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Abstract

We present an implicit approach to solve problems arising in decomposition of incompletely
specified multi-valued functions and relations. We introduce a new representation based on binary-
encoded multi-valued decision diagrams (BEMDDs). This representation shares desirable
properties of MDDs, in particular, compactness, and is applicable to weakly-specified relations
with a large number of output values. This makes our decomposition approach particularly useful
for data mining and machine learning.

Using BEMDDs to represent multi-valued relations we have developed two complementary
input support minimization algorithms. The first algorithm is efficient when the resulting support
contains almost all initial variables; the second is efficient when it contains only a few. We
propose a simple heuristic measure to choose which algorithm to use. Numerical results over a set
of multi-valued benchmarks provide experimental evidence for the efficiency of our approach.

1 Introduction

Over the years, a number of researchers have been working on multi-valued decomposition as a
vehicle for multi-valued logic design, machine learning, and data mining. Historically, explicit
methods based on multi-valued cubes and cube partition algebras appeared first and are still used [1].
Following the emergence of BDDs, new approaches have been created that exploit the structure of
decision diagrams in order to solve decomposition problems [2].

Explicit methods have serious performance drawbacks. As a result, only simple benchmarks can be
solved in a reasonable time using Boolean or multi-valued cubes. BDD- and MDD-based approaches,
on the other hand, can be applied to much larger benchmarks. Their applicability, however, is limited
because the known decomposition algorithms are not formulated to exploit the potential of this
representation.

Since early 1990’s, we have developed a number of approaches to multi-valued decomposition, in
particular, decomposition based on labeled rough partitions [3] and decomposition based on classical
MDDs [4].

Our recent research has been directed towards 1) solving problems, for which efficient MDD-based
algorithms are not known, 2) overcoming limitations inherent in MDD-based representation, and
3) improving the performance of known MDD-based procedures.

As a result of these efforts, we came up with a modified representation, called binary-encoded
MDDs (BEMDDs), which shares the advantages of MDDs (compactness and efficient manipulation)
while overcoming some of their limitations. In particular, in order to represent a multi-valued relation
with many output values using MDDs, it is necessary to create as many terminal nodes as there are
subsets of output values. For example, in the case of a 16-valued relation, there are 216-1 non-empty
combinations of output values, each of which should be represented by a separate node in the MDD.



BEMDDs, on the other hand, provide an easy way to encode output values using the minimum
number of binary variables. Additionally, BEMDDs exploit efficient machinery of specialized BDD
operators, which recently received attention due to the success in BDD-based formal verification
algorithms. In particular, BDD operators such as quantification, variable replacement, and composition
can be used to improve the performance of multi-valued decomposition.

While exploring the potential of BEMDDs, we implemented and significantly improved the
performance of the known algorithms for bound set and column multiplicity computation, which
constitute the basis of iterative Curtis decomposition. These, as well as decomposition for large bound
sets and implicit methods for multi-valued bi-decomposition, are the subject of our forthcoming
papers.

In this paper, we present the fundamentals of BEMDDs and their use in solving the problem of
input support minimization arising in multi-valued weakly specified functions and relations.

To prevent words “functions and relations” from appearing too often in this paper, we will use the
term MISFs meaning “Multi-valued-input multi-valued-output Incompletely Specified Functions”.
Unless specifically noted, the presented material is true for multi-valued incompletely specified
relations.

The rest of the paper is organized as follows. Section 2 describes the representation of MISFs using
BEMDDs. Section 3 introduces the basic concepts of input support minimization. Section 4 presents
the general strategy of support minimization and two possible branch-and-bound algorithms to
determine whether a multi-valued variable can be added to (removed from) the support set. These
algorithms rely on efficient BEMDD traversal routine as described in Section 5. Next, in Section 6, we
derive an approximate measure, which can be used to determine which of the two presented support
minimization techniques works better for a given MISF. Experimental results are given in Section 7
and the paper is concluded in Section 8.

2 Representation of MISFs

As stated in the introduction, we advocate the use of BEMDDs as the representation of choice for
MISFs. The motivation is that BEMDDs are efficient for large functions and lead to improved
decomposition procedures compared to other known representations: multi-valued cubes and cube
partitions [1], edge-valued BDDs [2], and classical MDDs [4].

In our approach, multi-valued variables are encoded using the smallest possible sets of binary
variables. Thus, a k-valued variable requires at least log2(k) binary variables to uniquely encode all
its values. (Here the vertical bars stand for the closest larger integer.)

For example, a 5-valued variable A can be encoded using the set of three binary variables
{a1, a2, a3}. In the simplest case, the set of all possible values of variable A, {0, 1, 2, 3, 4}, is encoded

using the set of binary cubes: { 321 aaa , 321 aaa , 321 aaa , 321 aaa , 321 aaa }. (Here the prime symbol

following a literal means negation.)
If k is not an integer power of two, the minimum length binary encoding results in 2log2(k) - k spare

minterms. It is possible to leave them unused and account for them in the decomposition routines. In
this case, it is necessary to remember that the domain of binary variables encoding the input variables
is limited to only those minterms that provide codes for the values of multi-valued variables. This,
however, increases the BEMDD size and makes traversal routines complicated.

Therefore, from the practical point of view, it is better to distribute the unused minterms between
the values of the function. For example, consider the two encodings of ten values using four binary
variables shown in Fig. 1.

00 01 11 10 00 01 11 10

00 0 4 8 8 00 0 2 7 4 B\A 0 1
01 1 5 9 9 01 0 2 8 4 0 - 2
11 3 7 10 10 11 1 3 10 6 1 1 -
10 2 6 10 10 10 1 3 9 5 2 1,20,1

Fig. 1. Two ways to encode ten values using binary variables    Fig. 2. The truth table for MISF F(A,B)

Currently, as the default encoding of values, we use the encoding shown on the left of Fig. 1.
Meanwhile we continue to experiment with other encodings.



Because outputs of most MISFs are multi-valued, we use an encoding scheme to represent the
outputs. The variables used for this purpose are called output-value-encoding variables (or simply,
value variables). Traversal algorithms typically require the ordering of the value variables below other
variables in the BEMDD.

Definition. Let us designate the domain of a multi-valued variable Ai as DAi. An MISF ℜ over a set
of multi-valued input variables {Ai}, with multi-valued output Z having domain Dz, is a mapping from
the Cartesian product of the input variable domains into the domain of subsets of the output values:

ℜ( A1,A2,…,An ): DA1×DA2×…×DAn → 2Dz.
Definition. The set of minterms (vertices) of the combined input domain of ℜ such that the output

of ℜ is the set of all possible output values, is called the don’t-care set. The set of all other minterms of
the domain of ℜ is called the care set.
Once the input and output multi-valued variables are encoded, the BEMDD representing a MISF can
be constructed as a binary relation, assuming certain ordering of the encoding variables. This relation
connects encoded input values with the corresponding encoded output values. For example, shown in
Fig. 2 is a three-valued output MISF over binary variable A and ternary variable B. Using the above
approach, this function is represented as a binary relation over five binary variables (three variables for
inputs and two variables for the output).

Suppose the binary variable a encodes multi-valued variable A, variables b1 and b2 encode B, while
variables v1 and v2 encode the output values of F(A,B). If ternary values { 0,1,2 } are encoded as
{ 00,01,1- }, relation R, which represents F(A,B), is expressed using variables a, b1, b2, v1, and v2 as
follows:

R(a,b1,b2,v1,v2) = 21bba  + 2121 vvbba  + 1ba (v2+ v1) + 121 vbba  + 21bba + 11vab .

Each of the six terms in the above formula is obtained directly by encoding a cell of the map in Fig.
2. The Karnaugh map and the BEMDD for R are shown in Figs. 3 and 4.

v1v2 \ ab1b2 000 001 011 010 110 111 101 100

00 1 0 0 0 1 1 1 0
01 1 1 1 1 1 1 1 0
11 1 0 1 1 0 0 1 1
10 1 0 1 1 0 0 1 1

           Fig. 3. The Karnaugh map for MISF F(A,B)

         Fig. 4. The BEMDD for MISF F(A,B)

3 Input Support Minimization

3.1 Overview

The problem of input support minimization arises when MISFs under consideration are weakly
specified. In this case, it is often possible to remove some variables from the support without losing
information contained in the function. Decomposition of MISFs with the minimized support typically
leads to simpler formulas and more meaningful interpretations in data mining or machine learning.

To our knowledge, the problem of input support minimization for MISFs has been addressed by
only a few researchers [5,6]. A complete bibliography is given in [5]. The known algorithms are based
on explicit representations using cubes and so their use is limited only to functions with small cube
covers.

For incompletely specified Boolean functions, an elegant approach to input support minimization
has been created [7]. This approach uses bottom-up traversal of BDDs to implicitly enumerate all
feasible supports, and then finds the minimum one. Unfortunately, this approach cannot be generalized
to the multi-valued case.

a

0 1

b1 b1

b2 b2

v1

v2

v1 v1 v1



Our methods are essentially different from [7] and they favorably compare with the previous results
[5,6]. Because we use BEMDDs to represent MISFs, the efficiency of our approach is not limited to
problems with small cube covers.

Below two algorithms for multi-valued input support minimization are proposed. The merits of
these algorithms are complementary: one of them works well when most of the input variables should
remain in the support, while the other works well when only very few variables are needed to represent
the function. For intermediary cases, any approach can be used.

3.2 Classification of Input Variables

First we restate some definitions, which are given in [8].
Input variables of weakly specified MISFs are divided into three categories: vacuous, inessential,

and essential, depending on the amount of information they carry.
Definition. A variable is vacuous if it does not appear in the MDD (and BEMDD) of the function.
The ternary relation over four binary variables specified using the truth table in Fig. 5 illustrates the

two reasons why a variable is vacuous. Variable d is vacuous, because it does not enter any of the
cubes and therefore the MDD does not depend on it. Variable c is vacuous because even though it
enters the first and the third cube, these cubes can be combined into a single cube without variable c,
which means that c does not appear in the MDD as well.

a b c d F ab\c 0 1 ab ab\c 0 1
0 1 0 - 0 00 0 - 00 0 00 0 -
- 0 - - 1,2 01 - 0 01 0 01 - 0
0 1 1 - 0 11 1 - 11 1 11 1 0
1 1 - - - 10 - 0 10 0 10 - 0

Fig. 5. The truth table of F(a,b,c,d)                Fig. 6 a)                        Fig. 6 b)                  Fig. 7)
with two vacuous variables (c and d).           The truth tables of binary functions used in examples.

Definition. A variable is inessential if it can be removed from the support of MISF in such a way
that no information initially contained in the function is lost, assuming that other variables remain in
the support.

Definition. A variable is essential if it is neither vacuous nor inessential.
Observe that an inessential variable can become essential after removing some variables from the

support.
For instance, the binary function in Fig. 6a) depends on three binary variables: a, b, and c.

According to the above definition, all these variables are inessential.
Having removed variable c from the support, for example, we get function in Fig. 6b). This

function is represents the initial function without the loss of information, because, for every assignment
of variables a and b, functions in Fig.6a) and Fig. 6b) assume the same values. Notice that, after
removing variable c, variables a and b become essential.

Fig. 7 shows a function that has no inessential variables.

3.3 Definition of Support Minimization

In this section, input support minimization based on the concept of information losslessness is
defined.

Definition. Given the MISF ℜ(x1,x2,…,xk) and two assignments of its input variables, (a1,a2,…,ak)
and (b1,b2,…,bk), consider sets of the output values of ℜ produced by these assignments,
S1 = ℜ(a1,a2,…,ak) and S2 = ℜ(b1,b2,…,bk). Sets S1 and S2 are compatible iff  S1 ∩ S2 ≠ ∅.

Definition. The result of merging of two output sets S1  and S2 is output set S1 ∩ S2.
For example, the output sets {1,2} and {0,1} that appear in Fig.2 are compatible and the result of

their merging is the output set {1}.
Definition. Suppose MISFs ℜ1 and ℜ2 depend on the same input variables and take the same

output values. ℜ1 and ℜ2 are compatible if for each assignment of the input variables, the output sets
are compatible. The result of merging ℜ1 and ℜ2 is MISF ℜ satisfying the following condition. For



each assignment of the input variables, the set of output values of ℜ is the result of merging of the sets
of output values of ℜ1 and ℜ2.

For example, the MISFs over variables a and b represented in the left and right columns of Fig. 6a)
can be merged to produce the MISF in Fig. 6b).

Definition. MISF ℜ2(xi1,xi2,…, xim), {xi1,xi2,…, xim}⊆ {x1,x2,…,xk}, represents MISF
ℜ1(x1,x2,…,xk) without the loss of information, iff (1) for any given assignment of variables {xi1,xi2,…,
xim}, the outputs of ℜ1(x1,x2,…,xk) corresponding to all possible assignments of other variables in
{x1,x2,…,xk}, are compatible; (2) the output of ℜ2(xi1,xi2,…, xim) is the result of merging of all these
compatible outputs of ℜ1(x1,x2,…,xk).

For example, function in Fig. 6b) represents function in Fig. 6a) without the loss of information,
because for any assignment of {a,b}, the outputs of function in Fig. 6a) are compatible for all possible
assignments of {a,b,c}. In particular, the output sets of Fig. 6a) for inputs (0,0,0) and (0,0,1) are
compatible ({0} and {0,1}), and the output set of Fig. 6b) for inputs (0,0) is equal to 0, which is the
result of merging of these two output sets. On the other hand, Fig. 6b) does not represent Fig. 7 without
the loss of information, because there are two possible assignments of variables {a,b,c}, (1,1,0) and
(1,1,1), such that in both of them {a,b} have values (1,1), while the corresponding output sets, {0} and
{1}, are incompatible.

Definition. The problem of input support minimization for the MISF ℜ1(x1,x2,…,xk) consists in
finding the input variable subset {xi1,xi2,…,xim} of minimum cardinality and MISF ℜ2(xi1,xi2,…,xim)
that represents ℜ1(x1,x2,…,xk) without the loss of information.

Observe that minimizing the input support leads to certain loss of total information, due to merging
of compatible output sets and thereby restricting flexibility initially present in the function. In the
above definitions, on the other hand, we speak about essential information, which should be preserved
in decomposition unless we allow for some amount of “fuzziness”. The difference between these two
types of information becomes clear after working with practical examples.

4 Approaches to Exact Minimization

4.1 General Strategy

In order to find the exact minimum of the number of input support variables, the following steps
should be performed:

(1) Identify vacuous variables by exploring the BEMDD and forming the set of variables, on
which the function depends; this set contains essential and inessential variables.

(2) Check each variable from the above set for being inessential. To achieve this, each variable is
removed while letting other variables remain in the support, and then run procedure
TestSupport() as described in Section 5. If the test succeeds (the reduced support does not
involve losing information), this variable is inessential.

(3) Follow one of two complementary strategies that use branch-and-bound approach to find the
exact minimum of the number of support variables:
MinSupport1: Initialize the support to all essential and inessential variables and try different
sequences for removing inessential variables (the next variable to remove is selected
heuristically). As long as removing a variable leads to a function that represents the given
function without losing information, the set is a candidate for the minimum one.
MinSupport2: Initialize the support to all essential variables and try different sequences of
adding inessential variables (the next variable to add is selected heuristically). As soon as
adding a variable to the support leads to a function that represents the given function without
losing information, this set is a candidate for the minimum one.

Both strategies use function TestSupport(), discussed in Section 5, to check whether the current
support is enough to represent the function without the loss of information. Function TestSupport()
does not explicitly derive cofactors with respect to the given variable. Instead, it uses a specialized
BEMDD traversal to test the compatibility of cofactors implicitly. Notice that this algorithm is more
efficient than the brute force approach based on first deriving all cofactors with respect to the given
variable and then checking if the cofactors are indeed compatible.

The pseudo-code of procedures MinSupport1() and MinSupport2() is shown in Figs. 8a) and 8b),
respectively.



Both procedures take three arguments: the MISF, the current variable support, and the set of inessential
variables. First, large parts of the search space are pruned using the best solution found so far as an
upper bound. Initially, the best solution is set to the number of variables in the given MISF before
support minimization.

MinSupport1(bdd F, varset Support, varset Iness)
{

// use the upper bound to prune the search
if ( |Iness| = 0 or |Support|-|Iness| ≥ Best )
return;
// find the next variable to branch
Var = GetVarWithMinimumValues( Iness );
// test the support without this variable
bdd ReducedF = TestSupport( F, Support-Var );
if ( ReducedF != 0 ) // a new solution is found
{
   // compare this solution with the best one
   Best = min( Best, |Support|-1 );
   // reduce the support and keep searching
   MinSupport1(ReducedF,Support–Var,Iness-Var);
}
else // a new solution is not found
{
   // try removing other variables
   MinSupport1( F, Support, Iness-Var );
}

}
               Fig. 8a). Procedure implementing implicit support minimization
                                  based on removing inessential variables.

MinSupport2(bdd F, varset Support, varset Iness)
{
   // use the upper bound to prune the search
   if ( |Iness| = 0 or |Support| ≥ Best-1 )
      return;
   // find the next variable to branch
   Var = GetVarWithMaximumValues( Iness );
   // test the support with this variable
   bdd ReducedF = TestSupport( F, Support+Var );
   if ( ReducedF != 0 ) // a new solution is found
   {
      // compare this solution with the best one
      Best = min( Best, |Support|+1 );
   }
   else // a new solution is not found
   {
      // try other supports with this variable
      MinSupport2( F, Support+Var, Iness-Var );
      // try other supports without this variable
      MinSupport2( F, Support, Iness-Var );
   }
}
Fig. 8b). Procedure implementing implicit support minimization

      based on adding inessential variables.

In both procedures, a variable that is used to perform branching is determined. Selecting the
branching variable is governed by attempts to achieve the minimum support size without taking into
account the number of variables’ values. Alternatively, it might be possible to formulate minimization
procedure using different cost functions, for example, the sum total of values of the remaining support
variables.

The function GetVarWithMinimumValues() selects the variable with the smallest number of
values. The underlying motivation is to remove as many variables with a few values as possible,
thereby creating a tight upper bound for later computation, when variables with more values are



considered. Similarly, GetVarWithMaximumValues() finds the variable with the largest number of
values.

The procedure MinSupport1() removes the selected variable from the support. MinSupport2(), on
the other hand, adds the selected variable to the support. Both procedures test the resulting support for
being large enough to represent the function without the loss of information. If the test succeeds, the
support size is compared to the best solution found so far.

Finally, at the end of the pseudo-code, the functions are invoked recursively for sub-problems with
variable sets, from which a branching variable is removed. In this way, both procedures keep track of
the support variables that could not be removed and do not try removing them again in the same
computational sub-tree.

5 Implicit Procedures

This section discusses implicit procedures, which constitute the main contribution of our paper. The
first one is meant for testing whether the given support is enough to represent the given function
without the loss of information. The second one is invoked from the first one to perform the recursive
check whether two MISFs (in particular, cofactors) are compatible, and if yes, what is the result of
their merging.

Because of the efficiency of the proposed representation of MISFs in solving various problems in
decomposition, the usefulness of the procedures described in this section are not limited to input
support minimization. The second procedure, for instance, can be used to efficiently check
compatibility of cofactors, which constitutes an important step in iterative Curtis decomposition.

5.1 Traversal Routine for Support Testing

The pseudo-code for procedure TestSupport() is shown in Fig. 9. The procedure takes two
arguments: the BEMDD  and the input support to test. The return value is zero, if the support is not
enough to represent the function without losing information. Otherwise, the return value is the
BEMDD that represent the result of merging the cofactors with respect to variables not belonging to
the support.

In the body of the function, the terminal cases are considered and the cache is checked for the
computed results. In this way, it is guaranteed that each node of the BEMDD is visited at most once.

bdd TestSupport( bdd F, varset Support )
{
   // consider the terminal cases
   if ( F = 0 or F = 1 ) return F;
   // check the cache for the computed result
   if ( Result = CheckCacheForResult(F,Support) ) return Result;
   // check whether this is an output value var
   if ( Var( F ) ∈ ValueVariables ) return F;
   // solve the problem for cofactors and return
   // zero immediately if they are incompatible
   bdd F0 = TestSupport ( Low(F),  Support );
   if ( F0 = 0 ) return 0;
   bdd F1 = TestSupport ( High(F), Support );
   if ( F1 = 0 ) return 0;
   // consider two cases for the top-most variable
   if ( Var( F ) ∈ Support )

Result = ITE( Var(F), F1, F0 );
   else /* if ( Var( F ) ∉ Support ) */

Result = GetCompatible( F0, F1 );
   InsertIntoCache( F, Support, Result);

return Result;
}
Fig. 9. Pseudo-code for function TestSupport().



The procedure calls function Var(), which returns the variable labeling the top-most node of the
BEMDD representing F. If the variable returned belongs to the output-value-encoding variables,
TestSupport() returns the MISF itself. As mentioned previously, the value encoding variables must be
ordered at the bottom of the BEMDD.

The problem is solved for two sub-problems associated with cofactors of F with respect to the
given binary variable. If an incompatibility is discovered during the solution of any of the sub-
problems, the zero is returned immediately. In this way, it is guaranteed that the BEMDD is
completely traversed only when the support is enough to represent the function.

Depending on the top-most variable, either a new node is created using the ITE-operator, or a call
to the function checking compatibility of two sub-functions is performed. This behavior is explained
by the following observation. If the given variable is one of the binary variables encoding the support,
it remains in the BEMDD. On the other hand, if the binary variable does not encode the support, the
sub-functions of this node should be checked for compatibility. This is done by the call to
GetCompatible(), discussed in Section 5.2.

Notice that, because of this compatibility check, TestSupport() is an efficient implicit procedure.
While performing the BEMDD traversal, TestSupport() checks the compatibility of the cofactors of F
with respect to variables not included in the support. It does this without explicitly deriving the
cofactors but rather by recursively checking compatibility of sub-functions rooted in the nodes labeled
by the binary variables that encode multi-valued variables not included in the support.

5.2 Traversal Routines for Cofactor Compatibility

In this section, two procedures for checking cofactor compatibility are discussed. They are called
from TestSupport() if the variable encountered in the BEMDD does not belong to those that encode the
input support.

The pseudo-code of the first routine is given in Fig. 10.

bdd GetCompatible1( bdd F, bdd G )
{  // treat terminal cases
   if ( F = 0 or G = 0 ) return 0;
   if ( F = 1 or G = 1 ) return F & G;
   if ( Result = CheckCacheForResult( F, G ) )

return Result;
   // solve the problem depending on the position
   // of the top-most variables in F and G
   if ( Var(F)∈ValueVars and Var(G)∈ValueVars )

Result = F & G;
   else if ( Var(F) = Var(G) )
   { C0 = GetCompatible1( Low(F),Low(G) );
       if ( C0 = 0 ) return 0;
        C1 = GetCompatible1( High(F),High(G));

if ( C1 = 0 ) return 0;
Result = ITE( Var(F), C1, C0 );

   }
   else if ( Var(F) < Var(G) )
   { C0 = GetCompatible1( Low(F), G );

if ( C0 = 0 ) return 0;
C1 = GetCompatible1( High(F), G );
if ( C1 = 0 ) return 0;
Result = ITE( Var(F), C1, C0 );

   }
   else /* if ( Var(F) > Var(G) ) */
   { C0 = GetCompatible1( F, Low(G) );

if ( C0 = 0 ) return 0;
C1 = GetCompatible1( F, High(G) );
if ( C1 = 0 ) return 0;
Result = ITE( Var(G), C1, C0 );

   }
   InsertIntoCache( F, G, Result);
   return Result;
}
Fig. 10. An efficient implementation of GetCompatible().



The structure of this routine mimics that of the APPLY operator available in the BDD package
[10]. After considering the terminal cases and checking cache for results, two arguments of the
function are expanded using the Shannon expansion with respect to the variable found top-most in the
arguments’ BEMDDs. The only difference compared to APPLY is that this function returns zero as
soon as an incompatibility is discovered, without completing the graph traversal. In this way,
computation time is saved when an incompatibility is discovered at the beginning of BEMDD
traversal.

A simpler implementation of function GetCompatible(), using standard BDD operators, is possible
(Fig. 11).

bdd GetCompatible2( bdd F, bdd G )
{
   // consider terminal cases
   if ( F = 0 or G = 0 )

return 0;
   // compute the product of cofactors
   bdd Product = F & G;
   // if for some assignments of the variables
   // that are not in the support, the functions
   // do not have compatible output assignments,
   // return 0; otherwise, return the product
   if ( ∃ ValueVars (Product) != 1 )

return 0;
   else

return Product;
}
Fig. 11. A simple implementation of GetCompatible().

This implementation relies on existential quantification to check whether the product of F and G
depends on the value variables for all assignments of variables not included in the support. If it does
depend on the value variables, then F and G are compatible and their product is the result of merging
them. If F and G are incompatible, then zero is returned, even though their product is not zero.

The following example illustrates this computation. Consider the function with the truth table is
given in Fig. 7. Using the binary variables as the input support encoding variables, the following is
found:

F = vcba + cba + cba  + vbca + vcab + vabc + cba + vcba .

The columns are represented by the following functions:

F0 = vba + ba + abv + ba

F1 = ba + vba + vab + vba .

Their product is

P = F0 & F1 = vba + vba + vba .

As a result of quantification, the following is found:

∃v ( vba + vba + vba ) = ba + ba + ba = a + b ≠ 1,

which means that the cofactors of F with respect to c are not compatible. It is not possible to remove c
from the support of F.

It is reasonable to expect that the second implementation is less efficient compared to the first one
because the quantification operator traverses the BEMDD completely even if the incompatibility of F
and G is discovered right away. In practice, however, input support minimization based on the second
implementation turned out to be 20% faster.

We assume that this speed-up is because existential quantification, being one of the standard
operators, is efficiently implemented in the BDD package, by directly manipulating nodes in the node
table. Our implementation of GetCompatible1(), on the other hand, loses some of its efficiency due to
multiple calls to functions Var(), Low(), High(), and GetCompatible().



6 Deriving an Approximate Measure

In this section, the following issue is addressed. Given an MISF, determine which strategy works
better: removing inessential variables from the support, or adding essential variables to the support.
Assuming that removing one variable and adding one variable are computationally equivalent, the first
strategy is more efficient when less than one half of all variables are inessential and can be removed.
Vice versa, the second strategy is more efficient when it is possible to remove more than one half of
inessential variables.

Below, an approximate measure is derived for the case set size (the number of minterms, in which
MISF is specified), for the following statement to be true: “A half of the input variables are inessential
and can be removed from the support”.

Suppose F is a random k-valued-output n-variable function, all input of which are k-valued, and C
is its care set size.

Initially, the domain of F consists of kn minterms (vertices) and the density of the care set minterms
is C/kn. When one half of the variables are removed, the domain shrinks to kn/2 minterms.

Suppose one half of the input variables have already been removed from the support, and now the
next inessential variable is being removed. The variable can be removed if all k cofactors of F with
respect to this variable are compatible.

Two cofactors are compatible if care minterms of the first cofactor do not overlap with care
minterms of the second cofactor. Suppose there are X care minterms in the first cofactor and Y care
minterms in the second cofactor. Then, assuming that µ is the density of care minterms, the cofactors
are compatible with the probability

 P1(X,Y) = (1- µ*X)Y ≈ 1 - µ*X*Y.

Approximation in this formula is based on the assumption that the density of care minterms (µ) is very
small, which is true for weakly-specified functions and relations.

Because the compatibility of each cofactor with the product of other cofactors is an independent
event, the resulting probability is the product of partial probabilities. Assuming that a cofactor’s
domain, on average, contains N = C/k care minterms and the density of care minterms after removing a
half of the variables is µ = C/kn/2, the following is found:

P = P1( N,N ) * P1( 2*N,N ) *…* P1( (k-1)*N,N ) ≈
≈ [P1( k*N/2, N )]k-1 = [1 - µ*k*N2/2]k-1 ≈

≈ 1 - µ*k2N2/2 = 1 – C3/kn/2/2.

The condition when the variable can be removed with the probability 1/2 is

1 – C3/kn/2/2 = 1/2.

For this to be true, the following should hold

C = kn/6.

To derive this formula, an assumption was made that F is a function. Let us note that, when dealing
with random relations (which can have more than one output value for each input value assignment), it
is more probable that the randomly generated care minterms are compatible than it was assumed in the
above approximation. So, for a random relation, formula C = kn/6 gives an upper bound on the care set
size, for which the second strategy (adding variables) is more efficient.

Consider an example. For a weakly-specified relation depending on twenty five-valued variables
(n = 20, k=5), the size of the care set should be less than 520/6 ≈ 212 minterms for the second strategy to
be more efficient.

7 Experimental Results

Algorithms described above have been implemented in a C++ program. The results of running the
program using the set of POLO benchmarks [9] on a Windows 98 computer, with Pentium-II CPU
266MHz and 64M RAM, are given in Table 1.



Table 1. Experimental results using POLO benchmarks.

Benchmark In# Val# Node# T1, c Sift# T2, c IE# T3, c MS# Iter1# T4, c Iter2# T5, c

Balance 4 20 91 0.05 85 0.93 0 0.01 - - - - -
Breastc 9 90 3903 0.33 3490 3.08 8 0.83 5 64 2.47 94 3.51

Bridges1 9 29 370 0.05 304 0.99 0 0.05 - - - - -
Bridges2 10 32 463 0.06 354 1.21 1 0.05 9 1 0.01 1 0.01
Chess1 6 40 7866 6.10 6367 2.42 0 0.17 - - - - -
Cloud 6 48 557 0.01 451 1.16 1 0.06 5 1 0.01 1 0.01

Employ2 7 29 66 3.41 51 0.99 0 0.05 - - - - -
Flag 28 133 5937 0.44 4887 6.2 28 4.67 7? 2890 >300 1951 >300

Flare1 10 33 349 0.28 298 1.1 2 0.06 8 2 0.01 1 0.01
Monks1tr 6 17 124 0.05 118 0.87 3 0.01 3 3 0.01 1 0.01
Monks2tr 6 17 143 0.06 138 0.88 0 0.01 - - - - -
Monks3tr 6 17 122 0.06 119 0.88 2 0.01 4 2 0.01 1 0.01

Mushroom 22 117 1253 6.32 894 3.41 22 0.71 4 2879 58.44 5765 28.34
Post-oper 8 23 187 0.06 161 0.94 0 0.01 - - - - -
Programm 12 42 17495 8.56 16330 6.75 0 1.65 - - - - -
Sensory 11 36 1780 0.22 1111 1.32 10 0.49 5 192 3.41 194 2.47
Sleep 9 83 802 0.06 697 1.71 7 0.16 5 30 0.38 32 0.22

Tic-tac-toe 9 27 576 0.27 536 1.15 9 0.16 8 44 0.17 503 1.21
Trains 32 105 318 0.06 235 2.75 32 0.27 1 32 0.17 4 0.01
Zoo 16 39 285 0.06 216 1.10 14 0.11 5 118 0.38 328 0.72
alet 18 180 19363 2.20 18968 21.15 10 7.03 9 10 3.51 46 6.98
c3a 14 46 203 0.01 160 1.31 14 0.05 2 80 0.22 52 0.17
c3b 14 48 229 0.01 197 1.37 14 0.11 3 397 0.87 109 0.39
c6a 13 61 282 0.01 247 1.59 13 0.11 2 78 0.22 17 0.06
c6b 13 66 271 0.01 239 1.54 13 0.06 2 87 0.27 15 0.11
d4 14 55 461 0.01 402 1.49 14 0.17 3 201 0.98 120 0.33
d6 13 87 615 0.06 552 1.93 13 0.16 2 80 0.61 15 0.05
d8 32 166 1369 0.05 1271 6.81 32 1.04 2 500 6.98 34 0.38

Average 12.6 60.2 2197 0.98 1973 2.63 8.7 0.50 4.3 101 1.09 83 0.87

The first column lists names of the benchmark functions. Column In# gives the number of multi-
valued input variables. Column Val# gives the total sum of values of input variables for each function.

Columns Node# and T1 give the number of nodes in the BEMDD for the given function and the
time (in seconds) needed to build the BEMDD.

Columns Sift# and T2 give the number of nodes in the BEMDD after variable reordering using the
sifting algorithm and the time needed to perform the reordering.

Columns IE# and T3 give the number of inessential variables and the time needed to determine
them.

Column MS# gives the number of variables in the minimum support for the given benchmark.
Column Iter1# gives the number of calls to function TestSupport() when the first strategy is used

(removing inessential variables from the support). Column T4 gives the running time of procedure
MinSupport1().

Column Iter2# gives the number of calls to function TestSupport() when the second strategy was
used (adding inessential variables to the support). Column T5 gives the running time of procedure
MinSupport2().

Dashes in some of the columns of Table 1 mean that all the variables of these functions are
essential and, therefore, the procedures for input support minimization have not been applied to them.

In the last row of Table1, the average of the parameter in each column is given. For the last five
columns of the table, the average does not include measurements for the benchmarks “Flag” and
“Mushroom”. The running time for these two benchmarks shows the NP-completeness of the problem
of exact input support minimization.



8 Conclusion

Described in this paper is an improved representation of incompletely specified functions and
relations based on BEMDDs and input support minimization algorithms, with potential application in
machine learning and data mining.

The main contributions are:
We introduced a new representation of MISFs using BEMDDs that are different from other

decision diagram based representations used in the literature [2,4]. This representation allows for an
efficient solution of a wide range of computationally intensive tasks in functional decomposition.

In particular, the problem of input support minimization has been addressed. We propose two
algorithms that are neither generalization to MV logic of the algorithm from [7] nor BDD based
implementations of the methods presented in [5,6].

In forthcoming publications, we will show how BEMDDs can be used to solve the column
compatibility problem with large bound sets and implement multi-valued bi-decomposition.
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