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Generalized Inclusive Forms—New Canonical Reed-Muller
Forms Including Minimum ESOPs

MALGORZATA CHRZANOWSKA-JESKE*, ALAN MISHCHENKO and MAREK PERKOWSKI

Department of Electrical and Computer Engineering, Portland State University, 1800, 6th Avenue, Portland, OR 97207-0751, USA

(Received 20 January 2000; In final form 4 October 2000)

This paper describes two families of canonical Reed-Muller forms, called inclusive forms (IFs) and
their generalization, the generalized inclusive forms (GIFs), which include minimum ESOPs for any
Boolean function. We outline the hierarchy of known canonical forms, in particular, pseudo-
generalized Kronecker forms (PGKs), which led us to the discovery of the new families. Next, we
introduce special binary trees, called the S/D trees, which underlie IFs and permit their enumeration.
We show how to generate IFs and GIFs and prove that GIFs include minimum ESOPs. Finally, we
present the results of computer experiments, which show that GIFs reduce the search space for
minimum ESOP by several orders of magnitude, and this reduction grows exponentially with the
number of variables.

Keywords: Reed-Muller expansions; Canonical forms; Decision trees; A minimum ESOP; Generalized
Davio expansion; S/D trees

INTRODUCTION

Reed-Muller (AND/EXOR) expansions play an important

role in logic synthesis and circuit design by producing

economical and highly-testable implementations of

Boolean functions [3–6]. The range of Reed-Muller

expansions include canonical forms, i.e. expansions that

create unique representations of a Boolean function.

Several large families of canonical forms: fixed polarity

Reed-Muller forms (FPRMs), generalized Reed-Muller

forms (GRMs), Kronecker forms (KROs), and pseudo-

Kronecker forms (PKROs), referred to as the Green/Sasao

hierarchy, have been described [7–9]. (See Fig. 1 for a set-

theoretic relationship between these families.)

Research in the field of canonical forms is motivated to

a large extent by the need to improve the algorithms

currently used for ESOP minimization. Efficient exact

algorithms exist only for certain families of Reed-Muller

expansions belonging to the Green/Sasao hierarchy, for

instance [10–12]. These families, however, do not exhaust

all ESOPs. This is why state-of-the-art ESOP minimizers

[13–15] are based on heuristics and give the exact solution

only for functions with a small number of variables. The

well-known formulation for finding the exact ESOP was

given in Ref. [16], but all known exact algorithms can

deliver solutions only for some of the functions on less

than 10 variables.

Recently, new general families of canonical forms have

been proposed [1,2], that include the above-mentioned

well-known families, in particular GRMs and PKROs. The

discovery of these forms suggests future advances in exact

ESOP minimization. Still none of these families has been

proven powerful enough to include minimum ESOPs for

every given function.

In this paper, we propose two still more general families of

canonical Reed-Muller forms, called inclusive forms (IFs)

and generalized inclusive forms (GIFs). The second family

is the first ever discovered to include minimum ESOPs.

The remainder of this paper is organized as follows. The

basic definitions of the families of forms belonging to the

Green/Sasao hierarchy and their recent generalizations

[1,2] are given in second section. The concept of S/D trees,

which is essential for creation and enumeration of IFs, is

presented in third section. Properties of IFs and the formula

to calculate their quantity is given in fourth section and

illustrated by comprehensive enumeration of IFs for two

variables. Fifth section is devoted to generalizations of IFs,

called the GIFs. The application of the GIFs to exact logic
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minimization is discussed in sixth section. Experimental

results are presented in the seventh section, followed by

conclusions in the eigth section.

GREEN/SASAO HIERARCHY OF CANONICAL
FORMS AND THEIR GENERALIZATIONS

The Green/Sasao hierarchy of families of canonical forms

and corresponding decision diagrams is based on three

generic expansions

f ðx1; x2; . . .; xnÞ ¼ x1f 0ðx2; . . .; xnÞ%�x1f 1ðx2; . . .; xnÞ

ðShannon–SÞ ð1Þ

f ðx1; x2; . . .; xnÞ ¼ f 0ðx2; . . .; xnÞ%x1f 2ðx2; . . .; xnÞ

ðPositive Davio–pDÞ ð2Þ

f ðx1; x2; . . .; xnÞ ¼ f 0ðx2; . . .; xnÞ%�x1f 2ðx2; . . .; xnÞ

ðNegative Davio–nDÞ ð3Þ

Here f0 is f(0,x2,. . .,xn) with x1 replaced by 0 (negative

cofactor of variable x1), f1 is f(1,x2,. . .,xn) with x1 replaced

by 1 (positive cofactor of variable x1), f2 is f0 % f1, and

symbol % means Exclusive OR.

An arbitrary n-variable function f(x1,x2,. . .,xn) can be

represented using the positive polarity Reed-Muller form

(PPRM)

f ðx1; x2; . . .; xnÞ ¼ a0%a1x1%a2x2%· · ·%anxn

%a12x1x2%a13x1x3%· · ·%an21;nxn21xn

%· · ·%a12...nx1x2. . .xn:

For each function f, the coefficients ai are determined

uniquely, so PPRM is a canonical form. If we use either

only the positive literal (xi) or only the negative literal (xī)

for each variable in Eq. (4), we get the FPRM. There are 2n

possible combinations of polarities and as many FPRMs

for any given logic function.

If we freely choose the polarity of each literal in Eq. (4),

we get a GRM. In GRMs, contrary to FPRMs, the same

variable can appear in both positive and negative

polarities. There are n2n21 literals in Eq. (4), so there

are 2n2n21

polarities for an n-variable function and as many

GRMs. Each of the polarities determines a unique set of

coefficients, and thus each GRM is a canonical

representation of a function.

Two other types of expansions result from flattening [1]

of certain binary trees. To create these trees, the following

procedure has been proposed. Let us create a binary tree in

such a way that each k-th level ð0 # k , nÞ; starting from

the root node on top of the tree, contains 2k nodes. There

are 1þ 2þ · · ·þ 2n21 ¼ 2n 2 1 nodes in this tree.

Suppose we select an ordering of n variables and use

one of the elementary expansions (1)–(3) in each node.

If throughout each level of the tree only one elementary

expansion (S, pD, or nD) is used, the resulting canonical

form is the KRO. If an arbitrary expansion is allowed in

each node, the result is the PKRO. There are 3n and at most

32n

2 1 different KROs and PKROs [3], respectively.

These families intersect with GRMs but do not contain

them (Fig. 1). An example of a pseudo-Kronecker tree and

the resulting canonical form are given in Fig. 2.

In Refs. [1,2], three more families of canonical

expansions were given. These forms are generated by

flattening certain type of trees. The following procedure

for building the tree was proposed. First, partition all n

variables into disjoint non-empty sets Sj [1] such that the

union of these sets is equal to the initial set of variables.

Next, order these blocks and put them in correspondence

with levels of the tree. For every level, if the variable

block consists of a single variable, one of the generic

expansions (S, pD, or nD) is selected for its nodes. If the

block contains more than one variable, one GRM polarity

is selected for its nodes.

Definition 1 The family of forms created by flattening

this tree is called generalized Kronecker forms (GKs) [1].

Definition 2 If we allow any of the generic expansions

(1)–(3) to be used with single variable blocks and any of

the GRM polarities to be selected for many-variable nodes

on the same level, it is called pseudo-generalized

Kronecker forms (PGKs) [1].

FIGURE 1 Set-theoretic relationship between families of canonical
forms.

FIGURE 2 A pseudo-Kronecker tree and canonical expansion it
produces.
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Let us consider two extreme cases. If each block

includes only one variable, the tree reduces to a special

case of a PKRO tree. If there is only one block containing

all variables, the tree reduces to one of GRMs. Thus, we

may conclude that PGKs subsume PKROs and GRMs.

S/D TREES AND INCLUSIVE FORMS

In this section, we introduce the concept of S/D trees,

which is important to define the family of IFs.

First, we present a generalization of the Positive Davio

(2) and Negative Davio (3) expansions introduced in the

previous section. We call this new expansion the

generalized Davio expansion

f ðx1; x2; . . .; xnÞ ¼ f 0ðx2; . . .; xnÞ%x1f 2ðx2; . . .; xnÞ

ðGeneralized Davio–gDÞ ð5Þ

Here the underlined literal x1 is a generalized literal. It

stands for any polarity of variable x1, positive or negative.

In a sense, generalized Davio expansion is a compact

notation for both Positive and Negative Davio expansions.

It is helpful to note at the outset that the generalized Davio

expansion is not used in this paper to build decision

diagrams for functions, but only to describe expressions,

which produce a family of canonical forms. A literal

which cannot change its polarity is called an ordinary

literal and is created by Shannon node.

Let us now create a binary tree in the same way we

created trees for Kronecker and pseudo-Kronecker

expressions. Each of the nodes of the tree is selected to

have either Shannon expansion (1) or generalized Davio

expansion (5).

Definition 3 The tree created in this way is called the

S/D trees for the given ordering of n variables.

As it was already pointed out, an S/D tree for n variables

has 2n 2 1 nodes and so there are 22n21 such distinct trees

for each variable order. Figure 3 shows all S/D trees for

two variables.

Definition 4 A generalized expansion (GE) is the

expansion containing both ordinary and generalized

literals produced by the S/D tree.

In particular, a GE may have no generalized literals

(when S nodes are used throughout the tree) or consist of

n2n21 generalized literals only (when gD nodes are used

throughout the tree). It is easy to see that in the latter case,

the GE produces all GRMs for the given number of

variables.

Definition 5 IFs for a given variable ordering is a set of

expansions created by flattening the S/D tree of this

variable order and allowing generalized literals presented

in the GE to have all possible combinations of polarities.

It is easy to see that a GE with m generalized literals

produces as many ordinary forms as there are distinct

polarity assignments of generalized literals, namely 2m.

Example 1 Figure 3 shows derivation of IFs for two

variables, when the variable ordering is fixed (a,b). The

number N positioned over each tree shows how many

expansions can be created from this tree. For example, tree

(b) and its corresponding GE {āb̄,āb,a,ab} produces two

ordinary expansions {āb̄,āb,a,ab̄} and {āb̄,āb,a,ab}. By

adding numbers N for each tree, we get the total number of

IFs for n ¼ 2:

NIF ¼ ð1þ 2þ 2þ 4Þ þ ð4þ 8þ 8þ 16Þ ¼ 45:

In the next section, we derive an exact formula for NIF

for an arbitrary number of variables.

PROPERTIES OF INCLUSIVE FORMS

In this section, we prove that all IFs for the given variable

ordering are canonical and unique.

Theorem 1 Each IF {ti}, 1 # i # n; is canonical, i.e.

for any function F of the same number of variables, there

exists one and only one set of coefficients {ai}, such that

this function can be represented as F ¼ a1t1%· · ·%antn:

FIGURE 3 All S/D trees and GE for two variables.
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Proof In Ref. [5], it was shown that an expansion is

canonical iff its terms are linearly independent, that is,

none of the terms is equal to a linear combination of other

terms.

Let us therefore prove by induction on the number of

variables that terms in IFS are linearly independent. For

n ¼ 1; there are only three IF forms, which coincide with

the generic Shannon and Davio expansions, introduced in

“S/D trees and inclusive forms section”. These forms are

linearly independent and canonical.

Let us now assume that the theorem is true for the

number of variables n ¼ k and prove that it is true for

n ¼ k þ 1: Suppose that it is not true, i.e. there exists an

S/D tree for n ¼ k þ 1 variables (a0,a1,. . .,ak) such that,

although all the forms for n ¼ k are linearly independent,

there is the form fi generated by this tree such that one of

its terms tj is a linear combination of other terms.

Suppose ak is the variable on top of the tree. Then, all

the terms of fi are split into two equal groups G1 and G2. In

case of Shannon expansion, exactly one half of the terms

(group G1) has variable ak complemented while the other

half (group G2) has ak uncomplemented. In case of

generalized Davio expansion, exactly one half of the terms

(group G1) does not have variable ak at all, while the other

half of them (group G2) have it present in any polarity. It is

easy to see that the term tj and all the terms that constitute

the linear combination equal to tj belong to only one of the

groups, either G1 or G2. In case of Shannon expansion, we

factor ak from both tj and the linear combination and get

the equality, that depends only on variables a0; a1; . . .ak21;
meaning that the terms are not linearly independent for

n ¼ k; which is a contradiction. In case of generalized

Davio expansion, if the term tj and all the terms that

constitute the linear combination belong to group G1, it is

a contradiction. If they belong to group G2, again all of

them can belong to either those terms which have ak

complemented, or to those terms that have ak uncomple-

mented. We repeat our previous argument for Shannon

expansion and arrive at a contradiction. A

Theorem 2 The IFs are unique.

Proof The forms are unique, which means that if a form

is produced by an S/D tree, there is no other S/D tree for

the given variable ordering, which will produce the same

form.

Let us prove by induction on the number of variables.

For n ¼ 1; there are only three possible forms and they are

unique. Suppose it is true for n ¼ k: Let us prove that it is

true for n ¼ k þ 1:
Suppose it is not true, i.e. there are two different S/D

trees for the given variable ordering, which produce the

same expansion. Since the theorem is true for n ¼ k; these

expansions may differ only in the variable ak, which is

found on top of the S/D tree. But there are only two

distinct S/D trees produced by the variable ak, in one of

them the root node has Shannon expansion, in another the

root node has generalized Davio expansion. Obviously,

these two trees cannot create identical forms. This proves

the second part of the theorem, the uniqueness of IFs. A

Theorem 3 For the given ordering of n variables, there

are

Yn21

k¼0

ð1þ 22n2k21

Þ2
k

unique IFs.

Proof To derive the formula, let us enumerate the levels

of the tree starting from the root node with 0-based

integers. Let us consider a node on the k-th level of an S/D

tree. If it is a Shannon node, it does not contribute

generalized literals to the GE produced by the tree and

does not produce more than one resulting canonical

expansion. If it is a generalized Davio node, it contributes

2n2k21 generalized literals to the GE, which, in turn,

produce 22n2k21

resulting canonical expansions.

Now we observe that the k-th level consists of 2k nodes,

each of which can be either Shannon or generalized Davio.

It is possible to evaluate the contribution to the quantity of

resulting canonical expansions of the entire k-th level of

nodes for all S/D trees, which differ only in polarity

assignments. This contribution is ð1þ 22n2k21

Þ2
k

: The only

thing left to do after this, is to create the product of these

contributions, since each level adds to the total sum of

expansions independently of all others. A

Example 2 For n ¼ 3; there are

3n

2n

 !
¼

27

8

 !
¼ 2; 220; 075

possible expansions containing 2n cubes. Among them,

only 527,121 are linearly independent, or canonical.

According to the formula (1), there are NIF ¼ ð1þ

16Þ1ð1þ 4Þ2ð1þ 2Þ4 ¼ 34; 425 IFs for each ordering of

variables. We have verified these results using a program,

which systematically generates all linearly independent

forms for three variables and counts only those which can

be created by S/D tree for one given variable order.

GENERALIZED INCLUSIVE FORMS AND THEIR

PROPERTIES

It is easy to see that, for different variable orderings, some

forms are not repeated while other forms are, for example,

KROs and GRMs. Therefore, the union of sets of IFs for

all variable orders contains more forms than any of the IF

set taken separately and less forms than the total number

of forms in all IF sets.

Definition 6 The family of forms, which is created as a

union of sets of IFs for all variable orders, is called the

GIFs.

M. CHRZANOWSKA-JESKE et al.16



Theorem 4 GIFs are canonical in respect to any

particular variable order.

Proof It follows from Theorem 2 and Definition 6.

If in Definition 6 we relax the requirement of fixed

variable ordering, and allow any ordering of variables in

the branches of the tree but do not allow repetitions of

variables in the branches, we generate a still more general

family of canonical forms.

Definition 7 The family of forms, generated by the S/D

tree with no fixed ordering of variables, provided that

variables are not repeated along the same branches, is

called free generalized inclusive forms (FGIFs).

Example 3 It is easy to calculate the number of GIFs for

n ¼ 2; if we notice that four out of eight S/D trees in Fig. 3

generate forms, which are repeated when the variable

ordering is changed from (a, b) to (b, a). These are trees

(a), (d), (e) and (h). So to calculate the number of GIFs we

have the following calculation:

NGIFs ¼ 2 £ 45 2 ð1þ 4þ 4þ 16Þ ¼ 65:

For n ¼ 2; the number of FGIFs is the same as the

number of GIFs.

The studies show that it is difficult to trace the

relationship between the number of forms that are

repeated for n . 2 and the number of forms that are not,

similarly to PKROs. In Table I, we give the result of a

computer experiment, which shows that for n ¼ 3 this

relationship becomes rather complicated. The number of

IFs for a given variable order is 34,425 and a number of

different variables orders is 6 (3!). If we multiply the

number of IFs for a variable order by a number of orders

we get 206,550 but in such calculations we included some

forms multiple times. Some of the repeated forms are

GRMs and KROs which are easy to count. Unfortunately,

in addition, there are others which cannot be counted so

easily. In Table I, based on computer calculations, we

show how many times each of the GIFs is repeated in our

simplified calculations. The total number of GIFs for n ¼

3 is given in the last row of the table.

Similarly, it can be shown that for FGIFs for n ¼ 3 there

are 2 £ 3þ 6 ¼ 12 variable orders and at most 2 £

109; 361 FGIF forms. As for any Reed-Muller forms and

decision diagrams, the size of a S/D tree and the size of a

GIF form, for a given function, depend on a variable order.

Search for a good variable order is computationally

expensive.

GIFS AND A MINIMUM ESOP

In this section, we will explore the relation between GIFs

and a minimum ESOP.

Definition 8 An ESOP is called a minimum ESOP if

the number of terms is the minimum among all possible

ESOPs and the number of literals is also minimum among

all solutions with the minimum number of terms.

In general any function can be represented (decom-

posed, expanded) as:

F ¼ f 1ðx1; . . .. . .; xnÞ%xkf 2ðx1; . . .. . .; xnÞ%�xkf 3ðx1; . . .. . .; xnÞ ð6Þ

where f1, f2, f3 are sets of product terms (called terms)

grouped together according to the presence and polarity of

an arbitrary decomposition variable xk. Let us now assume

that function F is a minimum ESOP. In such case the

following properties hold:

1. f1 has no repeated terms

2. f2 has no repeated terms

3. f3 has no repeated terms

4. there are no identical terms in any of the pairs {f1,f2},

{f1,f3}, {f2,f3}

Also observe that if all three sets are non-empty, F

cannot be an EXOR of terms on the same set of variables

because S expansion would be applicable to it. It cannot be

a GRM as well. It will be now our goal to consider all

possible cases of F and determine that for each of them F

is realizable as a certain GIF. It means that, for any

minimum ESOP expression, we can always find the order

of variables to create an S/D tree that would generate a

GIF form corresponding to this minimum ESOP

expression. In order to do this, we have first to explain

the S/D tree building procedure.

S/D Tree Building Procedure

Assume that we build a S/D tree, for function F, by

selecting one variable at a time and choosing one of two (S

or gD) expansions. To choose the feasible expansion for

the selected variable we divide all terms of a function (as

shown in expression 6) into three sets: terms that do not

contain the given variable, 1-Set, those that contain it as a

complemented literal, complemented-set (CS), and those

that contain it as a non-complemented literal, non-

complemented-set (NCS).

. If the 1-Set is empty, assume Shannon expansion on the

given variable, decompose it using the two remaining

sets, choose the next variable from the variable set and

continue using CS set and NCS set from the previous

step as starting sub-functions at the current level. Such

variable is called an ordinary variable.

. If the 1-Set is not empty assume the generalized Davio

TABLE I The number of IFs as a function of the number of repetitions
of these forms for six possible variable orders ðn ¼ 3Þ

#Repetitions #IFs

1 45,696
2 44,880
3 13,872
6 4913
Total GIFs 109,361
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expansion (1-Set used as one sub-function and CS set

combined with NCS set used as the second sub-

function) and go to the next level.

. Continue until all variables are decomposed and all

sub-functions on level n are equal to 0 or 1.

During the decomposition process several sub-function

sub-trees are created. It can happen that due to choosing a

wrong variable (for example using a predetermined

variable order) we obtain two identical terms in a sub-

function and we cannot thus generate the next level of a

S/D tree. Such identical terms can only appear after at

least three generalized Davio expansions were performed.

In the following example, we show that if the given

order of variables is not good, the S/D tree cannot be

generated because two identical cubes can appear in a sub-

function.

Example 4 Let us create the S/D tree with variable

ordering (abcdef) for the function

�a%abef%abcde%�a�b�cde%�b�ef:

It is easy to see that this is the minimum ESOP, because

the exorlink-distance [13] between any pair of cubes is

three or more. First, we perform generalized Davio

expansions (decompositions) on variables a, b and c:

�b�ef%að1%bef%bcde%�b�cdeÞ:

�b�ef%að1%bðef%cde%�cdeÞÞ:

�b�ef%að1%bðef%cðde%deÞÞÞ:

Thus, because of repeated term de, an IF that represents

the given minimum ESOP cannot be found for abcdef

order and thus for an arbitrary order of variables. However

if we choose variable ordering (abdcef) the S/D can be

generated.

�b�ef%að1%bðef%dðce%�ceÞÞÞ:

�b�ef%að1%bðef%dðcðeÞ%�cðeÞÞÞÞ:

The remaining part of building the S/D tree is obvious.

Definition 9 Terms that are defined on the same set of

variables and include the same set of literals, of cardinality

at least one, are called equal-variable terms or (ev terms ).

For instance, terms abcde and āb̄c̄de in Example 4 are

ev-terms with variables {a, b, c, d, e} and the same literal

set {de}

Definition 10 The distance of two ev-terms is the

number of variables for which the corresponding literals

of these terms have different polarities.

Lemma 1 In a (single-output) minimum ESOP, a

distance between any ev-terms terms has to be at least

three.

Proof If a distance between any ev-terms is smaller than

three, ev-terms can be substituted with two terms (not ev-

terms any more) with a number of literals smaller by

two. A

Example 5

�abcd%a�bcd ¼ acd%bcd

Ev-terms of distance 2 were replaced with two terms

that are no longer ev-terms.

Lemma 2 A number of identical terms in a sub-function

on any level of the S/D tree, before the expansion process

becomes infeasible, cannot be larger than two regardless

of a chosen variable order.

Proof If a number of identical terms on a level is larger

than two it means that if we move back one level (add one

more variable), we will still have at least two identical

terms which should have been noticed on the previous

level. A

Based on Lemma 2 we conclude that Example 4

exhausts all possible cases for a single set of literals, which

leads to Lemma 3.

Lemma 3 Situation such as in Example 4 cannot happen

when the order of variables used in the subsequent

expansions is not predetermined, but appropriately

selected.

Now we are able to formulate the main theorem.

Theorem 5 GIF family of forms includes a minimum

ESOP for an arbitrary Boolean function.

We have thus to prove that if function F is a minimum

ESOP, there exists a S/D tree that generates F.

Consequently, we have to prove that starting from a

minimum ESOP we can always find a variable order such

that a S/D tree, generating this minimum ESOP, can be

build.

The proof will be based on Lemma 4 and Lemma 5.

Lemma 4 S/D tree, for an ESOP expression, can be build

if no identical terms are created at any stage of the

decomposition process (S/D Building Procedure).

Proof For simplification of the proof we will discuss

only one of the sub-functions, represented as in expression

(6), created during the decomposition process. It can be

shown that the same reasoning applies to all of them but

the proof would become more complicated.

Let us assume that after several levels of decomposition

one of sub-functions on level k is as given below.

1%cðde. . .Þ%�cðde. . .Þ ð7Þ

If we choose c as the next decomposition variable, we

need to use generalized Davio expansion because all three
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sets are non-empty and we will create two identical terms

as shown in Eq. (8).

1%cððde. . .Þ%ðde. . .ÞÞ ð8Þ

Thus, two identical terms exist in a sub-function. This is

infeasible, because no tree expansion can generate two

identical cubes in one sub-function. However, if instead of

variable c, for decomposition, we first choose one of the

variables that belong to the set of identical literals, the S/D

tree can be generated as shown below.

1%dðcðe. . .Þ%�cðe. . .:ÞÞ ð9Þ

1%dðcððe. . .ÞÞ%�cððe. . .ÞÞÞ ð10Þ

In general, the number of literals in the subset of

identical literals (no two literals can be generated from the

same variable), in two ev-terms under consideration, can

be arbitrary. The existence of the situation as in Eq. (7)

means that at the previous decomposition level we made a

bad choice (variable c ) for the decomposition variable. A

variable present in two different polarities in the twins

needs to be decomposed as the last one of the group. We

can also say that the variables that belong to the common

set of literals have to be decomposed first in the order. If

we extrapolate expression (7) to the previous level k 2 1;
and assume that the variable b on that level is the one

which distinguishes the ev-terms, the expression (7) will

have a form as given below:

b%bcde%�b�cde ð11Þ

So a variable order {d and e in any order} and next {b

and c̄ in any order} is feasible (Lemma 4). A

In general case we can have many groups of two ev-

terms that are defined on different sets of variables. If

these sets of variables do not overlap we deal with each set

separately. If they overlap, we will show in Lemma 5, that

there is always a way to choose a decomposition variable

to avoid the problem.

Lemma 5 S/D tree, for an ESOP expression, can be build

if no identical terms are created at any stage of the

decomposition process (S/D Building Procedure)

Proof Let us assume the worst case; a variable on level

k 2 1 was chosen such that on level k the remaining set of

variables to be used for decomposition is such that if any

one, from the set (cyclic set), is chosen then two identical

terms in one branch are created. It means that the distance

between any terms at that level is only one. It means that

for these ev-terms to belong to the minimum solution at

least two additional variables (the most difficult case that

covers all cases with more than two variables) are needed

to distinguish them. It is obvious that these variables had

been used already on two of the previous levels. Let us

also assume that these levels were k 2 1 and k 2 2; and

the variables are xk21 and xk22.

So, on level k 2 2 all the terms differ in three variable

positions (distance three), which property does not allow

for a reduction (a minimum ESOP). Therefore, at this level

any two terms, which have the same set of literals are

distinguished by the polarity of variables and xk2k and

xk22. So, if one of variables xk21 or xk22 is placed behind

all variables from the cyclic set, no identical terms will

appear and the next level of the S/D tree can be created

(Lemma 5). A

Example 6 At some level k of the tree the sub-function

contains many pairs of terms that differ only in one

variable (distance 1). It is also the case that none of the

variables in the set is a good choice. For example:

1%ð�cde%cdeÞ%ðbcd%�bcdÞ%ðbc�e%bceÞ%ðb�de%bdeÞ

In this sub-function for any of the variables only the

generalized Davio expansion can be used. Regardless

which of the four variables (b, c, d, e) (cyclic set) is

selected, we end up with two identical terms in the sub-

function on the next, k þ 1; level.

However, the terms separated by the distance of one on

level k need to have at least two additional variables to

separate them by distance of three so they belong to the

minimum ESOP. They have to be the same variables for

both terms because they appear in the same sub-function.

Let us assume that the variable a, used on level k 2 1;
separates all these terms to the distance 2.

So in our example:

termðb; c; d; eÞ %a%ða�cde%�acdeÞ%ðabcd%�a�bcdÞ

%ðabc�e%�abceÞ%ðab �de%�abdeÞ

where term (b,c,d,e ) contains all the terms from the 1-Set

on level k 2 1: Obviously, there are no identical terms in

this expression, as they should have been noticed on the

previous level. For the same reason there are no distance-

one pairs in the entire sub-function on level k 2 1: Now,

we select decomposition variables in such order that

variable a is the last one and we can create the S/D tree for

that expression.

Let us now assume that, for a Boolean function on n

variables, it is possible to create a minimum ESOP

expression with the number of ev-terms such that no

variable order exists for which a S/D tree can be created.

Let us count a number of terms that needs to exist in such

minimum ESOP expression. We need to recall here that a

distance between any ev-terms needs to be at least three.

For such a expression to exist it needs to contain at least n

ev-terms, n single variable cubes and the combinations of

all possible two-variable cubes to assure that on all levels

of decomposition the generalized Davio expansion is

used. Only generalized Davio expansion can produce

identical terms. So, the number of terms in such

expression is proportional to n!, which is much larger

than 2n21 that is larger than an upper bound on the number
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of terms in the minimum ESOP. Therefore, such

expression is not a minimum ESOP.

So, we showed, that the order of variables can be always

found for an expression that does not lead to identical

terms, if this expression is a minimum ESOP. Therefore,

the GIFs include minimum ESOPs, and this completes the

proof of Theorem 5. A

EXPERIMENTAL RESULTS

Theorem 5 proved in the previous section facilitates

creating algorithms for exact ESOP minimization by

substantially reducing the search space for the exact

solution. To study this property, we conducted a computer

experiment. In the course of this experiment, we generated

random expansions for each number of variables, checked

whether this expansion is linearly independent (canoni-

cal), and next checked whether it is possible to create the

S/D tree for the first variable ordering ða1; a2; . . .anÞ: The

results are given in Table II. Please observe that in column

“#all” the number of functions reported is equal to all

possible functions on the given number of variables only if

asterisk appears next to the number. For all others the

given numbers of functions were generated randomly. We

did not generate results for GIFs with more than three

variables.

This table allows us to observe two properties of

canonical expansions. As the number of variables grows,

the percentage of linearly independent (canonical) forms

significantly decreases. Still more dramatic change is

observed in the percentage of all possible (and canonical)

expansions with respect to GIF and IFs; while for two

variables there is only 1.8 more canonical forms than IFs,

for five variables it is at least 105 more canonical forms

than IFs. The experiment proves a remarkable property of

GIFs. They allow us to restrict the search space for

minimum ESOPs.

CONCLUSIONS

In this paper we reviewed the hierarchy of known families

of canonical forms described in Refs. [7–9] and

introduced two new families of forms. We presented a

number of properties of IFs, as well as proved their

canonicity and uniqueness. We proposed a generalization

of IFs, called GIFs, created as a union of IFs for all orders

of the given number of variables. We derived the formula

for the exact number of IFs as a function over the number

of variables and showed that the ratio of the quantity of IFs

to the quantity of all canonical forms decreases

exponentially over the number of variables. Most

importantly, we proved that a minimum ESOP is included

in the GIF family. We believe that GIFs will find

application in the exact ESOP minimization because they

will allow to reduce significantly the search space.

Another important result of our paper is that any search

for larger canonical families of Green/Sasao hierarchy

loses its potential importance since it will not help to find a

minimum ESOP more efficiently. Further research should

therefore concentrate on investigating GIFs properties that

would help create structured search algorithms for a

minimum ESOP.
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