      00      
 01      01      01      
 11      11      11      
 10      10      10      
                   

Figure 6. Example illustrating the look-ahead strategies in 
the heuristic ESOP minimization. 



  

When the look-ahead is applied automatically by the 
program, it will detect the distance-2 and distance-3 cube 
pairs and apply the ExorLink operation to them. The 
resulting cubes will be checked for being distance-0 or 
distance-1 away from the cubes currently in the cover.  

In the example of Fig. 6 (left), suppose the program 
first applies the ExorLink operation to distance-2 cubes. 
There is only one pair of distance-2 cubes, c a  and dcba , 
shown in Fig. 7 (left). Two cube groups derived by 
ExorLink-2 are given in Fig. 7 (center) and Fig. 7 (right). 
Obviously, the second group will be accepted as the one 
leading to the reduction in the number of cubes. 

 
   ab        ab         ab      
 Cd 00 01 11 10  cd 00 01 11 10  cd 00 01 11 10  
 00      00      00      
 01      01      01      
 11      11      11      
 10      10      10      
                   
Figure 7. Two cube groups resulting from ExorLink of the 

distance-2 cubes, c a  and dcba . 

Suppose the program first applies the ExorLink 
operation to distance-3 cubes. There are several pairs of 
distance-3 cubes. Here we discuss only one pair, ab and 

dca . Consideration for other cube pairs is similar. The 
resulting six cube groups, each composed of three cubes, 
are given in Fig. 8. Only one cube group features a cube 
( dcab ) that is distance-1 removed from a cube in the cover 
( dcba ). If this cube group is accepted, then the cover is 
reshaped but the number of cubes is not reduced. The 
reduction will be achieved in the future iterations by 
applying the ExorLink operation to other cube pairs. 

 
   ab        ab         ab      
 cd 00 01 11 10  cd 00 01 11 10  cd 00 01 11 10  
 00      00      00      
 01      01      01      
 11      11      11      
 10      10      10      
                   
   ab        ab         ab      
 cd 00 01 11 10  cd 00 01 11 10  cd 00 01 11 10  
 00      00      00      
 01      01      01      
 11      11      11      
 10      10      10      
                   

Figure 8. Six cube groups resulting from ExorLink of the 
distance-3 cubes, ab  and dca . 

7 Implementation Issues 

The following general principles of high-performance 
programming have been used in the implementation of 
EXORCISM-4. 

Allocate Memory With Caution 
The heuristic minimization algorithm described in this 

paper generates a large set of intermediate cubes, which 
only reshape the cover without improving its cardinality. 
Because calls to system memory allocation are relatively 
expensive in terms of runtime, EXORCISM-4 performs 
efficient memory recycling. Memory allocated at the 
beginning for the starting cover is never reallocated because 
the size of the cover cannot increase during minimization. 
To ensure efficient memory recycling, cubes that are not 
currently in use are kept in a linked list. Adding and 
removing cubes in the linked list is much more efficient 
than calling systems memory allocation whenever a new 
cube is created or deleted. 

Terminate Computation As Early As Possible 
In many cases, it is possible to speed up computation 

by early detection of a situation when the result of 
computation is useless for whatever reason. The 
performance improvement is more or less substantial 
depending on how often this situation occurs and how large 
is the part of computation that can be skipped.  

EXORCISM-4 uses early termination of computation 
in the several cases. 
•  One of the operations repeated very often is computing 

the distance between two cubes. The algorithm 
considers only cube pairs with distance four or less. It 
means that as soon as at least five different variables 
are detected in the cubes, the rest of computation can 
be skipped. This simple idea gives up to 20% 
improvement in runtime for benchmarks with many 
inputs and outputs. 

•  As shown in Section 6, distance-k ExorLink operation 
produces k*2k-1 new cubes grouped into k! groups in 
such a way that some of the cubes are encountered in 
more than one group. Our algorithm considers cube 
groups one by one and as soon as it find the matching 
group, this group is used to reshape the cover. 
Consequently, ExorLink is implemented in such a way 
that instead of generating all k*2k-1 cubes at once, it 
generates them “on demand”. This trick is responsible 
for speeding up distance-4 ExorLink by at least 50%, 
because in practice only 10 cubes on average out of 32 
are often enough. 

 
 
 



  

Reuse Results of Previous Computation 
The importance of this principle can hardly be 

overestimated, as witnessed by the success of caching 
techniques speeding-up computation by many orders of 
magnitude in BDD-based applications. 

In case of EXORCISM-4, the standard BDD caching 
techniques are used during the starting cover computation. 
There are two other cases when caching helps reduce 
unnecessary computation:   
•  Each new cube generated by ExorLink is tested for 

distances with all other cubes present in the cover. 
Even though at the beginning of testing it is not known 
whether the cube will be taken into the cover, the 
testing procedure stores information about those cubes 
currently in the cover that have distances 2, 3, and 4 
with the given cube. As a result, if the cube is 
eventually accepted into the cover, there is no need to 
compute candidate pairs for distance 2, 3, or 4 
ExorLink in the following iterations. 

•  Finally, there is a way to reduce computation by saving 
the results of distance-testing for those cubes that are 
generated by ExorLink and included into more than 
one out of k! groups.  

 

Use Sorted Data Structures 
Using sorted data structures (ordered lists, heaps, tries, 

Patricia trees, etc.) often leads to faster search and 
reduction of the access time.  

We tried to store the cubes in an ordered list and in an 
ordered matrix (sorting them by the number of positive and 
negative literals). The rationale for doing this would be to 
facilitate finding small-distance cube pairs, and thereby to 
speed up cube selection for ExorLink. However, in practice 
it turned out that sorting cubes does not help reducing the 
runtime, and eventually we switched back to representing 
the cover as an unsorted linked list cubes.  

 

8 Experimental results  

EXORCIMS-4 has been implemented in platform-
independent C++ using the BDD package CUDD [27] and 
tested extensively on Unix and Windows workstations. The 
experimental results below have been received on a 
933MHz Pentium III PC under Microsoft Windows 2000. 
At all times the program used no more than 50Mb of RAM. 

A BDD-based verifier built into EXORCISM-4 has 
been used to check the correctness of the minimization 
results for all the benchmark. 

To make a fair runtime comparison with earlier 
programs, the time measurements of our program have been 

normalized to reflect the speed of computers used to run the 
programs. In particular, for comparison with EXMIN2 and 
MINT, the computer used to get experimental result in [4] 
has been considered 58 time slower then 933MHz Pentium 
III. In case of EXORCISM-2 and -3, the coefficient was 24. 
The normalization coefficient was determined by 
considering benchmark “9sym.pla”. 

Table 3 compares the results of minimization by 
EXORCISM-4 with those of EXMIN2 [3] and MINT [4]. 
Table 4 compares EXORCISM-4 with EXORCISM-2 [1] 
and EXORCISM-3 [2].  The comparison is in terms of the 
number of cubes and literals in the final solution and the 
CPU time spent for minimization.  The last two columns in 
Tables 3 and 4 give the ratio of the runtime needed by the 
specified minimizer and the runtime of EXORCISM-4. 

It follows from the tables that on small examples, 
EXORCISM-4 is on average 6 times faster than EXMIN2 
and 25 times faster than MINT. On larger examples, for 
which the experimental results of EXMIN2 and MINT are 
not available, EXORCISM-4 is 50 times faster than 
EXORCISM-2 and 2 times faster than EXORCISM-3. In a 
few cases, EXORCISM-4 was slower than EXORCSIM-3, 
in particular, for benchmark “apex3.pla” not shown in 
Table 3.  

 

9 Conclusions  

Research described in this paper resulted in the 
development of a new heuristic ESOP minimizer, 
EXORCISM-4. EXORCISM-4 compares favorably to other 
minimizers in terms of minimization quality, is faster and 
allows us to process larger multi-output Boolean functions. 
The new tool accepts a wide spectrum of input data formats 
(PLA, ESOP PLA, BLIF) and unlike EXORCISM-2 and 
EXORCISM-3, does not require the input to be in the form 
of a disjoint cover.  

The disadvantages of the current implementation are 
the following: (1) it considers only binary-input data, 
(2) it does not take don’t-cares into account, and (3) it uses 
explicit data structures (bit strings) to represent cubes on 
the cover reshaping stage. The explicit data structures 
explain why the performance degrades with the increase of 
the size of the cube cover. However, even functions with 
covers composed of several thousand cubes can be 
processed in reasonable time (5-10 minutes). 

We developed the new efficient ESOP minimizer 
hoping that it will serve a variety of applications, and in 
particular that it will open new opportunities for combining 
the power of SOP and ESOP minimization to produce 
efficient implementation of large logic functions. 
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Table 3. Comparison of ESOP minimization results with EXMIN2 [3] and MINT [4] 

Benchmark Cubes Literals CPU time, c Comparison 
Name Ins Outs EXM2 MINT Exor4 EXM2 MINT Exor4 EXM2 MINT Exor4 w/EXM2 w/MINT
5xp1 7 10 34 32 31 186 181 175 13 25 3 0.23 0.12 
9sym 9 1 53 51 51 433 427 426 25 52 13 0.52 0.25 
add6 12 7 127 127 127 872 936 859 430 320 31 0.01 0.10 

addm4 9 8 91 90/89 90/89 654 651 624 129 355 39 0.30 0.11 
b12 15 9 28 28 28 164 167 166 4 17 1 0.25 0.06 
clip 9 5 68 64 64/63 517 492 479 55 140 11 0.20 0.79 
ex7 16 5 81 81 81 601 592 584 46 166 13 0.28 0.08 

f51m 8 8 32 31 31 161 185 162 10 22 5 0.50 0.23 
in7 26 10 35 35 35 333 352 343 12 56 3 0.25 0.05 
intb 15 7 307 267 268 3036 2519 2527 1353 2476 134 0.10 0.05 
life 9 1 54 52/51 50/48 415 391 370 23 32 9 0.39 0.28 

m181 15 9 29 29 29 169 172 171 5 18 1 0.20 0.06 
m4 8 16 84 83 77/76 783 897 714 189 178 120 0.63 0.67 

max512 9 6 89 88/83 84/82 696 723 672 71 187 64 0.90 0.34 
rd53 5 3 15 16/15 14 60 69 57 2 2 1 0.50 0.50 
rd73 7 3 42 36 36 221 194 197 20 36 9 0.45 0.25 
rd84 8 4 59 55/54 59/58 330 303 333 45 11 17 0.37 1.54 
ryy6 16 1 40 40 40 368 368 368 13 18 2 0.15 0.11 
sao2 10 4 29 29/27 28 308 311 288 8 12 1 0.13 0.08 
seq 41 35 259 249/248 246 5305 5187 5048 2797 15182 378 0.14 0.02 

sym10 10 1 84 82 79 751 735 702 154 176 20 0.13 0.11 
t3 12 8 25 25 24 209 214 216 5 10 1 0.20 0.10 

t481 16 1 13 13 13 53 53 53 677 377 1 0.01 0.01 
vg2 25 8 184 184 184 1992 2033 2010 163 1655 42 0.26 0.03 
z4 7 4 29 29 29 145 148 133 4 9 3 0.75 0.33 

Total   1891 1804 1791 18762 18300 17677 6253 21532 922 0.15 0.04 
Gain   0 -87 -100 0 -462 -1085      

    -4.6% -5.3%  -2.5% -5.8%      
 

Table 4. Comparison of ESOP minimization results with EXORCISM-2 [1] and EXORCISM-3 [2]. 

Bench   mark Cubes Literals Time Comparison 
Name Ins Outs Ex2 Ex3 Ex4 Ex4b Ex2 Ex3 Ex4 Ex2 Ex3 Ex4 w/Ex2 w/Ex3
add6 12 7 127 127 127 127 819 800 832 105 24 5 0.05 0.20 
alu4 14 8 447 422 435 411 4816 4430 4520 6828 506 140 0.02 0.28 

apex1 45 45 285 286 287 285 3796 3820 3998 4697 109 51 0.01 0.48 
apex5 117 88 400 399 398 398 4038 4027 4065 20156 457 544 0.03 1.19 

cps 24 109 135 135 140 135 2462 2625 3546 467 37 24 0.05 0.64 
dule2 22 29 79 78 78 78 920 909 935 72 12 3 0.04 0.25 
e64 65 65 65 65 65 65 2210 2272 2270 79 12 1 0.01 0.08 
ex5 8 63 72 72 72 71 920 904 975 62 10 5 0.08 0.50 

misex3 14 14 545 535 510 501 6837 6632 6141 18897 670 418 0.02 0.62 
seq 41 35 245 248 247 246 4833 4822 5063 2996 77 52 0.02 0.68 
spla 16 46 260 262 267 259 3420 3393 3969 1223 83 83 0.07 1.00 

table3 14 14 166 166 166 166 2491 2491 2630 190 24 17 0.09 0.70 
table5 17 15 156 156 156 156 2453 2449 2545 150 33 8 0.05 0.24 
vg2 25 8 184 184 184 184 1993 1988 2017 225 29 8 0.04 0.28 

Total   3166 3145 3132 3082 43008 41562 43506 59147 2083 1359 0.02 0.51 
Gain   0 -21 -34 -84 0 -1446 +498      

    -0.7% -1.0% -2.7%  -3.4% +1.2%      
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