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Abstract: Today’s AI systems sorely lack the essence of human intelligence: Understanding the
situations we experience, being able to grasp their meaning. The lack of humanlike understanding
in machines is underscored by recent studies demonstrating lack of robustness of state-of-the-art
deep-learning systems. Deeper networks and larger datasets alone are not likely to unlock AI’s
“barrier of meaning”; instead the field will need to embrace its original roots as an interdisciplinary
science of intelligence.
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You’ve probably heard that we’re in the midst of an AI revolution. We’re told that machine
intelligence is progressing at an astounding rate, powered by “deep learning” algorithms that use vast
amounts of data to train complicated programs known as “neural networks.” Today’s AI programs can
recognize faces and transcribe spoken sentences. We have programs that can spot subtle financial fraud,
find relevant web pages in response to ambiguous queries, map the best driving route to most any
destination, beat human grandmasters at chess and Go, and translate between hundreds of languages.
What’s more, we’ve been promised that self-driving cars, automated cancer diagnoses, housecleaning
robots, and even automated scientific discovery are on the verge of becoming mainstream. Facebook
founder Mark Zuckerberg recently declared that, over the next five to ten years, the company will
push its AI to “get better than human level at all of the primary human senses: vision, hearing,
language, general cognition” [1]. Shane Legg, Chief Scientist of Google’s DeepMind group, predicted
that “human-level AI will be passed in the mid-2020s” [2].

As someone who has worked in AI for decades, I’ve witnessed the failure of similar predictions of
imminent human-level AI, and I’m certain these latest forecasts will fall short as well. The challenge of
creating humanlike intelligence in machines remains vastly underestimated. Today’s AI systems sorely
lack the essence of human intelligence: Understanding the situations we experience, being able to
grasp their meaning. The mathematician and philosopher Gian-Carlo Rota famously asked, “I wonder
whether or when AI will ever crash the barrier of meaning.” To me, this is still the most important
question concerning AI.

The lack of humanlike understanding in machines is underscored by recent cracks that have
appeared in the foundations of modern AI. While today’s programs are much more impressive than the
systems we had twenty or thirty years ago, a series of research studies have shown that deep-learning
systems can be unreliable in decidedly unhuman-like ways.

I’ll give a few examples. “The bareheaded man needed a hat” is transcribed by my phone’s
speech-recognition program as “The bear headed man needed a hat.” Google Translate renders “I
put the pig in the pen” into French as “Je mets le cochon dans le stylo” (mistranslating “pen” in the
sense of a writing instrument). Programs that “read” documents and answer questions about them
can easily be fooled into giving wrong answers when short, irrelevant snippets of text are appended
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to the document [3]. Similarly, programs that recognize faces and objects, lauded as a major triumph
of deep learning, can fail dramatically when their input is modified even in modest ways by certain
types of lighting, image filtering, and other alterations that do not affect humans’ recognition abilities
in the slightest [4]. One recent study showed that adding small amounts of noise to a face image
can seriously harm the performance of state-of-the-art face-recognition programs [5]. Another study,
humorously called “The Elephant in the Room”, showed that inserting a small image of an out-of-place
object, such as an elephant, in the corner of a living-room image strangely caused deep-learning vision
programs to suddenly misclassify other objects in the image [6]. Furthermore, programs that have
learned to play a particular video or board game at a “superhuman” level are completely lost when
the game they have learned is slightly modified (e.g., the background color on a video-game screen is
changed, or the virtual “paddle” for hitting “balls” changes position) [7,8].

These are only a few examples demonstrating that the best AI programs can be unreliable when
faced with situations that differ—even in a small degree—from what they have been trained on.
The errors made by such systems range from harmless and humorous to potentially disastrous:
Imagine, for example, an airport security system that won’t let you board your flight because your
face is confused with that of a criminal, or a self-driving car that, due to unusual lighting conditions,
fails to notice that you are about to cross the street.

Even more worrisome are recent demonstrations of the vulnerability of AI systems to so-called
“adversarial examples”, in which a malevolent hacker can make specific changes to images, sound
waves, or text documents, which, while imperceptible or irrelevant to humans, will cause a program
to make potentially catastrophic errors. The possibility of such attacks has been demonstrated in
nearly every application domain of AI, including computer vision, medical image processing, speech
recognition, and language processing. Numerous studies have demonstrated the ease with which
hackers could, in principle, fool face- and object-recognition systems with specific minuscule changes
to images [9], put inconspicuous stickers on a stop sign to make a self-driving car’s vision system
mistake it as a yield sign [10], or modify an audio signal so that it sounds like background music to a
human but instructs a Siri or Alexa system to perform a hidden command [11].

These potential vulnerabilities illustrate the ways in which current progress in AI is stymied
by the barrier of meaning. Anyone who works with AI systems knows that behind the facade of
humanlike visual abilities, linguistic fluency, and game-playing prowess, these programs do not—in
any humanlike way—understand the inputs they process or the outputs they produce. The lack of
such understanding renders these programs susceptible to unexpected errors and undetectable attacks.

What would be required to surmount this barrier, to give machines the ability to more deeply
understand the situations that they face, rather than have them rely on shallow features? To find the
answer, we need to look to the study of human cognition. Our own understanding of the situations
we encounter is grounded in broad intuitive “commonsense knowledge” about how the world works,
and about the goals, motivations, and likely behavior of other living creatures, particularly other
humans. Additionally, our understanding of the world relies on our core abilities to generalize what
we know, to form abstract concepts, and to make analogies—in short, to flexibly adapt our concepts
to new situations. Researchers have been experimenting for decades with methods for imbuing AI
systems with intuitive common sense and robust humanlike generalization abilities, but as yet there
has been little progress in this very difficult endeavor.

AI programs that lack common sense and other key aspects of human understanding are
increasingly being deployed for real-world applications. While some people are worried about
“superintelligent” AI, the most dangerous aspect of AI systems is that we will trust them too much
and give them too much autonomy, while not being fully aware of their limitations. As AI researcher
Pedro Domingos noted, “People worry that computers will get too smart and take over the world, but
the real problem is that they’re too stupid and they’ve already taken over the world” [12].

The race to commercialize AI has put enormous pressure on researchers to produce systems that
work “well enough” on narrow tasks. But ultimately, the goal of developing trustworthy AI will
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require a deeper investigation into our own remarkable abilities, and new insights into the cognitive
mechanisms we ourselves use to reliably and robustly understand the world. Unlocking AI’s barrier
of meaning will likely require a step backward for the field, away from ever bigger networks and more
massive data collections, and back to the field’s original roots as an interdisciplinary science studying
the most challenging of scientific problems: The nature of intelligence.

Conflicts of Interest: The author declares no conflict of interest.
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