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PHYSICAL REVIEW A VOLUME 39, NUMBER 10 MAY 1S, 1989

Fourier transform of the multicenter product of 1s hydrogenic orbitals and Coulomb
or Yukawa potentials and the analytically reduced form

for subsequent integrals that include plane waves

Jack C. Straton*
Laboratory for Astronomy and Solar Physics, Goddard Space Flight Center,

National Aeronautics and Space Administration,
Greenbelt, Maryland 20771
(Received 28 January 1988)

The Fourier transform of the multicenter product of N 1s hydrogenic orbitals and M Coulomb or
Yukawa potentials is given as a (M +N —1)-dimensional Feynman integral with external momenta
and shifted coordinates appearing as quadratic forms P and S in (P/S)'K, , (PS), where K,, is a
modified Bessel function of the second kind. This is accomplished through the introduction of an
integral transformation, in addition to the standard Feynman transformation for the denominators
of the momentum representation of the terms in the product, which moves the resulting denomina-
tor into an exponential. This allows the angular dependence of the denominator to be combined
with the angular dependence in the plane waves. All angular dependence is then removed by invok-

ing an orthogonal transformation that does not need to be explicitly calculated. The extension to
excited states is outlined. The class of integrals over the shifted coordinates, containing plane waves
in addition to this product of orbitals and potentials, is given in analytically reduced form, with the
external momenta appearing as S

I. INTRODUCTION

A large class of problems in atomic and molecular
physics depends on the evaluation of integrals composed
of a product of hydrogenic orbitals, Coulomb or Yukawa
potentials, and (possibly) plane waves. One of the central
techniques in reducing such matrix elements to tractable
numerical form has been to Fourier transform parts of
the integrand and then to combine the angular depen-
dence using Feynman parametrization. ' The tedium and
the possibilities for error of this approach grow with the
increasing complexity of the problem, so it would be
helpful to have a unified prescription for carrying out
both the Fourier and Feynman transformations as a sys-
tematic intermediate step for subsequent integration over
arbitrary functions. The present paper not only gives the
Fourier transform for a general rnulticenter product of 1s
hydrogenic orbitals, Coulomb or Yukawa potentials, in-
cluding the necessary Feynman parametrization, but also
succeeds in carrying out the subsequent integration, once
and for al1, for the entire class of integrals in which these
arbitrary functions are plane waves.

The general formula for the Fourier transform of a hy-
drogenic orbital of an arbitrary state was first found by
Podolsky and Pauling. Recently, Straton' has found an
analytic form for the Fourier transform of a one-center
product of X orbitals (of an arbitrary state), required for
calculating matrix elements involving bound-state projec-
tion operators such as orthogonalization corrections in
charge transfer. An analytic form for three-electron in-
tegrals, a special case of the Fourier transform with the
momentum variable equal to zero, has been found by
Fromm and Hill. Fourier transforms of pairs of orbitals
centered at difterent points have been given in various

forms containing one-dimensional integ rais. ' or in
infinite series. " Of particular note is the technique of
representing hydrogenic orbitals by a finite sum of 8
functions, '' ' which have exceedingly simple Fourier
transforms. '

In this paper the integral transform method is extend-
ed to the calculation of the Fourier transform of a multi-
center product of N hydrogenic orbitals of the ground
state and M Coulomb or Yukawa potentials,

1''''' N' ll''' ' IMI ]s, . . . , )s (K,R], . . . , RM, RM + ], . . . , RM+y)

f d r e ' 'V„(r—R, ) V„(r—RM)(2~)' ~l ~M

Xu„(r—RM+, )
. u „' (r —RM+~),

and the modifications required to extend this to products
including excited states are discussed. Note that the
symmetrical normalization is used so that the inverse
transform is

(r, . . . )= r2 fd'Ke' 'I. ::(K, . . . ) .
1

(2~)

The final number of Feynman integrals depends on the
number of products in (l), so if any of the R are identi-
cal, the product of these terms should be rewritten as an
orbital or potential with k or g being the sum of the con-
stituent X, and g . This transform is a useful intermedi-
ate step in the analytical reduction of the general class of
atomic and molecular integrals' in which the atoms are
centered at difterent points so that the R, are linear com-
binations of the variables of integration x,
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3 3 I(P xl+ +P x ~] ~N'gl ~M~(K,p„. . . , p )= d x, d x e

X(K,R)r. . . r R~rR~+)r . r Rsr+z)~(+rx&r ' r mrplr ' ' r pm (2)

where K and the p's may be zero, T is an arbitrary func-
tion, and m ~N+M [otherwise some of the R must be
identical and (1) could be rewritten with a smaller value
for M+Nj.

In Sec. II an orthogonal transformation method for in-
tegrating a product of Feynman propagators' is general-
ized to allow integrals containing angular dependence in
both plane waves and in a product of denominators that
are quadratic in the integration variables. This transfor-
mation is invoked as a systematic method equivalent to
completing the square simultaneously in all momentum
integrals. But since the final form, after the three-
dimensional momentum integrals are evaluated (like their
four-dimensional counterparts in the original applica-
tion), depends only on the determinant of the
transformed quadratic form, which is equal to the deter-
minant of the original quadratic form, the transformation
does not need to be explicitly calculated.

This result is used in Sec. III to calculate (1), and the
extension to products containing excited states is outlined
in Sec. IV. Finally, Sec. V includes a discussion of how to
treat the angular dependence of any subsequent integrals
over the vectors R . The integrals in (2) are evaluated ex-

I

plicitly for the common class of problems in which T=—1

and o. =1s by again invoking an orthogonal transforma-
tion that does not need to be actually computed.

II. GENERAL CLASS OF INTEGRALS

5/2

u „(x)=
7T

ik-x

f d k
(A, +k )

where

ao

in which ao is the Bohr radius, and'

I k.xd'k, q&O.
2 (g+k )

Then

The Fourier transform of the product (1) may be evalu-
ated by convolution methods. One first introduces the
Fourier transforms of the individual terms (in atomic
units)

5/2
Ã (2m )

—'&.R
e

(2 2)M

X f d k, d k~ d k~d k~+, d k~+2 d k~+~
—i [k l.(R] —R V + A' + k2'(R2 RM + Ã +

e
+kM. (RM —RV+N ~~

(g, +k, )(g2+ k 2 ) (rIM +k~ )

—i [kM+] (RM+] —RM+A')+kM+2 (RM+2 —RM+~ j+ +kM+% —
1 (RM+~ l

—RM+N ~]
e

(A, , +k~+, )
. (A~+~, +k~+rv, ) [A~+~+(k, + +k~+~, —K) )

This is a special case of a more general class of integrals
—i (k] Bl + k2-B2+ + kL BL ~

J~ (B, , p„s, ) = f d'k, d'k, d'kL
(s, +q, ) '(s2+q2) ' . (s„+q„)

where q, is a linear combination of external momenta p and at least one internal momentum vector k .
To integrate over the k, first introduce the standard integral transform for the denominators' generalized to allow

arbitrary powers of the denominators,

1+m ] 1+m2 1+mn
D, 'D, ' . . D.

(n+ g m, —1)!

(m, )!(m~ ! (m„)! o o o, f 'da& f 'da2 . f 'da„a& 'a2 ' . a'„""

a, D,

-n+ m.
l

This allows the angular dependence in the denominators to be combined into a single quadratic form. This technique
has been used extensively in atomic and molecular problems in the simpler case of n =2, and in particular for the
Fourier transforms of the B functions, in which other exponential type functions may be expanded.

Chisholm' analyzed integrals over four-dimensional analogues of these denominators, arising from Feynman propa-
gators, and developed a systematic approach, useful in the present three-dimensional case, that will be extended to in-
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elude the angular dependence of the plane waves in the numerator of (7). This is done by introducing the additional
transformation '

(U —I)!D '= f dp p' 'e
0

which moves the angular dependence of the denominator in (8) into an exponential so that the angular dependence of
the plane waves in (7) may be included.

At this stage one could complete the square for each k; in D, change variables in D, k;.B;, and J d k, , and then in-

tegrate. But this iterative process is tedious and error prone. An additional complication is that in succeeding integrals
the coefficient of k is no longer simply a but contains subtractions that may be large enough to make the coefficient
negative for some values of a. In such a case the integral (17) is no longer well defined.

Instead, multiply and divide the B s by p so that all k dependence may be written in terms of a single quadratic form
in

1 1 1 1 vl
l m2 f71

JL(B;,p;, ,)=,
,

da& daz da„a, 'az ' a„"5 1 —g a,
0

Xf dpp ' fd k&d k& d kate

The quadratic form may be written in a compact form

Q=V WV,
Now if one can find an orthogonal transformation that

reduces Q to diagonal form

where
Q'=a', k', +a~k~ + +aLkt' +c', (16)

and

V =(k, , k, , . . . , kL, I), then, as shown by Chisholm, ' the a '- are positive. Then
after a simple translation in Ik&, k2, . . . , k~. I space (with
Jacobian = 1), the k' integrals may be done using

3/2
a 11 a12 ' a

a22 a2L b2
f d'k'e t"" =4~f dk'k'e

0 pa'

(17)

L1 aL2 aLL

11 b2 . bL C

In this compact notation the a, are just linear combina-
tions of the Feynman parameters 0; ',

8
b~ =v~. +5

2p

Then L integrations yield

~ ~ ~

fa k +
g3I . . . y3g l~ 1 I

where

3/2

pLA'

(18)

where v is a linear combination of the p, , and C contains
those parts of the denominator on the right-hand side of
(8) that are independent of the variables k, .

A simple example is

A =a1a2 ' ' aL (19)

But the orthogonal transformation leading to (16) leaves
the determinants

~
—ik-B

Ji(B;p, , p~;s, ,s~)= f d'k
(s, +q, )(s~+q~~)

where

(7')
and

0, = det8'

a11 a12 a1I

(&0)

q =k —
p, . a 21 a 22 a2L

Then 8 is a 2X2 matrix with

. 8
b, = —&,p, —~2p2+

P
a 11

—A1+(x2 =+
and

C=a, (s, +p, )+a~(s2+p2) .

(14')

aL1 aL2 . . aLL

invariant, ' so

A'=A

and

n, =a'1a2. . . aLc' .

(22)

(23)
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It is seen in the present case, as with the four-dimensional
case studied by Chisholm, ' that one does not need to
know the individual a' of (16), only the product (19) that
is completely determined by the known determinant (21).
The remaining quantity in (16) is also given by the invari-
ant matrices,

c'=0/A . (24)

Thus, the transformation that diagonalizes (13) never has
to be explicitly calculated.

Before doing the final integral,

p= j"dpp
n+ g m. —3L/2 —(

pCe (25)

the p dependence of c' must be made explicit. The only
p-dependent quantities are in 6, in the single term
i(B /2p) of each b . Expanding II by minors gives

and

F=2(a,p, +a2p2). B . (30')

p —iF/2/( j0

—py/A —G /(4Ap)

~ (n + g m,. —3L /2)/2

Chisholm's analysis of quadratic forms resulting from
integrals over products of Feynman propagators' applies
to the present case with a few modifications due to the in-
troduction of the following complex terms in (14): The
determinant A (21) is positive; if the k's and p's are not
imaginary and if some s is nonzero, so that the denomina-
tor in (7) is positive definite (nonzero if not all k are
zero), then y (27) is positive definite; E and G are non-
negative.

The p integral may now be done,
n+ pm —3L/2 —)

0= det W

L L
=CA+ g g b; b ( —1)'+'+'A;,

2e
—iF/2A G

4(CA E)—
i =1 j=l

G . F=y+ +i
4p 2p

(26)
n+ g m, . —3L/2

3/G( CA E)—
A

(31)

where, from (14),

y=CA —E,
L L

G= g g B;.B, ( —1)'+'A,
i=1 j=l

L LE= g g v;.v, (
—1)'+'A,

i =1 j=l
L L

F=2 g g B, v, (
—1)'+'+'A,

i=1 j=l

(27)

(28)

(29)

(30)

1(n+ gm, —3L/2)
I

n+ gm. —3L/2

x

(32)

Note that (31) is true only for G/A and y/A positive. In
the present case g/A will be zero only if a;=0 for all i.
But this is prevented by the 5 function in (10). However,
if all B, are zero, G and F will be zero so instead of (31)
one has

G=B

E =(a,p, +a2p2)

(28')

(29')

and where the minor A, is A with the ith row and jth
column deleted. For the example given in (7') —(15), for
which one d=fines A» —= 1 since I = 1,

with the restriction n+ g,. m, & 3L/2, which will hold if
the original integral (7) is convergent. But this corre-
sponds to the Fourier transform of a product of one-
center hydrogenic orbitals for which an analytical result
exists. '

The final result is found by integrating one of the a' s,
using the 6 function, in

3L /2

JL(8;,P, ,s, ) =
(m) )!(m2)! (m„)!

1 1 1 m1 m2 m 1X dal da2. . da a 'a '. . . a '6 1 —& a e
0 0 n 1 2 n ~ i A3/2

i =1

G
4( CA E)—. (n+ g m, —3L/2)/2

Kn+ pm, . —3L/2
3/G( CA E)—

A
(33)

For the example (7') —(l5) and (28') —(30') one integrates a2, using the 5 function, so that A= 1. Then defining

)L(,
=C E=as) +(1—a)s2—+a(1—a)(p, —p2)

one has
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3~2 V g —iB p2 1
—iaB (p~

—p2) +]/p(~iu)J, (B;p&,pz, s&, s2)=2m e ' da e
2 0 P

=me ' ''f dae
0

—iaB (p, —p2) e (33')

This is exactly the result obtained through bypassing the p integral (7) and completing the square in the denominator
of (6)

1
—iB-k

J1(B;pi,p2, s, ,s2)= f da f d'k
I k —2[ap, —(1 —a)pz].k+ (1 —1)[ap, +(1—a)p~] + C I

=e 'f dae
0

—iB-p, 4m de e
B 0

—i B.k'

fd I
(k /2+ 2)2

—iaB.(p —
p ) ~ k s1nBkdk'

p (k l2+p2)2
(33")

Note that the latter reproduces Cheshire's technique ex-
cept that his p erroneously neglects the momentum cross
term. However, since he only uses this integral in the
case where one of the momenta is zero, this error does
not alter his result.

III. FOURIER TRANSFORM OF THE PRODUCT

The Fourier transform of a product of N 1s hydrogenic
orbitals and M Coulomb or Yukawa potentials is simply a
special case of JL. One has only to substitute into (33)

and

qM+N =k1+k2+ . . +kM+kM+1

+kM+2+ +kM +N 1 K

which give

alj +M -+N ~ij +i

8bj: cxM+p K+ i J

2p

(3&)

(39)

(40)

L. =M+N —1, n =M+N, (34) and

s, =rp, , m, =0, i=1 2, . . . , M

s;=X,-, m, =1, i =M+1,M+2, . . . , M+N,
B;=R, —RM+N, q, =k, , i =1,2, . . . , M+N —1,

(3&)

(37)

M M+N
CFy = g a g + g a.A. +aM+ivK

i =1 i =M+1

The determinants A and 0, are greatly simplified by
subtracting the (M+N —1)st row from the previous
M+N —2 rows,

AFT=

0

0

0

0

0

0

~M+N —2

+M+N —1

+M +N —
1

~M+N —
1

N+M

~M+N &M+N ~M+N O:M+N+~M+N —1

(42)

0

0

CX2 0
M +N —1

+M+N —1

bl bM+N —I

2 M+N —
1

AFT= 0 0

~M+N ~M+N

b, b2 bM+N —2 bM+N

M+N —1

~M+N &M+N+~M+N —1

bM+N —2 bM+N —1

bM +N —1

CFT

where

FFT GFT
FT FT FT

2p 4p

M+N —1

+Fr =a~+ivI~2 2

i =1 j Wi, n +N
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M+N —1

FFT =2aM+NK g g aj B;,
,j &i, n +N

(45)

M+N —1

jWi mWi,j

i —1

a 8, —2g g a B B,
j=1 mWij

(46)

Substituting (34)—(46) into (33) and multiplying by
' 5/2

~1 4 4 (25r) /2

(47)

gives the final result for (1),

l' '' N Il'' '' iMI„„(K,R„.. . , RM, RM+ „.. . , RM+N )

(g g . . . g )5/225/2 —M

N+ M/2

1 1 1 —iFFT /2AFT 1X da, da2 . . daM+NaM+, aM+2 aM+N5 1 —g a; e
0 0 0 i =1

(N —M+ 1)/4
GFT

X
4(CAFT EFT)— +(N —M+ 1)/2

Q GFT( CFT AFT EFT )—
~FT

IV. EXCITED STATES

1 8 1

~r (n —1)(A.+rk }" ' Br (n —1}(n —2)(A, +rk )" (49)

The present procedure may be extended to find the Fourier transform of products of orbitals including excited states
in some cases. For s states the coordinate space radial wave function includes a polynomial in the coordinate multiply-
ing an exponential that may be written as a polynomial of derivatives of the exponential with respect to A,, [now con-
taining the principal quantum number in the denominator of (4)], which is just a polynomial of derivatives of ls orbitals.
The final expression will then contain a polynomial of derivatives of (33) with respect to the A, , in C. Alternatively, the
momentum representation of s states in general contains a polynomial in k in the numerator of the equivalent of (3).
The equivalent of (33) is found by substituting into the equivalent of (3)

A +Bk2+ Ck4+. . .
(A+k )"

resulting in a .~r a in (13), (21), and (39). Then the final form is given by taking derivatives of (33) or (48) with
respect to the ~'s, for each term in the polynomial, and then setting the v's equal to one.

States with 1 & 0 in the product are more dificult to handle. In some problems the product of orbitals includes a pro-
jector onto 2p-states,

1

u 2t (r Rj )u 2/ (r —R—j+, )
m= —1

1 4 k Y', (Q) k+, Y, (Q+, )
(i)( i) (A—A +) d k d k+,.=, (2~)3 [(A. /2) +k ] [(k.+, /2) +k. ]

(A, A, +, ) kj.k +1d k d k. +122 5 j J+ [(g /2)2+k 2]3[(g /2)2+I 2 ]3
(50)

By rewriting the last term in the denominator of the equivalent of (6),

M+N M+N (kl k2+ +kj —1+kj+2+ +kM+N —1

+(k, +k2+ . . +k, +k, +2+ +kM+N, —K) ~ (k +k +, )+k, +k +, +2rk, k +, ~, (51)
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one may remove the vector product in the numerator by
differentiation, B =

I
t"x- (55)

kj.1cj+
2

DM+N

& a
2 BT DM+N

(52) the 5 functions will be of the form

Then one may use the present technique by setting
mM+~ =0 in (36), a, , +, =raM+~ in (39), and the j,j +1
element of (42) and (43) equal to (r —1) rather than 0, and
by taking the derivative of (33) with respect to r. If the
product in the equivalent of (1) contains either more pairs
of p states than the value of the principal quantum num-
ber of the ¹horbital, or if it contains pairs of states with
sufficiently high I, so that one has higher powers of
cos8- +& in the equivalent of (50), the transformation (9)
may be performed first to allow sufficient powers of the
denominator for multiple derivatives of the type (52).

V. SUBSEQUENT INTEGRALS

u"„(B), (53)

and integrate over d B using the Fourier transform that
is the inverse of (3). If the B integrand contains other hy-
drogenic orbitals one may use the sequence (1)—(48) re-
cursively.

More generally, for I ) 1, the subsequent integrals
over the B's (linear functions of the R's that are in turn
linear functions of the x's) may contain other functions of
the x's than just the G and F of (33), such as T in (2).
Such cases merit individual attention. But because many
problems in atomic physics, particularly scattering prob-
lems, ' are a simple integral of JL(B;,p;, s; ) (7), multiplied
by plane waves and integrated over the x, the I~I gen-
eralization of (2) in the case T —= 1,

& L(p;, s;)= f d x, . d x JL(B;,p, , s, )

In developing (34)—(48), the solution for the Fourier
transform (1), a three-dimensional integral has been re-
placed by an (M +X —1)-dimensional integral. The util-
ity of this intermediate step lies in the ease of evaluating a
subsequent 3m-dimensional integral over the x, 's (2),
where m ~ N +M, so that the overall dimensionality is
reduced by about 70%%uo. Likewise, (7) may appear in in-
tegrals over the "external" momenta p .

First note that for the simple integral considered in (7')
the final expression (33') allows a change of variables to
p'=p, —

p2 in a subsequent integration over momenta.
Alternatively, if the subsequent integration is over d B,
one may treat the quantity p in (33') as an inverse Bohr
radius, rewrite

—pB

p,
—g t,,k,

i =1
(56)

As the first integral, d k, , is evaluated, one substitutes

p, —g t, ,k, /t„ (57)

for k, in (56) for each j ) 1 and in the denominator of (7),
which appears in (54). Next, one substitutes

P2 Pl/tl ) g (ti2+ t;1/tl1 )k,

t22+ t12 ~t»
(58)

+i ~H= +i +2i $
(2p) 2p (2p) 2P . , 2P

= —X ZX, (59)

where

X1 X2 "m

2p 2p 2p
(60)

and

for k2 in (56) for each j ) 2 and in the denominator of
(54), and so on. This process becomes unwieldly and
prone to error as m becomes larger, increases the com-
plexity of the angular parts of the x integrals, and does
not decrease the number of products in the denominator
(nor, hence, the number of Feynman integrals) except
where an x, appears in only one 8, of (55). But that case
yields nothing new since one could do these integrals be-
fore the r integral using the Fourier inverses of (3) and
(5). Also, even when (55) is nontrivial, if all of the p, are
zero and m =L one may change variables of integration
in (54) from x, to B, and one may again integrate direct-
ly.

Consider the more difficult case in which (55) is a non-
trivial set or not all of the p; are zero. From (45) and (46)
it is clear that F is a linear function and G is a quadratic
function of the B, and, hence, of the x . After integrating
over the k; but before integrating over p, in order to
group all angular dependence of the x's together, one
may append the p(i p .x, /p) from the plane waves in (54)
to the expanded form of G that appears in the exponen-
tial on the first line of (31). Then

—I(p& -xl + +p .x j
(54)

will now be explicitly done.
It is clear from the form (7) that one could integrate

first over the x, yielding a product of m 5 functions inside
the k- integrals, allowing these integrals to be evaluated
before applying the transformations (8) and (9). However
since

Z11 Z12

21 22

zm1 Zm2

z, h,

z2m h2

zmm hm

(61)

h, h2 . . . h 0

As with (13), the elements of (61) are completely known,



39 FOURIER TRANSFORM OF THE MULTICENTER PRODUCT OF. . . 5069

+g
4p2

(62)

given by (59). The h's are linear combinations of K and
the p's and the z,, are functions of the a's [for the Fourier
transform, for example, they are linear combinations of
the coefficients of the vectors in (45) and (46)].

As with (16), suppose one finds an orthogonal transfor-
mation that reduces H to diagonal form,

H'= i—(z', x', +z2x2 + . +z' x' )/4p +g'

pc'=p(g+ g/b, )/A+y/(4Ap), (65)

yielding (33) with F~O, CA E—~CA E—+g/b, , and
6—vy. Finally one may integrate (7) over the x's of y,
after a translation in I x„x2, . . . , x ) space, using

f d x[ 3/z (x +P/z)' ] K [p3/z (x +P/z)' ]

=4ir f dx x 2[3/z (x2+P/z)(/2]
0

(64)

Then substituting (26), (59), (62), and (64) into (24) gives

where g', the quadratic form in the external momenta p,
and z,

' are non-negative. But the postulated transfor-
mation leaves the determinants of the quadratic form in-

variant so

XK ()((,3/z (x +/3/z)'/ ]
(2~)

(
( )3/2(p —3/2)i/2Pz

(66)

Z1Z2 . Z' =5=

Z11 Z12

Z21 Z22

1m

2m

(63)

where

3/CA E+(/6—
(67)

giving

Zm1 Zm2 Zmm except for the last integral, in which P =0, that is given
28

d3 & &[
—v+3(m —i)/2]/2 &

—v+3(m —i)/2K
&m 3(m ] )/2 PXm + Zm

4 f dx& z&[ —v+3(m —i)/2]/2x ~ —v+3(m —i)/2+2K (&m v 3(m 1)/2 PXm ~ Zm
0

2 '+' +' I ( —v+3m/2)
I3/2 —v+3(m +1)/2
m

(68)

The m integrations yield the factor

(z'z' . z' )'"
1 2 m

1

g3/2
(69)

and thus, as with (16), the z, in (61) do not need to be individually known; only the product b„which is invariant under

this orthogonal transformation, is required. Therefore the transformation that diagonalizes (59) never has to be explic-

itly found. The final result is

23m 3(m +L)/2f ( + y 3L /2+ 3 /2)

N L(P;,S, )= (m, )!(rn2)! . (mn )!

n

X f da, f'da2 f da„a, 'a2' . a„"5 1 —g a;
0 0 0 i =1

3(m —) )/2+ n+ g m,. —3L/2

A j

n+ g m, . —3l. /2+3m /2
'

b, / (CA E+g/b )—
(70)

VI. CONCLUSION

This systematic method for calculating the Fourier
transform of products of standard functions in atomic
and molecular physics, and the reduced form of subse-
quent integrals, removes the time consumption and possi-
bilities for error inherent in an individualized approach.

The reduction in the dimensionality of the integrals of in-

dividual problems differing only in the number of prod-
ucts, the indices I, and g, and in the relations between
external momenta, must follow the same general path. In
the present paper a method has been found that makes
this generality explicit. The final form of the Fourier
transform of the general product is given and the calculus
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for finding the reduced form of subsequent integrals is
done; one is left with just the algebraic operations of con-
structing (13) and then calculating its determinant (20)
and the determinant (21). With the present result given
once and for all, more complex theories and systems may
be easily studied and more time can be devoted to under-
standing the physics of these systems.
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