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Sciences, University of Bristol, Bristol, UK; 3Department of Geology, Portland State University, Portland, OR, USA
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Abstract

Distant glacial areas are interconnected by a complex system of fractures and water channels which
run in the glacier interior and characterize the englacial realm. Water can slowly freeze in these
channels where the slow freezing excludes air bubbles giving the ice a clear aspect. This ice is
uplifted to the surface ablation zone by glacial movements and can therefore be observed in the
form of clear surface ice bands. We employed an indirect method to sample englacial water by cor-
ing these ice bands. We were able, for the first time, to compare microbial communities sampled
from clear (i.e. frozen englacial water bands) and cloudy ice (i.e. meteoric ice) through 16S rRNA
gene sequencing. Although microbial communities were primarily shaped and structured by their
spatial distribution on the glacier, ice type was a clear secondary factor. One area of the glacier, in
particular, presented significant microbial community clear/cloudy ice differences. Although the
clear ice and supraglacial communities showed typical cold-adapted glacial communities, the
cloudy ice had a less defined glacial community and ubiquitous environmental organisms.
These results highlight the role of englacial channels in the microbial dispersion within the glacier
and, possibly, in the shaping of glacial microbial communities.

1. Introduction

Widespread understanding of glaciers as biomes has only been achieved in the past few
decades (Anesio and Laybourn-Parry, 2012). Glacial biomes are microbially dominated and
are usually divided into three different environments: the glacial surface (supraglacial), within
its interior (englacial) and at the base where the glacier is in contact with the bedrock
(subglacial) (Anesio and others, 2017; García-López and others, 2019a). Supraglacial studies
have mainly been focused on cryoconite holes (Fountain and others, 2004; Tranter and others,
2004; Bagshaw and others, 2007; Edwards and others, 2011; Musilova and others, 2015; Cook
and others, 2016; Uetake and others, 2019) and ice algae-associated communities (Uetake and
others, 2010; Yallop and others, 2012; Lutz and others, 2017), both of which are dominated by
phototrophs. Here, microbial communities are highly influenced by the surrounding environ-
ment from which wind and precipitation transport dust, larger particles and, consequently,
nutrients and microorganisms to the glacier surface (Grzesiak and others, 2015). The dark
and oxygen-depleted subglacial environment is dominated by chemolithotrophs which are
able to use the chemical compounds and H+ released from the bedrock/ice grinding to
produce energy (Stibal and others, 2012a; Boyd and others, 2014; Dieser and others, 2014;
Telling and others, 2015; Kayani and others, 2018). Heterotrophic communities are also
found in both supraglacial and subglacial environments, utilizing mainly organic carbon
produced by other organisms (Anesio and Laybourn-Parry, 2012).

Potentially the largest glacial habitat (by volume and mass of ice) is the englacial environ-
ment, the part of the glacier or ice sheet between the bottom and the surface. The englacial
region of temperate ice contains pockets of water at all scales from microscopic veins formed
at the junction of ice crystal boundaries to macroscopic water-filled crevasses (Nye and Frank,
1973; Watts and England, 1976; Bamber, 1988). Although some of these pockets may be
isolated, others are interconnected pathways exchanging water between the surface and the
bed (Fountain and Walder, 1998; Catania and others, 2008). The englacial environment has
not been widely studied due to the technical challenges associated with sampling these
habitats, yet microbial metabolism has been observed within aqueous veins (Mader, 1992;
Price, 2000; Miteva, 2008; Dani and others, 2012). Furthermore, several studies of englacial
ice cores have revealed microbial changes with the depth and age of ice and have successfully
isolated microorganisms (Miteva, 2008; An and others, 2010; Knowlton and others, 2013;
Singh and others, 2016; Liu and others, 2019), but the life challenging conditions (e.g. subzero
temperatures and nutrient depletion) have cast doubts whether isolated englacial organisms
can thrive. However, the water flowing within the englacial region has rarely been studied
directly despite suggestions that englacial water may be the most metabolically active habitat
within the englacial realm (Hotaling and others, 2017; Martinez-Alonso and others, 2019).

A better definition of the microbial communities inhabiting englacial waters would help
link biogeochemical processes connecting supraglacial and subglacial biomes and further
refine and define the role of glaciers in carbon and nutrient cycling and how they could be
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influenced by glacier shrinking (Anesio and others, 2009;
Hawkings and others, 2015; Kujawinski, 2017; Milner and others,
2017). More generally, the ecology of glacial environments pro-
vides an upstream boundary condition for downstream aquatic
communities in streams, lakes and tidal environments (Hood
and others, 2015; O’Neel and others, 2015; García-López and
others, 2019b). As a first step in this effort, our study character-
ized and compared the diversity and structure of microbial
communities between the macroscopic englacial system (i.e. the
water flowing through englacial fractures) and the meteoric glacier
ice formed in proximity of the fractures. We studied the
Storglaciären englacial system where, measured water flow rates
of cm s−1 indicate residence times of weeks to possibly months,
depending on where the water enters the ice (Fountain and others,
2005). Measurements also indicate the existence of no flow zones,
possibly at the far end of a fracture away from the hydrological
connection, providing a refuge for microbial growth. Although
data of bacterial doubling times are not available from englacial
systems, doubling times from cryoconite waters range between a
few hours to hundreds of days and can provide an idea of the
range of values that could potentially be found in these oligo-
trophic environments (Anesio and others, 2010). In this context,
we hypothesized that the microbial community structure within
the englacial hydrological system would differ from that in the
surrounding ice.

2. Materials and methods

Our study site was Storglaciären, a small polythermal valley
glacier in Arctic Sweden (67°54′10′′ N, 18°34′00′′ E; Figs 1a, b).
Its ablation zone is capped by ice below freezing to a depth of
30–40 m, its terminus is frozen to the bed and the remainder of
the glacier is temperate (Petterson and others, 2007). This
relatively easily accessible glacier has been intensively studied
hydrologically (Holmlund and Eriksson, 1989; Hooke and
Pohjola, 1994; Jansson, 1996). To sample the englacial water, we
employed an indirect method. Near-surface ice (i.e. to a max-
imum depth of 131 cm) was sampled in the ablation zone
(ice-exposed region on the lower third of the glacier). Fountain
and others (2005) showed that clear bands of ice, visible on the
surface of Storglaciären, are the product of the slow freezing of
englacial water within fractures deep in the glacier. The refrozen
fractures are uplifted and exposed at the surface due to glacier
movement and ablation (Pohjola, 1996; Cuffey and Paterson,
2010). The slow freezing of water, particularly when flowing,
favors the exclusion of air bubbles and formation of clear ice
(Carte, 1961; Hubbard and others, 2000). The clear ice bands
were distributed in the glacier ablation zone and had a typical
width of 10–30 cm and a length of 10 m or more. Between the
bands of refrozen englacial water, meteoric glacier ice is formed
from the compaction of snow, presenting a dense matrix of air
bubbles (i.e. cloudy ice).

2.1. Sample collection and ice classification

The fieldwork was conducted in July 2017. Unfortunately, a thin,
late-season snowpack covered the study area made selecting cor-
ing sites difficult. Both clear ice bands (considered as frozen
englacial fractures) and cloudy ice (considered here as meteoric
glacier ice) were drilled with a 9 cm diameter hand corer (Mark
II, Kovacs, USA) and processed in the same manner (Figs 1c,
d). We collected ice cores from eight sites in the glacier ablation
zone. Sites were chosen by targeting areas with evident contrast
between clear ice bands and meteoric ice. For each site, at least
three ice cores were taken from the identified ice band and
other three ice cores were taken randomly in the proximity of

the ice band (i.e. 2–3 m away). The ice core depths ranged
between 45 and 131 cm (Table S1). Each 9 cm diameter core
was cut into two or three sections. The first section of the ice
core was constituted by the first 15–30 cm of ice from the surface;
samples representing this section were classified as Surface sam-
ples (S). The rest of the core was classified as SubSurface sample
(SS). Surface samples are constituted by the surface weathered
crust plus a few extra centimeters to avoid potential contamin-
ation in subsurface samples by surface weathering and meltwater.
The glacier surface weathered crust showed a variable depth across
different sites and an ice matrix enriched with particles and algal
detritus. Occasionally, a core would include both a clear section
and cloudy section in its subsurface layer, perhaps due to the
inclination of the refrozen fracture. In this circumstance, the
core was separated at the matrix interface. Each core section
was conserved in a different sterile Whirl-Pak bag (Whirl-Pak,
Nasco, USA) and classified as Surface clEar ice (SE), Surface
clOudy ice (SO), SubSurface clEar ice (SSE), SubSurface clOudy
ice (SSO) or SubSurface Mixed ice (when the ice showed a
mixed ice matrix; SSM).

After moving to a new sampling site or switching to a different
ice type, the core barrel was cleansed by coring into the ice of the
new sampling location and discarding the core. Nine different
sites were sampled in total. Sites 1, 2, 3 and 4 were within a
50-m proximity, whereas site 5, the closest to those samples was
400 m apart. Sites 6 and 7 were 150 m distant from site 5 and
150 m away from sites 8 and 9. Although at least three cores
were taken for ice type in each site, we processed two cores in
sites 1 and 4, three cores at site 2 and four cores were taken
from sites 3, 5, 6, 7 and 8 (Fig. 1a and Table S1). At site 9, two
surface samples were taken from the upper 2 cm where the ice
was darker and visibly enriched with algae. These two samples
(i.e. algae-containing samples) were collected as microbial con-
trols and compared with the others.

The cores were melted at room temperature in the laboratory
of the Tarfala Research Station. To avoid external contamination,
we melted the outer layer of the ice core and discarded the water
(Christner and others, 2005). The core was then transferred to a
new sterile Whirl-Pak bag. The subsequent melted water was
then subsampled. For major ion (i.e. nutrient) analysis, 1.5 mL
of the glacier meltwater was filtered through a 25 mm, 0.22 μm
cellulose nitrate inline syringe filter (Whatman™) and stored in
a polypropylene auto sampler vial at 3°C; for cell counts, 15 mL
of water was stored with 2% of glutaraldehyde and then stored
at 4°C, and for DNA analyses the remaining water (1–3 L) was
processed through sterile polycarbonate membrane filters (0.22
μm pores, 47 mm, Sigma-Aldrich) and stored at −20°C. Given
the low biomass environment, another 50 mL of Milli-Q® ultra-
pure water were processed through a filter with exactly the same
procedure and stored for further analyses in order to assess any
eventual procedural contamination.

2.2. Geochemical analyses

Major soluble ions (Cl−, SO4
2−, NO3

−, PO4
3−, Mg2+, Ca2+, NH4

+,
Na+tot and K+) were quantified using capillary ion chromatography
on a Thermo Scientific™ Dionex™ analytical ICS-5000, fitted
with a simultaneous IonPac™ AS11-HC 2 × 250 mm
anion-exchange column and an IonPac™ CS12 2 × 250 mm
cation-exchange column. The limit of detections (LoDs), deter-
mined by the mean concentration plus three times the std dev.
of procedural blanks (n = 9), were 8.1 parts per billion (ppb)
(Cl−), 6.4 ppb (SO4

2−), 8.6 ppb (NO3
−), 16.5 ppb (PO4

3−), 23 ppb
(Mg2+), 26 ppb (Ca2+), 10 ppb (NH4

+), 29 ppb (Na+tot) and 14
ppb (K+). Accuracies were −0.1% (Cl−), −3.4% (SO4

2−), −0.5%
(NO3

−), −5.5% (PO4
3−), −14% (Mg2+), −6.5% (Ca2+), −14%
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(NH4
+), −14% (Na+tot) and −20% (K+). Precisions were ±0.47

(Cl−), ±2.0 (SO4
2), ±1.0 (NO3

−), ±2.7 (PO4
3−), ±5.4 (Mg2+), ±3.7

(Ca2+), ±2.9 (NH4
+), ±3.7 (Na+tot) and ±6.7 (K+), as determined

from comparison with a gravimetrically diluted single ion
1000 ppm Fluka™ TraceCERT® ion chromatography standard
to a concentration of 250 ppb for each ion. In the paper, Na+

values are reported as rock dissolved Na+rock. Na
+
rock was calculated

with the formula: Na+sea = Cl−tot × (10 760 ppb/19 350 ppb) where
Na+rock = Na+tot−Na+sea. The values 10 760 and 19 350 ppb are,
respectively, the concentrations of Na+ and Cl− in sea water
(Plummer, 1975). Some of Na+rock values that are equal to 0 may
be slightly negative values.

Dissolved organic carbon (DOC) concentration was quantified
using a Shimadzu TOC-VWP Organic Carbon Analyzer. Total
carbon (TC) is the sum of inorganic carbon (IC) and DOC. TC
was measured via the addition of phosphoric acid and persulfate
to the sample, which was heated under UV radiation and con-
verted to CO2 where it was measured using non-dispersive infra-
red analysis. IC was quantified by acidifying the sample with
phosphoric acid and sparged to convert it to CO2, where it was
measured in the same way as TC. DOC was determined by
subtracting the IC concentration from the TC concentration.

The LoD was 28.1 ppb. Precision was ±1.3 and accuracy was
2.3% as determined from comparison with a gravimetrically
diluted 1000 ppm TOC certified stock standard to a concentration
of 250 ppb (Sigma TraceCERT®).

2.3. Cell enumeration and biovolume

Cell concentrations were determined for the prokaryotic and
eukaryotic components after a thorough vortexing of the samples.
All the samples were observed under a LEICA DM2000 LED
microscope and imaged with Leica MC 120 HD camera con-
nected to LAS v 4.12 software. Eukaryotic cells were counted
under visible light where each sample was first loaded on a
Fuchs-Rosenthal hemocytometer and then two counting cham-
bers were screened at a 400× magnification. The eukaryotic
organisms were classified into four different types: Ancylonema
sp., Mesotaenium sp., circular cells and oblong cylindrical cells
(Figs S1a–d) and counted for each of the samples. For each cell
type, 30 images were taken using a magnification of 400× for
Ancylonema sp. and 100× magnification for the other cells.
Using Fiji software (Schindelin and others, 2012), the diameter
and/or the height of all the cells were measured in order to

Fig. 1. Map of the sampling site location in the
ablation zone of the Storglaciären and ice type
images. (a) Position of the nine sampled sites
on the glacier. Four ice cores were processed
from sites 3, 5, 6, 7 and 8, three ice cores were
processed from site 2 and two ice cores were
processed from sites 1 and 4. Two surface algal
samples were collected in site 9. (b) Images of
the glacier surroundings facing the glacial valley
and the glacial accumulation zone. (c) Clear ice
band with an example of the clear ice matrix
(site 7) and (d) cloudy ice sampling site with an
example of the cloudy ice matrix (site 4); the
bore hole diameter is 9 cm.

Journal of Glaciology 3
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calculate the average cell volume for these four ecotypes using for-
mulae after Hillebrand (μm3 per cell) (Hillebrand and others,
1999). In order to obtain the biovolume, the cell volumes were
then multiplied by the cell counts (μm3mL−1).

Prokaryotic cells were counted by epifluorescence microscopy
using an excitation wavelength ranging between 330 and 380 nm
and following the protocol presented in Grzesiak and others
(2015) where 5 mL of melted glacier ice (0.5 mL for the algal sam-
ples of site 9) was incubated with 4′,6-diamidino-2-phenylindole
(final concentration of 1%) in darkness for 10 min and then
filtered through 0.2 μm pore size black polycarbonate filters
(Millipore Isopore) for epifluorescence microscopy. For each sam-
ple, under 1000× magnification using an oil immersion objective,
the prokaryotic cells emitting blue and yellow-orange fluorescent
light were counted over 30 camera fields of view Figs S1e, f). The
yellow-orange fluorescence was assumed to be the autofluores-
cence emitted by Cyanobacteria (Rassoulzadegan and Sheldon,
1986; Uetake and others, 2010). Although visible with this tech-
nique, no algal organisms were included in this count. Bacterial
biovolumes were also approximated using formulae (Hillebrand
and others, 1999). In our study, prokaryotic counts are presented
as cell counts (cells per mL) whereas total counts of the prokary-
otic and eukaryotic component were presented as biovolumes
(μm3mL−1). When filamentous cell chains (e.g. Ancylonema or
Cyanobacteria) were observed, the single cells composing the
chain were considered.

2.4. DNA extraction and Illumina sequencing

The filters (0.22 μm pores, 47 mm, Sigma-Aldrich) were dir-
ectly processed with the DNeasy PowerWater kit (Qiagen,
Hilden, Germany) following the manufacturer’s protocol.
DNA concentrations were measured with the Qubit® 1.0
Fluorometer and Qubit® dsDNA HS assay kits (Invitrogen,
Carlsbad, CA, USA). Between 1 and 250 ng of DNA were
obtained per sample.

All samples were amplified with primers specific to the V3–V4
region (450–500 bp) of the 16S rRNA gene. The primers Pro341F
and Pro805R target both the bacterial and archeal organisms
(Table S2) (Takahashi and others, 2014). To account for low start-
ing biomass and add on sequencing adapters, the first 25 poly-
merase chain reaction (PCR) cycles were performed using the
Pro341F and Pro805R primers and then a further 25 cycles
were run with the same primers combined with the Illumina
Nextera Transposase adapters (Table S2). PCR was run adding
12.5 μL of KAPA HiFi HotStart ReadyMix (Roche Applied
Science), 1.5 μL of each 5 μM primer (0.3 μM final concentration),
between 5.50 and 10.5 μL of sample (5–30 ng of DNA) and
nuclease-free water up to a final volume of 25 μL PCR solution.
PCR conditions were 3 min at 95°C, 25 cycles of 20 s at 98°C,
15 s at 65°C and 15 s at 72°C, and a final extension step of
5 min at 72°C for the first step of the nested PCR. The second
step consisted of 3 min at 95°C, 25 cycles of 30 s at 98°C, 30 s
at 55°C, 30 s at 72°C and a final extension step of 5 min at
72°C. All PCR runs were checked on 1.5% horizontal agarose
gel (0.5 mg ethidium bromide per mL) in 1× TAE buffer (Tris
acetate–EDTA) at 120 mV for 30 min (Bio-Rad PowerPac 300,
Bio-Rad Laboratories). Negative controls did not show any band
except in one of the runs. That negative control sample was there-
fore sequenced. The amplicons were then indexed with the
Nextera XT Index kit, pooled together and sequenced in two
lanes of the Illumina MiSeq using 600 cycle MiSeq reagent kit
(version 2) obtaining paired 300 bp reads. Basecalling was done
with Illumina Real Time Analysis (RTA) software version
1.18.54.0. The sequencing was performed by the University of
Bristol Genomics Facility.

The sequence data have been deposited in the European
Nucleotide Archive (ENA) at EMBL-EBI under accession number
PRJEB40002 (https://www.ebi.ac.uk/ena/browser/view/PRJEB40002).

2.5. Bioinformatics and statistical analyses

All 62 glacial samples and the two negative controls were pro-
cessed together following the same pipeline. We performed all
DNA analyses using R v 3.6.1 (R Core Team 2019, 2019) except
for the first step where primers and adapters were trimmed
with software CUTADAPT v 2.6 (Martin, 2011). The quality
check and filtering of the amplicon sequences were performed
using the R package DADA2 v 1.14.0 (Callahan and others,
2016) following these steps: read quality trimming, read dereplica-
tion, ASV (Amplicon Sequence Variant) inference, read merging,
chimera detection and taxonomy assignment with the Silva data-
base v 132 (Yilmaz and others, 2014). Using the R package decon-
tam v 1.6.0 (Davis and others, 2018) we also removed the
contaminant reads from all the samples. Contaminants were iden-
tified by the two negative controls (NC1 and NC2). NC1 was the
DNA extracted from the Milli-Q® ultrapure water that was filtered
in the laboratory of the Tarfala Research Station and treated with
the exact same protocol as the other samples, and NC2 was a PCR
negative control that showed a faint line on one of the electro-
phoresis gels that was run during the amplicon preparation. No
negative control accounting for in-field coring was added.
However, as described above, the core barrel was cleansed every
time we switched to a different sampling site or ice type and
the melted water from the core outer layer was discarded, thereby
minimizing in-field sample contamination.

Two samples were overloaded during the Illumina sequencing
giving an output of 690 952 and 1 278 606 sequences in
3D-75-122 and 9B, respectively (Table S3). The two overloaded
samples were rarefied to 263 233 sequences which corresponded
to the number of reads in third sample ranked by read-count
(8D-20-100).

We calculated sample rarefaction curves in order to check how
the diversity was covered in all the samples with the R package
iNEXT v 2.0.20 (Hsieh and others, 2016). Then we removed the
singleton component from the dataset. Singletons were here
defined as the ASVs represented by only one sequence read
count in the entire dataset (Auer and others, 2017; Callahan
and others, 2019) (Table S4). The ASV table was then trans-
formed with the package DESeq2 v 1.26.0 (Love and others,
2014) and the cluster analysis was calculated on this dataset
using Euclidean distances. In the heatmap, the samples were dis-
posed following this sample clustering and only genera that repre-
sented more than 2% of the community in at least one sample of
the dataset were reported. We also reported the 16S rRNA
sequences associated with Chloroplast (order-level) and WPS-2
(phylum-level) in order to give a better idea about the
Unclassified component at genus-level. We investigated how
each genus varied between different sites, ice types and ice layers
with the Kruskal–Wallis test. This test was performed for each
genus on the relative abundance dataset (no algal samples from
site 9 were included). We considered the Kruskal–Wallis test to
be significant when the p-value was lower than 0.05.

All the other statistical analyses such as permutational multi-
variate analysis of variance (PERMANOVA) and distance-based
redundancy analysis (dbRDA) were performed on the dataset
transformed with the Hellinger transformation (Legendre and
Gallagher, 2001). PERMANOVA analyses were performed on
Bray–Curtis dissimilarity matrices for ASV and microbial count
data and Euclidean distance matrices for the geochemical dataset.
All the factorial analyses (e.g. PERMANOVA) were performed
with three different factors: ‘site’ (nine levels as 1, 2, 3, 4, 5, 6,
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7, 8 and 9), ‘ice type’ (five levels as SE, SO, SSE, SSO and SSM)
and ‘layer’ (two levels as S and SS). The factor ‘layer’ was divided
only between surface and subsurface samples because the subsur-
face samples represented a high range of depths and this did not
allow a more detailed division. The ice types SSE and SSO, which
are the clear and cloudy subsurface ice, also represented samples
from different ice depths.

PERMANOVA performed on uniquely clear or cloudy dataset
was performed on only the factors ‘site’ and ‘layer’ to check which
of the two ice types showed a higher degree of differentiation
among sites and ice layers. The algal samples (site 9) were
excluded by the PERMANOVA and dbRDA analyses in order
to not inflate the observed difference between samples. In the
dbRDA analysis, sample 4B-17-74 represented an outlier
(dbRDA1 =−2.83 and dbRDA2 =−4.00) was removed from the
graph for visualization purposes. PERMANOVA pairwise com-
parisons were performed with the R package pairwiseAdonis v
0.4 (Martinez Arbizu, 2020) and p-values were adjusted with
the Bonferroni correction.

We used the following R packages for data manipulation and
graph plotting: ggplot2 v 3.2.1 (Wickham, 2016), gplots v 3.0.1.1
(Warnes and others, 2020), tidyr v 1.0.2 (Wickham and RStudio,
2020), phyloseq v 1.30.0 (McMurdie and Holmes, 2013), vegan v
2.5.6 (Oksanen, 2017), viridis v 0.5.1 (Garnier, 2018), gridExtra v
2.3 (Auguie, 2017) and plyr v 1.8.5 (Wickham, 2011).

3. Results

3.1. Ice geochemistry

Twenty-five percent of the geochemical variance was explained by
the differences between each site location. Differences between clear
and cloudy ice was a secondary factor explaining 17% of the vari-
ance ( p-value <0.05; Table 1a). PERMANOVA analysis performed
on each variable showed that Mg2+ (R2 = 0.81), K+ (R2 = 0.72), Ca2+

(R2 = 0.70), Na+ (R2 = 0.35) and NH4
+ (R2 = 0.24) showed signifi-

cant values ( p-value <0.05) for the site locations. No significant
results were obtained for the differences between ice types. In
sites 1, 2, 3, 4 and 5 Mg2+, Ca2+ and K+ showed higher concentra-
tions (17–19, 17–33 and 26–123 ppb respectively) than in the other
sites (6–13, 6–14 and 0–18 ppb). Na+ was lower in sites 6, 7 and 8
(0–14 ppb, 8D-0-20 excluded) compared to the other sites (5–25
ppb). NH4

+ concentrations were higher in sites 6, 7, 8 and 9 and
especially in site 8 where the average value was 13 ± 6 ppb against
6 ± 5 ppb in all the other sites. PO4

3− concentration was below the
LoD in all of the samples. DOC values were much higher in the
algal samples (site 9) with values of more than 1500 ppb while in
the others all the values were below 500 ppb (Fig. 2). Nutrient
and DOC concentrations grouped by different ice types are
reported in Fig. S2.

3.2. Cell enumeration

The highest prokaryotic abundance was found in high algal con-
tent samples at site 9 (6 × 104 in 9A and 1 × 105 cells per mL in
9B). In all the other ice samples, the prokaryotic concentration
ranged between 2 × 103 and 3 × 104 cells per mL. The cell count
was higher in the surface clear ice (SE) samples compared to
the other ice types (Fig. 3a) whereas fewer differences were
observed among different sites (Fig. 3b).

Looking at the biovolume data (comprising also of the algal
component), the algal samples presented, again, the highest
biovolume values with 5 × 107 and 9 × 107 μm3mL−1. The other
samples ranged between 3 × 104 and 6 × 106 μm3mL−1 (Fig. S3).
The only statistically significant factor ( p-value < 0.05) in the pro-
karyotic count and biovolume datasets was the ice type factor

which explained 17 and 13% of the variance respectively
(Table 1a). Less variance was explained by the model when the
PERMANOVA analysis was run with ‘layer’ (i.e. surface vs
subsurface ice) as second factor (instead of the factor ‘ice type’;
Table 1b). PERMANOVA pairwise comparisons showed that
the only significant comparisons ( p-value <0.05) were those
between the SE samples and the other ice types. In particular,
comparisons between SE and surface cloudy ice (SO), subsurface
cloudy ice (SSO) and subsurface clear ice (SSE) explained 28, 21
and 15% of the observed variance.

3.3. Microbial diversity

The two negative controls NC1 and NC2 resulted in 179 and 59
763 sequences, respectively (Table S3). NC2 sequences were repre-
sented by 219 ASVs. The most abundant ASVs (i.e. ASVs corres-
pond to more than 0.01% of the sample sequences) in NC2 were
associated with 97% of the sequences in this sample, and only to
<1% of all the sequences in all the other samples.

Between 15.2 and 73% of the sequences in all samples were kept
after the sequence clean-up and only five of the 62 glacier ice sam-
ples had fewer than 50 000 sequences (Table S3). The total number
of ASVs present in the dataset was 20 509. The iNEXT diversity
curves reached a plateau for the q1 (Shannon diversity) and q2
(Simpson diversity) indexes whereas they were still in an exponen-
tial phase for the q0 (ASV richness) index (Fig. S4).

At high taxonomical (phyla-level) rank, all the ice samples pre-
sented similar communities dominated by Cyanobacteria (33.3%
on average), Alphaproteobacteria (13.4%; Proteobacteria),
Actinobacteria (11.7%), Bacteroidetes (11.3%), WPS-2 (10.5%),
Firmicutes (5.4%), Acidobacteria (4.2%), Gammaproteobacteria
(3.8%; Proteobacteria) and Armatimonadetes (2.2%). These phyla
represented between 79.8 and 99.9% of all the taxa sampled.
Phylum distribution across the different sites did not show any
particular trend with the exception of a higher abundance of
Armatimonadetes and Acidobacteria in sites 5, 6, 7 and 8 reaching
abundances of 13.4 and 13.5%, respectively; and Firmicutes in sites
7, 8 and 9 reaching 31.5%. In the subsurface ice, Armatimonadetes
and Firmicutes had a higher sequence relative abundance reaching
also 13.4 and 24.5% in these samples. Cyanobacteria was the most
represented phylum in the dataset and reached a relative

Table 1. PERMANOVA test performed on the ice geochemistry, prokaryotic
count, biovolume and ASV datasets for the model (a) ‘site × ice type’ (b) and
‘site × layer’.

Datasets

(a) Site × ice type (b) Site × layer

Factors R2 p-value Factors R2 p-value

Ice geochemistry Site 0.246 0.007* Site 0.246 0.002*
Ice type 0.172 0.002* Layer 0.111 0.001*
Site × ice
type

0.213 0.455 Site × layer 0.130 0.143

Prokaryotic count Site 0.203 0.056 Site 0.203 0.039*
Ice type 0.165 0.028* Layer 0.081 0.011*
Site × ice
type

0.242 0.441 Site × layer 0.162 0.089

Biovolume Site 0.131 0.268 Site 0.131 0.382
Ice type 0.132 0.043* Layer 0.076 0.017*
Site × ice
type

0.321 0.221 Site × layer 0.104 0.629

ASV Site 0.211 0.001* Site 0.210 0.001*
Ice type 0.101 0.001* Layer 0.050 0.001*
Site × ice
type

0.294 0.049* Site × layer 0.107 0.300

PERMANOVA was performed with 1000 permutations on Bray–Curtis dissimilarity matrices
for all the datasets except from the ice geochemistry dataset where a Euclidean distance
matrix was used. The symbol ‘*’ is reported for significant R2 values where the statistic
p-value <0.05.
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abundance of 99.2% in the algal samples collected from area 9, and
ranged between 23 and 50% in the samples collected from SO, SE,
SSE and SSM, but was constantly lower than 25% in SSO.

At ASV-level the samples clustered in three main different
groups with a first cluster composed of samples from sites 1, 2,
3, 4 and 5, a second cluster with samples from sites 5, 6, 7 and

8 and a third cluster, more distantly related from the first two
clusters, with samples from sites 5, 6, 7 and 8 with mainly subsur-
face cloudy samples (Fig. 4a). Samples collected from site 5 clus-
tered closed to samples from all the other sites. Additionally to
the two algal samples (9A and 9B), the ice cores 6A and 8B
also clustered independently from all the other samples. The
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b

d
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h

Fig. 2. Geochemical data grouped by site for (a) Cl−, (b) Na+, (c) Mg2+, (d) Ca2+, (e) SO4
2−, (f) K+, (g) NO3

−, (h) NH4
+ and (i) DOC. All the values are reported in ppb.
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Unclassified component at the genus level was between 0.1 and
49.9% in all samples (9A and 3A-0-33, respectively), where
most of the sequences were associated with the phyla
Cyanobacteria, Proteobacteria and Armatimonadetes (Fig. S5).
Samples 9A and 9B had 99% of the sequences associated with
chloroplast 16S rRNA.

Clusters 1 and 2 had a consistent dominant community across
all the samples where WPS-2, Phormidesmis, Salinibacterium,
Acidiphilium, Solitalea, Hymenobacter, Granulicella, Parafrigorib-
acterium and Polymorphobacter constituted more than 34% of
the community in all the samples (except from samples
2A-83-111, 2C-25-61, 2C-61-119, 4B-17-74 and 5D-25-70).
Clusters 2 and 3 (sites 6, 7 and 8) were also characterized by the
genus Clostridium; and cluster 3 (subsurface cloudy samples in
sites 6, 7 and 8) alone was characterized by Sediminibacterium
and Bradyrhizobium and a higher component of less abundant
taxa (Fig. 4b).

Kruskal–Wallis tests, performed at specific genus relative dis-
tributions, showed that most of the genera varied between sites,
rather than between different ice types or layers. In particular,
Sediminibacterium, Bradyrhizobium and Clostridium showed the
highest chi-squared values (Fig. 4c). Sediminibacterium,
Bradyrhizobium and Pseudanabaena also showed a distribution
that also varied by ice type (Fig. 4c).

In the ASV dataset, 21% of the observed variance was explained
by the factor ‘site’. The factor ‘ice type’ was a secondary factor
explaining 10% of the variance; 29% of the variance was explained
by ‘site × ice type’ factor ( p-value <0.05, Table 1a). In total, 27 and
42% of the variance was explained by the factor ‘site’ when
PERMANOVA was performed only on the clear and only the
cloudy ASV dataset, respectively ( p-value <0.05, Table 2).

3.4. Ice geochemistry, site and taxon interactions

The clustering of subsurface cloudy ice samples of sites 6, 7 and 8
was correlated with a high abundance of the taxa Clostridium,
Bradyrhizobium, Salinibacterium, Sediminibacterium and
Desulfosporosinus (Fig. 5). This was also supported by the
Kruskal–Wallis test results where these taxa explained differences
observed among sites (Fig. 4c). This sample cluster was correlated
with higher values of NH4

+, SO4
2− and Cl− and by lower concen-

trations of all other nutrients. All other samples from sites 6, 7

and 8 were correlated with higher values in NH4
+. On the contrary,

the group formed by sites 1, 2, 3 and 4 was characterized by
higher values of mainly K+, Na+, Ca2+ and Mg2+ and an increase
in the genera Massilia, Hymenobacter, Pseudanabaena and
Acidiphilium, Parafrigoribacterium and Deinococcus. NH4

+ had
negative relation with all the other ions (Fig. 5). The dbRDA clus-
tering patterns corroborated those seen in the cluster analysis
(Fig. 4a). DOC and NO3

− were the geochemical variables that
least affected the taxon and site distribution observed in the
dbRDA plot (shorter vectors).

4. Discussion

Common to all sampling sites were taxa previously found and
isolated from other polar and cold environments, such as the gen-
era Phormidesmis (Chrismas and others, 2016), Salinibacterium
(Shin and others, 2012), Solitalea (Uetake and others, 2019),
Granulicella (Oshkin and others, 2019) and Hymenobacter
(Klassen and Foght, 2011). Most of these taxa have been described
as being exopolysaccharide (EPS), ice-binding protein and anti-
freeze protein producers (Cid and others, 2016; Kielak and others,
2016; Chrismas and others, 2018). These substances have been
shown to facilitate and protect cells from freeze/thaw cycles and
to alter ice crystal formation therefore providing cryoprotection
to promote their survival in this challenging environment
(Casillo and others, 2017; Deming and Young, 2017; Ali and
others, 2020). The Cyanobacteria found are also typical of the
glacial environment (Lutz and others, 2017) and most of the
genera (e.g. Phormidesmis, Pseudanabaena, Chamaesiphon and
Tychonema) can form filaments, biofilms or colonies of organ-
isms adapted to cope with the stress imposed by challenging
environments (Lan and others, 2010; Singh and others, 2010).
Segawa and others (2017) studied biogeographic patterns in
cyanobacterial species colonizing glacial surfaces worldwide iden-
tifying both cosmopolitan (e.g. Phormidesmis sp., Pseudanabaena
sp. and Chamaesiphon sp.) and local distributed species that
differentiated due to site-specific conditions. The presence of
filamentous organisms and EPS exudates was also supported by
microscopy observations (Figs S1g, h).

Although a distinction between clear and cloudy ice could be
observed, microbial diversity and structure were mainly influ-
enced by the location (Table 1a). The main microbial differences

a b

Fig. 3. Prokaryotic cell counts for (a) ice type-grouped samples and (b) site-grouped samples.
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across sites were observed between the area with sites 1, 2, 3 and 4
and the one with sites 6, 7 and 8 (Figs 4, 5). The microbial com-
munity in sites 6, 7 and 8 differed from the others mainly because
of the high abundance of the genus Clostridium, belonging to the
phylum Firmicutes, which are spore-forming organisms (Ryall

and others, 2012; Setlow, 2016). The ability to form spores gives
these organisms an advantage in challenging environmental con-
ditions, for this reason they have also been often observed as an
essential part of atmospheric microbial communities (Els and
others, 2019a, b). These sites were also enriched with the phylum
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e 
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pe
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ye

r

Fig. 4. Genus abundance across the samples. (a) Cluster analysis performed on ASV dataset transformed with the DESeq2 algorithm where the samples clustered in
three main groups (1, 2 and 3). (b) Heatmap showing only the genera that represented more than 2% of the community in at least one sample of the dataset. (c)
Heatmap reporting chi-squared values reported by Kruskal–Wallis tests performed on dataset without algal samples (site 9) for the factors ‘site’, ‘ice type’ or ‘layer’;
white boxes correspond to p-values ⩾0.05. The reported sample names are composed of the core replicate and the core depth range (cm). *All the reported taxa
are at the genus level with the exception of WPS-2 which is a phylum and Chloroplast which is an order. **The Unclassified component is explained in more detail
in Fig. S5.
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Acidobacteria, whose organisms are well-known acidophiles
(Pankratov and Dedysh, 2010; Goltsman and others, 2015) and
Armatimonadetes which is not well characterized, but it is often
associated with Cyanobacteria (Woodhouse and others, 2017).

Differences between clear and cloudy ice were of secondary
importance in explaining the observed variance in the taxonomy
(Table 1a). Although similar microbial community structure and

diversity were shared between the surface and subsurface samples
of clear ice across all sites and cloudy ice across sites 1, 2, 3, 4 and
5; the microbial community of the subsurface cloudy ice of sites 6,
7 and 8 was different and presented a community structure char-
acterized by many medium-abundant taxa and a less defined
dominant community (Fig. 4b). Furthermore, these subsurface
cloudy ice samples had a lower abundance of those genera that
constituted the dominant community in the other samples and
that we defined above as commonly found in the polar region
(e.g. Phormidesmis and Hymenobacter; Fig. 4b). Other than
Clostridium, which had a similar abundance in all the samples
of sites 6, 7 and 8, the genera Bradyrhizobium and
Sediminibacterium had a higher presence in the cloudy subsurface
ice of these sites (Figs 4b, c). The genus Bradyrhizobium is mainly
composed of plant symbiont nitrogen-fixers (Shah and
Subramaniam, 2018) and Sediminibacterium is an ubiquitous
genus often found in soil and fresh water environmental samples
(Kim and others, 2013; Kang and others, 2014; Pinto and others,
2017). These two genera could have been transported to the gla-
cier surface from the surrounding environment (Fig. 1b) and
trapped in the ice by the successive snow deposition and firn/
ice formation. Microbes are indeed brought to the glacier mainly
by weathering phenomena and eolian transport (e.g. snowfall and
dust) and therefore, the glacial communities are strictly dependent
and conditioned by the surrounding environment (Boetius and
others, 2015; Hotaling and others, 2017). In the interior of the
Storglaciären ablation zone, the ice is impermeable (Fountain
and Walder, 1998) and, the microorganisms trapped in the ice

Fig. 5. dbRDA bi-plot ordination performed on the Hellinger-transformed genus dataset and the geochemical dataset (Cl−, Na+, Mg2+, Ca2+, SO4
2−, K+, NO3

−, NH4
+ and

DOC). Algal samples from site 9 were not included in the analysis. Only genera that had a dbRDA1 or dbRDA2 higher than 0.2 or lower than −0.2 were displayed in
the plot. Vectors indicate directions of the geochemical variable effects in the bacterial community composition (Bray–Curtis similarity).

Table 2. PERMANOVA test performed on only the clear ice samples and only on
the cloudy ice samples for the model ‘site × layer’

Datasets Factors

Clear ice Cloudy ice

R2 p-value R2 p-value

Ice geochemistry Site 0.283 0.019* 0.373 0.445
Layer 0.295 0.001* 0.020 0.891
Site × layer 0.126 0.255 0.105 0.736

Prokaryotic count Site 0.248 0.109 0.431 0.334
Layer 0.164 0.007* 0.016 0.725
Site × layer 0.254 0.058 0.049 0.920

Biovolume Site 0.159 0.658 0.485 0.179
Layer 0.156 0.012* 0.025 0.594
Site × layer 0.184 0.364 0.096 0.575

ASV Site 0.267 0.002* 0.424 0.042*
Layer 0.065 0.001* 0.071 0.013*
Site × layer 0.179 0.069 0.100 0.871

PERMANOVA was performed with 1000 permutations on Bray–Curtis dissimilarity matrices
for all the datasets except from the ice geochemistry dataset where a Euclidean distance
matrix was used. The symbol ‘*’ is reported for significant R2 values where the statistic
p-value <0.05.
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veins or crystals (Mader and others, 2006) can only move few
micrometers. Therefore, macroscale englacial pathways (crevasses,
channels and moulins) represent the only way to move within
the ice. In this context, englacial water (i.e. represented by the
clear ice) could favor the development of a glacial microbial com-
munity that is different from the community associated with
depositional processes. The cloudy ice could represent a more
compartmentalized ice environment where microbial movement
is more restrained and where the development of a well-defined
glacial microbial community is slower than in the surface ablation
zone and englacial channel environment. This pattern is con-
firmed by our results where microbial communities were more
diverse between different cloudy ice samples, whereas communi-
ties in the clear ice were more homogeneous (Table 2).
Furthermore, subsurface clear ice and all the surface ice samples
shared a similar microbial community (Figs 4a, b). This could
be due to the fact that glacial meltwater communities constitute
an inoculum to englacial channel communities, therefore highly
conditioning the englacial system.

Although Cyanobacteria are normally associated with the gla-
cial surface because of their photosynthetic metabolism (Stibal
and others, 2006, 2012b; Uetake and others, 2010; Anesio and
Laybourn-Parry, 2012), they have been previously found in melt-
water streams (Makhalanyane and others, 2015) and in englacial
locations (Martinez-Alonso and others, 2019). Cyanobacteria
were less abundant in the subsurface cloudy ice of sites 6, 7 and
8, where there is a notable absence of a microbial community typ-
ical of glacial environment. Other than this clustering, only the
cyanobacterial genus Pseudanabaena showed a differential distri-
bution between ice types (Fig. 4c). The broad presence of
Cyanobacteria in the clear ice may suggest that the cyanobacterial
organisms are washed into englacial systems from the glacier
surface. Once in the englacial habitat, they may serve as nutrient
and energy source for the heterotrophic component of the
englacial microbial community. Similar relative abundances of
Cyanobacteria between ice types may indicate a slow degradation
rate of organic material in the englacial community.
Remineralization of nutrients would be expected to be slow con-
sidering the relatively low abundance of bacteria in subsurface
samples (average of 7 × 103 cells per mL).

Although the contrast between clear and cloudy ice communi-
ties was evident in sites 6, 7 and 8, sites 1, 2, 3 and 4 did not show
any pattern between different ice types (Figs 4a, b). Ice from
different sites would have different source locations and take
different pathways through the glacier before emerging in the
ablation zone (Cuffey and Paterson, 2010; Hudleston, 2015).
Therefore, as they formed at different times they would reflect
the environment at that time and source region on the glacier.
Importantly, microbial communities are strongly correlated with
variations in nutrient and particle concentration, which can
vary by some magnitude, spatially and temporally (Dieser and
others, 2010; Lutz and others, 2016; Uetake and others, 2019).

Ice geochemistry showed the same patterns as the ASV data
where site location represented the main explanatory factor
(Table 1a). Concentrations of Mg2+, Ca2+, Na+ and K+ were
higher in sites 1, 2, 3, 4 and 5 compared to sites 6, 7 and
8. These ions are associated with the dissolution of soil and
rock particles, therefore indicating a higher particle concentration
in sites 1, 2, 3, 4 and 5 (Li and others, 2007) (Fig. 2). Hence, the
higher presence of the spore-forming genus Clostridium in sites 6,
7 and 8 could be due to the low nutrient and low dust concentra-
tion in these sites. Low Ca2+ concentrations have been associated
with low glacier pH (Li and others, 2007). Although we did not
measure pH, sites 6, 7 and 8 had lower Ca2+ concentrations com-
pared to the other sites and were enriched with species belonging
to the Firmicutes and Acidobacteria phyla, which are known

acidophilic organisms (González-Toril and others, 2015). NH4
+

was the only ion that showed a higher concentration in sites 6,
7 and 8, as well as a correlation with the presence of heterotrophic
N2-fixers (e.g. Bradyrhizobium) and other heterotrophic organ-
isms (e.g. Sediminibacterium and Salinibacterium) (Fig. 5). The
enrichment of NH4

+ in this area could be ascribed to the fixation
of atmospheric nitrogen, however, due to the limited contact
between the englacial environment and atmosphere, the high
concentration of NH4

+ in this area is more likely attributed to
mineralization of organic N.

Cell concentrations and biovolumes did not show the same
pattern as those observed in the taxonomical and geochemical
data. Instead, ice type was the major explanatory factor
(Table 1a). Higher nutrient concentrations at a site did not corres-
pond to a higher cell concentration which was also observed by
Chen and others (2016), leading to the conclusion that the nutri-
ent presence shapes the microbial community structure, but not
necessarily the microbial growth. An average of 104 cells per
mL was observed by Grzesiak and others (2015) on surface glacier
ice and a concentration of 102–103 cells per mL was observed in
subsurface ice (Mader and others, 2006). Surprisingly, the con-
centration did not change with depth suggesting that cell concen-
tration was not influenced by irradiance levels. This lack of
microbial differences between surface and subsurface layers may
be due to the typical irregular ice stratigraphy of the glacier abla-
tion zone (Perolo and others, 2019). However, the variance
observed in these datasets was largely explained by the factor
‘ice type’, and prokaryotic cell concentrations and biovolumes
were significantly higher in the surface clear ice compared to all
the other ice types (Table 1 and Fig. 3). The fact that surface
clear ice could represent a more favorable environment for cell
growth compared to the other ice types may suggest that the
englacial water constitutes an environment where the cells are
alive (e.g. metabolically active or in a dormant state) and then,
once the englacial communities are exposed to the glacier surface
due to glacier ice movements, the organisms can thrive under the
new favorable conditions (e.g. higher irradiance and nutrient
concentrations) (Yallop and others, 2012).

The glacier ice, although seemingly impermeable, is fractured
by crevasses and perforated by an extensive network of englacial
pathways (Fountain and Walder, 1998) which play a pivotal role
in regulating flow of water and nutrients between the surface
and bed. The indirect sampling approach we used to sample
englacial and meteoric ice enabled us to successfully characterize
microbial communities in englacial passages and to answer our
hypothesis, focused on whether these communities differed
from those found in the surrounding meteoric ice. Different
microbial communities were found in frozen englacial water
(i.e. clear ice) and meteoric ice (i.e. cloudy ice) where the clear
ice was populated by taxa typical of glacier environments and
similar to those observed in the supraglacial realm, whereas the
cloudy ice was populated by taxa more typical of the landscape
surrounding the glacier. The difference in the spatial distribution
of the microbial communities in the two ice types shows the pres-
ervation of spatial patterns in meteoric ice reflecting the depos-
ition; and homogenization caused by water transport and
mixing in the englacial system, highlighting the role of the
englacial channels in dispersing and transporting the microbial
community inside the glacier (and presumably to the subglacial
region), and possibly in shaping the cold-adapted microbial com-
munity. Furthermore, englacial hydrology is highly conditioned
by the thermal regime of the glaciers (Irvine-Fynn and others,
2011) which it has previously been observed to likely affect glacial
ecosystems (Edwards and others, 2011). Due to the explorative
and descriptive nature of this study, further studies focusing on
englacial microbial communities in glaciers subjected to different
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thermal regimes and conditions are needed in order to support
our observations and to further enlighten the englacial role into
microbial dispersion and differentiation in glacial environments.

5. Conclusion

In this study, we utilized an indirect sampling method to charac-
terize microbial communities found in englacial water. We were
able to compare microbial communities from englacial water
(clear ice) to meteoric glacier ice (bubble-rich cloudy ice).
Although microbial communities were primarily shaped and
structured by their spatial distribution on the glacier, ice type
was an important secondary factor. A set of samples from one
location on the glacier presented significant community differ-
ences between clear and cloudy ice. Although the clear ice com-
munities were similar to those observed in the supraglacial
realm and presented typical cold-adapted glacial communities,
the cloudy ice presented a less defined glacial community with
more organisms from the surrounding non-glacial environment.
The cloudy ice provides a picture of the original microbial
community wind-transported to the glacier surface from the sur-
roundings and then buried by subsequent snow events, eventually
compacted and turned into glacial ice. The clear ice captures that
portion of the microbial community that survives in the glacial
habitat and originates from the supraglacial realm. These results
suggest a role of the englacial hydrological system in the disper-
sion, and possibly the shaping, of a glacial microbial community
within the glacier. Metatranscriptomic studies of the englacial
communities would help to further define community metabol-
ism and the role of Cyanobacteria in these habitats.

Supplementary material. The supplementary material for this article can
be found at https://doi.org/10.1017/jog.2021.30.
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