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Abstract: Here, we demonstrate that reductions in the depth of inlets or estuary channels 

can be used to reduce or prevent coastal flooding. A validated hydrodynamic model of 

Jamaica Bay, New York City (NYC), is used to test nature-based adaptation measures in 

ameliorating flooding for NYC’s two largest historical coastal flood events. In addition to 

control runs with modern bathymetry, three altered landscape scenarios are tested: (1) increasing 

the area of wetlands to their 1879 footprint and bathymetry, but leaving deep shipping 

channels unaltered; (2) shallowing all areas deeper than 2 m in the bay to be 2 m below Mean 

Low Water; (3) shallowing only the narrowest part of the inlet to the bay. These three scenarios 

are deliberately extreme and designed to evaluate the leverage each approach exerts on water 

levels. They result in peak water level reductions of 0.3%, 15%, and 6.8% for Hurricane 

Sandy, and 2.4%, 46% and 30% for the Category-3 hurricane of 1821, respectively (bay-wide 
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averages). These results suggest that shallowing can provide greater flood protection than 

wetland restoration, and it is particularly effective at reducing “fast-pulse” storm surges that 

rise and fall quickly over several hours, like that of the 1821 storm. Nonetheless, the goal of 

flood mitigation must be weighed against economic, navigation, and ecological needs, and 

practical concerns such as the availability of sediment. 

Keywords: storm surge; flooding; tides; adaptation; wetlands; bathymetry; hurricane; 

Hurricane Sandy; Jamaica Bay; New York City 

 

1. Introduction 

Our coastlines provide many social, economic, and ecological benefits, but are increasingly vulnerable 

to damages from coastal storms and sea level rise. There is an increasing societal awareness and interest 

in the application of natural coastal systems for coastal risk reduction, through both reducing flood levels 

and avoiding increased development. In response to this trend, as well as the devastation caused by 

Hurricane Sandy, the US Army Corps of Engineers is evaluating the use of natural and nature-based 

approaches where possible to support coastal resilience and risk reduction [1]. In Northern Europe, beach 

nourishment projects, dunes and other natural features have long been used along with engineered 

infrastructure to reduce and mitigate against coastal flooding, e.g., [2]. 

Hurricane Sandy severely impacted New York City (NYC) in 2012, flooding a 132 km2 area (17% 

of total land mass) with a population of 443,000 people [3]. Flooding was particularly widespread around 

Jamaica Bay, a large coastal embayment in NYC where surrounding neighborhoods include a large 

proportion of the 1,116,000 city residents (Figure 1) living on land within range of a 5 m coastal flood 

level (measured relative to the 1983–2001 mean sea level, MSL). The baseline FEMA 500-year coastal 

flood at Howard Beach, northern Jamaica Bay, is 3.8 m MSL, but this increases to 5.4 m with a high-end 

projection of sea level rise for the 2080s [4], raising the flood risk for this population. 

The flood risk in Jamaica Bay has possibly been aggravated by widespread anthropogenic alterations 

over the past century. The entrance channel in Jamaica Bay was dredged to a depth of 5.5 m and width 

of 150 m, beginning about 1910, and eventually deepened to 9.1 m. Archival research has shown that 

the average depth of the bay has increased from 1 m in the mid-1800s to 5 m at the present [5]. As a result 

of this deepening and possibly also the smaller water depth increases due to sea level rise, tide ranges 

have increased ~0.5 m (25%–45%) and tides are amplified instead of being damped as they flow from 

the entrance to the inner reaches of the bay [6], though the contribution of sea-level rise to tidal range 

change is unknown. The estimated total loss of interior wetlands for the bay since the mid-1800s is  

49 km2 of the original 65 km2 [7]. However, a successful Corps of Engineers pilot program rebuilt  

0.64 km2 of wetlands from 2006 to 2014 [8], with a goal of eventually restoring them to their 1974 

footprint [9]. 

The scale of the wetland losses and depth increases in Jamaica Bay, combined with the at-risk 

population nearby, provide an important opportunity to test whether natural and nature-based strategies 

can protect against coastal floods and mitigate against local sea level rise. Furthermore, the bay has  

a large enough length (~10 km) to make wetland-based protection plausible, if one considers qualitative 
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(order-of-magnitude) metrics such as the 15 km for 1 m storm surge reduction that was developed for 

historical Gulf of Mexico wetlands and hurricanes [10,11]. 

The purpose of this paper is to use hydrodynamic modeling to explore the potential for using  

nature-based coastal flood protection to reduce flood risk in the neighborhoods surrounding Jamaica 

Bay. We highlight and discuss the positives and negatives of a new concept for nature-based flood 

protection—Channel depth shallowing, the strategy of reducing estuary or inlet depths to reduce the 

inland penetration of a coastal flood. The efficacy of channel shallowing and wetland restoration are 

quantified using the simulations of the city’s two highest known historical flood events—A Category-3 

hurricane that passed over the city in 1821 [12,13] and Hurricane Sandy in 2012. 

 

Figure 1. New York City boroughs and the western edge of Nassau County (right edge of 

map) showing the population density in contiguous low-elevation coastal zones below 5 m 

above mean sea level (MSL). The population density data are based on 100 m resolution 

2010 population data [14]. LIDAR elevation data at 1 m resolution are used to filter for 

elevation; the map only shows population density data where >50% of a cell area is below  

5 m elevation. Data available at [15].  

2. Methods 

2.1. Hydrodynamic Modeling 

A validated hydrodynamic model and grid covering Jamaica Bay and surrounding neighborhoods  

is used in this study to investigate different nature-based mitigation scenarios. The Stevens ECOM 



J. Mar. Sci. Eng. 2015, 3 657 

 

 

hydrodynamic model (sECOM), e.g., [16,17], provides accurate coastal flood predictions as part of the 

NY Harbor Observation and Prediction System (NYHOPS) and the Stevens Institute of Technology 

Storm Surge Warning System, with water level root mean square errors (RMSE) of 0.10 m since 2007 [18]. 

The sECOM model includes a coupled wave model [18,19] and robust upland inundation capabilities, 

known as “wetting and drying” [20]. 

The Jamaica Bay grid is a 30 m × 30 m, 1069 by 550 square-cell grid covering the watershed up to 

an elevation of 6 m (Figure 2, top left panel), and the flood simulations on it are run in two-dimensional 

barotropic mode. The bathymetry and topography information in the model is based on the region’s best 

available datasets, compiled by FEMA Region 2 for their recent coastal storm surge study [21]. The grid 

is doubly-nested, with a large, coarse grid modeling the Northwest Atlantic (the Stevens Northwest 

Atlantic Predictions grid, SNAP), a finer-resolution regional grid (the NYHOPS grid) that resolves New 

York Harbor regions at ~100 m [20,22], and a 30 m resolution grid that covers Jamaica Bay. 

 

Figure 2. Maps of adaptation scenarios 1–3 and control—Land elevation (left) and 

Mannings-n (right). The Spring Creek Park (SCP) and Inwood (JBI) sites are also indicated 

(X) in the top left panel. Elevations are shown relative the NAVD88 datum. 

In storm surge modeling studies, a common simplified approach to representing the effects of wetlands 

is to treat them as enhanced landscape roughness features, through Mannings-n. While this neglects 

water—Vegetation interactions within the water column, it provides good model agreement for surges 

and flood recession processes at inland locations, e.g., [23]. Following this approach, Mannings-n is  

set via landscape types defined across Jamaica Bay using the National Land Cover Database (NLCD), 



J. Mar. Sci. Eng. 2015, 3 658 

 

 

as per [24]. These values are converted to drag coefficients (CD) within the model through the standard 

formula CD = gn2h−1/3 where g is gravitational acceleration, n is Mannings-n, and h is the time and space 

varying water depth. Mannings-n values for wetlands are 0.045, and those for other common land-cover 

types in the model are: 0.02 for open water, 0.09 for barren land (rock, sand or clay), and 0.10 and 0.13 

for medium and high intensity developed land, respectively (Figure 2, right panels). 

2.2. Storms and Forcing Data 

Storm surge is an increase in water level caused by wind and low atmospheric pressure, and combines 

with the tide to form a storm tide, which here we measure relative to the storm year’s mean sea  

level, e.g., [25]. The two largest known historical hurricane storm tide events for New York Harbor  

(The Battery) are Hurricane Sandy, which caused a 3.4 m storm tide, and a Category-3 hurricane that 

passed over the city in 1821, which caused a storm tide estimated as 2.7–3.7 m [12], or 2.7–3.0 m [26] 

(Figure 3). Here, we use simulations of these two storms as tests of the efficacy of nature-based 

adaptation scenarios for Jamaica Bay. These two storms are highlighted here because of their magnitude 

and also because they represent two different types of event. The storm surge during Sandy rose slowly 

over three days, though it rose more rapidly in the final hours near the time of landfall. In contrast, the 

1821 hurricane storm surge rose very rapidly over a period of a few hours [13]. 

 

Figure 3. Hurricane Sandy (left) and the 1821 Hurricane (right) storm track (black lines), 

isobars (white lines), wind vectors, and simulated water levels relative to mean sea level 

near the time of final landfall. The 1821 simulation is performed on the mean sea level for 

the 1983–2001 epoch. Blue arrows in the left panel point to locations of the Battery tide 

gauge and Jamaica Bay (JB). 
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The Sandy simulation on the SNAP and NYHOPS domains is forced by a meteorological reanalysis 

produced by Oceanweather, Inc., Cos Cob, CT, USA). The resulting water levels have an RMSE at The 

Battery of 0.16 m. The model results from the NYHOPS domain are used as a clamped offshore 

boundary condition on the nested Jamaica Bay grid. Local wind forcing for the Jamaica Bay grid is 

applied based on measurements at Breezy Point, and is assumed to be spatially homogeneous (data 

courtesy of Weatherflow, Inc., Scotts Valley, CA, USA). A model validation for the Hurricane Sandy 

control simulation on the Jamaica Bay grid is given below in Section 3. 

The hurricane of 1821 was simulated using synthetic tropical cyclone parameters based on work by 

Boose et al. [27] and Swiss Re [13]. The storm makes its first landfall near Cape May, New Jersey, 

tracks over land along the coast, crosses Raritan Bay, and makes a final landfall at NYC (Figure 3). 

Maximum sustained winds and radius of maximum winds at landfall are estimated to be 58 m·s−1 and 

50 km, respectively. We utilize parametric equations to represent the storm’s wind and pressure forcing 

for our ocean model—The Holland pressure model [28] and SLOSH wind model [29]. The simulation 

is run with the 1983–2001 mean sea level to represent the possible flooding for a similar type of storm 

if it were to occur in modern times. 

2.3. Landscape Scenarios 

Four experiments with differing landscape scenarios for Jamaica Bay are used for each storm, to test 

the effect of changing conditions. The landscape scenarios, defined as specific cases of land elevation 

(topography, bathymetry) and land cover, are: 

CONTROL: Present-day landscape and land cover; 

SC1: “Wetland restoration”: Restoring the 1879 wetland footprint and bathymetry, while not 

altering areas of present-day deep channels or neighborhoods; 

SC2: “Full shallowing”: Shallowing deep (>2m) channels to 2 m depth below Mean Low Water; 

SC3: “Inlet shallowing”: As SC2, but shallowing only the narrowest region in the inlet; 

The depths and Mannings-n roughness values for the control run and adaptation scenarios are shown 

in Figure 2. Scenario SC1 is a wetland restoration scenario for the bay interior, including both restoration 

of the wetlands and the eroded land beneath them (often referred to as “marsh islands”). The restoration 

is to the 1879 wetland footprint [30], but ignoring areas that are deep channels (>2 m depth) or upland 

neighborhoods in today’s landscape. This experiment is intended to show how the present goal of 

restoring wetlands in the center of the bay [9] would affect extreme flooding events, if it were greatly 

expanded. Wetlands are represented with land elevations of 0.5 m above MSL and a characteristic 

wetland Mannings-n value of 0.045 [24]. Note that results with SC1 were insensitive to choosing a cutoff 

of 3 m instead of 2 m. 

The shallowing experiments (SC2, SC3) are deliberately extreme, intended to demonstrate system 

sensitivities (leverage) and to provide process understanding. The bathymetry changes in each scenario 

would be unlikely to reflect equilibrium morphological conditions, and the inlet shallowing experiment 

(SC3) might induce water quality problems by creating stagnant, poorly flushed deep waters in the bay. 

The two shallowing scenarios have no changes to land cover; both are the same as the control, with 

present-day land cover. 
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2.4. Model Validation 

The Hurricane Sandy control experiment using modern bathymetry was validated using water level 

data from the United States Geological Survey, including a pressure sensor near Spring Creek Park 

(SCP) and a tide gauge at Inwood (JBI; Figure 2). The SCP station is at the northern part of the bay, and 

is a rapid-deployment storm surge sensor (SSS-NY-QUE-002WL), a pressure gauge that is deployed 

when a tropical cyclone is approaching. This sensor elevation is at 0.2 m above NAVD88, so that it 

provides data only when the water level is higher than this elevation. Data are corrected for atmospheric 

pressure based on a nearby USGS barometer deployment. The JBI tide gauge is at the eastern end of the 

bay, and has been running since 2002. High water marks from Sandy within Jamaica Bay collected by 

USGS were also used to validate the model. 

Because an early 19th century digital elevation model does not exist (at present), we make the 

assumption that the 1821 storm tide heights in NY Harbor can be modeled (where the validation data 

was observed), to a first approximation, using modern bathymetry. However, as noted by Talke et al. [25], 

changes to bathymetry at the entrance bar and within the harbor may have altered storm tide characteristics 

since the mid-19th century. 

3. Results 

Results for the Hurricane Sandy control simulation and validation are shown in time series form in 

Figure 4, demonstrating good agreement. The RMSEs between the model and observations are 0.22 and 

0.18 m at SCP and JBI. Model skill, e.g., [31], is 0.99 for the tide gauge site JBI, but could not be applied 

for SCP due to obvious wave-driven fluctuations in the pressure sensor’s data. A one-to-one plot of 

modeled and observed high water marks (HWMs) is shown in Figure 5, demonstrating an RMS difference 

of 0.19 m and r2 value of 0.89. The HWM observations have moderate uncertainty, as shown by the 

error bars in the figure. These results are similar to other model studies of Sandy [32,33]. 

 

Figure 4. Hurricane Sandy model validation in Jamaica Bay, at (left) Spring Creek Park and 

(right) the Inwood tide gauge. Station locations are shown in the first panel of Figure 2. 
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Figure 5. Sandy simulation vs. Jamaica Bay high water marks (HWMs). Error bars on the 

observed water levels come directly from the USGS field report for each HWM. 

Maps of temporal maximum water level results for Hurricane Sandy for the control run and the three 

scenarios are shown in Figure 6. These results show peak water levels (averaged over the bay interior) 

decreasing by 0.01 m for SC1 (wetland restoration), 0.50 m for SC2 (full shallowing), and 0.23 m for 

SC3 (inlet shallowing). Table 1 shows detailed results for temporal maxima and their reductions. 

 

Figure 6. Results for Hurricane Sandy (peak water levels) in map view for control run and 

Scenarios 1, 2 and 3. Water levels are shown relative to local mean sea level (MSL) at JBI. 
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Table 1. Temporal maxima (peaks) and their reductions for each storm and scenario. 

Storm 

Events 
Scenario 

Bay-Average JBI Station 

Peak Water 

Level (m a) 

Reduction 

(m) 

Reduction 

Percentage (%) 

Peak Water 

Level (m a) 
Peak Surge b (m) Peak Tide c (m) 

Hurricane 

Sandy 

2012 

Control 3.39 -- -- 3.27 2.38 1.03 

SC1 3.38 0.01 0.3 3.25 2.33 1.01 

SC2 2.89 0.50 14.7 2.77 2.23 0.58 

SC3 3.16 0.23 6.8 3.06 2.32 0.76 

Hurricane 

1821 

Control 2.54 -- -- 2.60 2.87 0.78 

SC1 2.48 0.06 2.4 2.50 2.73 0.74 

SC2 1.38 1.16 45.7 1.27 1.46 0.49 

SC3 1.79 0.75 29.5 1.85 2.20 0.64 

a Peak (temporal maximum) water levels are relative to the 1983–2001 mean sea level datum; b Peak surge was 

computed as the temporal maximum of the quantity (modeled storm tide-modeled tide); c Peak tide was 

computed as the temporal maximum in the tide-only model run (over the storm simulation time range). 

The control simulation run for the 1821 Hurricane on the NYHOPS grid (Figure 3) has a peak water 

level of 2.95 m over local mean sea level (MSL) at the Battery, within the range of historical estimates 

given in Section 2.2. Temporal-maximum water level results in Jamaica Bay for the 1821 Hurricane are 

shown in Figure 7. For the control run, the temporal maximum water level in the bay (2.54 m) is 

substantially lower than at The Battery (2.95 m), likely due to the strong (over 50 m·s−1) east winds blowing 

against the water flowing in through the inlet prior to the final landfall at New York City (Figure 3). The 

results maps show peak water levels (averaged over the bay interior) decreasing by 0.06 m for SC1 

(wetlands), 1.16 m for SC2 (full shallowing), and 0.75 m for SC3 (inlet shallowing) (Table 1). 

 

Figure 7. Results for the 1821 Hurricane (peak water level) in map view for control run and 

scenarios 1, 2 and 3, as with Figure 6. 
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Reductions in peak water level and changes to the flooded area are mapped in Figure 8. Compared to 

the control model runs, each scenario demonstrates a significant reduction in the flooded area (black 

dots). Each scenario also wets (floods) areas which remained dry in the control run, primarily near the 

entrance (red dots). On aggregate, the induced flooding for each scenario is small, and substantially more 

land is protected from flooding than is put at risk. For Sandy, the area of prevented flooding for each 

scenario is 0.4 km2, 19.6 km2, and 10.3 km2, respectively, and induced flooding is negligible (below  

0.1 km2). For 1821, the area of prevented flooding is 1.4 km2, 18.1 km2, and 11.4 km2, respectively, and 

areas with induced flooding are 0.2, 0.1, and 0.8 km2. The full shallowing scenario (SC2) for the 1821 

hurricane prevents flooding of elevated areas inside the bay (above 1.5 m MSL) altogether (Figure 7). 

We also conducted experiments (not shown) where we combined the wetlands of SC1 with the shallowing 

of SC2, but we found that results were nearly indistinguishable from SC2. Therefore, adding the 

wetlands into the shallowing scenario did not further reduce water levels. 

 

Figure 8. Reductions in peak water level with the three scenarios for Hurricane Sandy and 

the 1821 Hurricane. Black dots show areas where flooding was stopped (wet in control, dry 

in scenario), and red dots show areas where new flooding was induced (opposite). 

Time series of water level at JBI show substantial reductions in peak water levels for SC2 and SC3 

(Figure 9 top panels). Additional tide-only model runs were performed for the time period of each storm 

simulation, on each landscape scenario (and the control landscape), to separately elucidate effects of the 
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adaptations on tide and surge (computed as storm tide minus tide) (Table 1; Figure 9 middle and bottom 

panels). In these tide-only runs, peak tide levels at JBI during 1821 and Sandy are reduced by 0.02–0.04 m 

(2%–4%), 0.29–0.45 m (31%–38%) and 0.14–0.27 m (15%–23%) respectively for the three experiments, 

relative to a tide-only run on the control landscape. Reductions in storm surge for Sandy are small (0.05, 

0.15 and 0.06 m), whereas they are very large for the 1821 Hurricane (0.14, 1.41 and 0.67 m), respectively. 

Thus, the reductions in peak water levels and flooding for Sandy are mainly due to a reduction in the 

astronomical tide, whereas for 1821 the reduction in storm surge is dominant. Since the 1821 event 

occurred near tidal Low Water (LW), the decreased tidal range (smaller LW) actually increases the 

astronomical contribution to the peak water level for SC2. 

 

Figure 9. Time series of (top) water level, (middle) surge, and (bottom) tide level at JBI for 

Sandy (left) and the 1821 Hurricane (right), for the control runs and two shallowing scenarios. 
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4. Discussion 

The primary result of the scenario experiments is that reductions of channel depth have a much 

stronger leverage on flood levels inside Jamaica Bay than wetland restoration, for these two extreme 

flood events. The full shallowing scenario (SC2) reduces peak water levels in the bay by 15% and 46%, 

for Sandy and 1821 respectively, and full wetland restoration only 0% and 2%, respectively. The narrow 

section of the inlet is demonstrated to exert strong leverage over water levels in the bay, as scenario SC3 

shows reductions of 7% and 30%, respectively. This suggests that the inlet alone can provide about  

half (46% for Sandy and 65% for 1821) of the benefit observed in the full shallowing scenario (SC2), 

dividing the water level reduction for SC3 by the reduction for SC2. Thus, the channel shallowing 

scenarios demonstrate that reducing estuary or inlet depth can be a powerful option for reducing the 

inland penetration of coastal floods.  

The utility of wetlands for flood protection is often cited as a reason to build or restore wetlands, and 

in some cases they can cause reductions in flooding [11]. These results suggest that the presence of deep 

shipping channels can eliminate this benefit, even with wetland restoration on a massive scale. Though 

40% (24 km2) of Jamaica Bay is wetlands in SC1 (Figure 2), the deep inlet and circumferential deep channels 

inside the bay efficiently deliver flood waters to the surrounding neighborhoods. A recent modeling 

study showed similar results for an idealized coastline that mimicked the Gulf Coast, demonstrating how 

increasing channel sizes lead to increasing storm surge penetration through a coastal wetland [34].  

In spite of the minimal effect wetlands have on coastal flooding in this study, wetlands are also known 

to provide wave attenuation benefits, and they can reduce erosion by stabilizing sediments [35]; neither 

is quantified in this study. Moreover, they provide high-value habitat and ecosystem services, as 

summarized in the recent Corps of Engineers report on nature-based coastal resilience [1]. 

Storm characteristics such as track, speed, size, central pressure and wind speed (Figure 3) are  

well-known to influence the development of surge on the continental shelf [31,36], but these results also 

suggest that the characteristics of the hurricane affect the amount of flood-mitigation benefit of local 

changes to the bay, as has previously been observed with wetlands, e.g., [11]. Even though the overall peak 

water level in the 1821 control case was about 1 m less than the Sandy case in Jamaica Bay (Figure 9), 

significantly more benefit was derived thru shallowing in terms of reductions in peak water level and 

flood area (Figures 8 and 9). As discussed below in Section 4.1., tidal theory provides additional insights 

into the observed differences in the efficacy of shallowing for the two hurricanes. In Section 4.2, we 

discuss the broader considerations and timescale over which a shallowing strategy could take place. 

4.1. Physics of Channel Depth and Storm Tides 

Flood waters are widely known to be slowed by increased friction when passing through wetlands, 

and this can reduce flooding when it prevents inland propagation of a storm surge [36]. Moreover, the 

amplitude of the surge wave is reduced, much like a river flood wave is reduced when flowing through 

vegetation. In studies of tidal dynamics, the interplay between water depth, tidal frequency and friction 

has long been studied [37–40]. However, little attention has been paid to the influence of channel and 

inlet depths on storm surge propagation. 
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Both tides and storm surge are “sea-level events” causing anomalies in sea level of varying durations, 

although surges are atmospherically-forced waves and tides are gravitationally-forced waves composed 

of constituents with well-defined periods. Tides and surges in harbors and inlets are both defined as long, 

or shallow water, waves, in which the wavelength is much longer than the depth. Shallow (or narrow) 

channels at inlets and inside estuaries can reduce inland penetration of a sea level anomaly due to a 

“choking” effect of reducing the cross-sectional area of the channel and the amount of water transported 

in and out of a bay or estuary, as is the case in the NY Bight region at Barnegat Bay and Great South 

Bay [41]. This is illustrated by the relative effectiveness of the inlet shallowing scenario, SC3. 

The time scale of the sea-level event, whether it be tides or a storm surge, can also influence its 

penetration into a bay or estuary. Compared to fast-pulse events such as the 1821 Hurricane, storm surges 

from cold-season storms (e.g., nor’easters) have a longer time scale, on the order of 1 day, and the choking 

and frictional effects of a shallow inlet or channel may be lessened. A more rapid sea-level event such 

as semi-diurnal tide may be attenuated more strongly by a shallow inlet or channel [41]. Physically,  

a fast moving wave produces stronger velocities, leading to greater dissipation of energy (which scales 

as U3/H, where U is the velocity and H is the water depth) and attenuation. A sea-level event like 

Hurricane Sandy’s storm tide can be a combination of both short- and long-timescale events. During the 

days preceding landfall, water levels in Jamaica Bay steadily increased and were 1.3 m above the predicted 

tidal levels 12 h before the peak. This “forerunner surge” [42] penetrated into coastal embayments with 

little attenuation, and was followed by a more rapid sea-level pulse in the final hours. The 1821 

Hurricane, on the other hand, was a very fast-pulse flood event, with nearly all of its storm surge (82% 

or 2.3 m) arriving in the final four hours (Figure 9). The different storm sizes and tracks played a large 

role in creating these differences in surge time-scale; Sandy, with a more offshore track (Figure 3) and 

very large size (radius of maximum winds 220 km just before landfall), caused moderately strong northeast 

winds in NY Bight for over two days before landfall, whereas the 1821 storm had an along-coast track 

right over NYC and a much smaller size (estimated radius of maximum winds 40 km), causing the  

wind-blown surge to be driven by east winds over only a few hours. 

The interacting roles of friction, channel depth and wave period have been considered for estuary 

channels before, in the context of tide dynamics. For an idealized, rectangular basin [39], the damping 

term in the equation of motion depends on rU/H, where r is the linearized friction coefficient, U in the 

tidal velocity, and H is the mean depth. Hence, as noted by Ianniello [37] and Burchard [43], decreasing 

the system’s depth has a similar dynamical effect as increasing the friction or wave frequency. This is 

one reason why the attenuation of the diurnal tide can be different than the semi-diurnal tide in tidal 

rivers, though non-linear interaction between constituents and river flow must be considered [40]. Based 

on this linearized scaling, a 3-fold decrease in channel depth (e.g., 6 m to 2 m) has a similar dynamical 

effect as a 3-fold increase in drag coefficient. Similar results are found by Friedrichs and Aubrey [38] 

for tidal propagation in convergent estuaries. 

The peak surge results for Sandy (Table 1) show a relatively small reduction of 0.15 m at JBI for the 

full shallowing scenario, indicating that the water level reduction of 0.49 m at that station was predominantly 

(69%) due to a reduction in the tide. On the other hand, the surge reduction of 1.41 m for the 1821 

Hurricane at JBI represents slightly more than 100% of the reduction in total water level, 1.33 m. The 

forerunner surge, combined with higher mean depth due to the tidal stage, means that the mean water 

depth just before Sandy’s landfall was ~2 m greater than during a similar phase of the 1821 event. Model 
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results also demonstrate that flow velocities in the inlet were significantly larger during 1821 (1.94 m·s−1) 

than in 2012 (1.03 m·s−1), due to the smaller time scale over which water levels rose. Combined, the depth 

and velocity effects both act to attenuate and mitigate the 1821 event more than Sandy in SC2 and SC3. 

Two primary processes reduce storm-tide magnitudes within Jamaica Bay. The reduction of depths 

with SC2 (full shallowing) and the greater resulting frictional drag increase the shallow water wave 

attenuation (SC2). The reduction of inlet depth only (SC3) constricts flow, producing only a choking 

effect. The reductions in peak water level for SC3 are about half of those for SC2, demonstrating that 

the effects are of roughly similar magnitude. Nonetheless, the increased damping in the SC2 scenario 

appears to produce the positive effect of reducing surge wave reflection, which likely causes increased 

flooding near the inlet in SC3 (Figure 8). Careful consideration must therefore be made to avoid unwanted 

side-effects when designing coastal flood mitigation strategies. 

The shallowing experiments also induce a lag in the times of peak surge and peak water level, relative 

to the control runs, and the sizes of these lags typically show inverse relationships with water depth and 

sea level pulse period. Defining the “lag” as the time of the peak in the full shallowing (SC2) experiment 

minus the time of the peak in the control run, the lags of peak surge are 10 (Sandy) and 40 min (1821). 

The lags of peak water level are 60 (Sandy) and 30 min (1821). The lags in tide-only runs are 

substantially larger, at 110 (Sandy) and 90 min (1821) (Figure 9). The lags are usually larger for cases 

when there is shallower water (e.g., tide-only runs), consistent with stronger frictional effects. The reason 

for the small time lag for surge with Sandy SC2 (10 min) is because the water is deep when the final 

pulse arrives, even in the shallowing experiments, and the pulse has a long period (relative to tide or 

water level, which have lags of 110 and 60 min, respectively). The 1821 surge has a 40 min lag, and this 

moderately large lag can be explained by the surge pulse coming on top of a low tide, so in shallow 

water, and having a short pulse period. Lastly, the lags for SC3 (inlet shallowing) are about half those 

for SC2 (full shallowing), suggesting more shallow water area (and smaller bay-average depth) leads to 

larger lags. In conclusion, these results are generally consistent with the interpretation of frictional 

effects being the dominant reason that shallowing is effective at reducing peak storm-driven water levels, 

dependent upon both pulse period and water depth. It is also noteworthy that the lags of 30–60 min in 

peak water level could be viewed as additional protection against flooding, slowing arrival of the 

flooding in addition to reducing the water levels. 

The results shown in this manuscript are broadly consistent with the results of Talke et al. [25], who 

hypothesized that local changes to bathymetry and channel depth in New York Harbor could help explain 

the long-term trends in storm tides measured at tide gauges. Nonetheless, the detailed hydrodynamic 

effects of channel shallowing require further study and may be highly site or storm specific. As shown 

in Figure 8, there are locations where a shallowed channel might worsen flooding. An analogy can be 

made to river channels, where constricting a channel cross-sectional area can produce flooding upstream. 

4.2. Broader Considerations for Shallowing as Mitigation of Coastal Flooding 

As a flood adaptation strategy, channel shallowing can be challenging if the channels were historically 

dredged for navigational purposes and there is an economic driver behind their maintenance. In the case 

of Jamaica Bay, the use of deep-hull shipping in the bay has decreased, but there are still important 

commercial shipping and municipal (e.g., sewage sludge transport, fire safety access) uses of the deep 
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channels [44]. The use of a dredged channel as a public recreational amenity (e.g., fishing charters) can 

be extremely important. However, most fishing and recreational vessels in this region have draft depths 

of no more than 2 m, relative to the channel depth of 6 m, so some degree of shallowing may be possible. 

Looking more broadly around the world, the flood impacts of proposed channel deepening projects 

should be quantified using a range of realistic local storm tide events (e.g., fast-pulse and  

slow-pulse), to evaluate whether they would worsen flooding at inland locations. 

The practicality of creating and maintaining shallow depths is also an open question. At one extreme, 

shallowing could be accomplished through direct sediment in-fill, similar to beach replenishment. 

However, for some systems like Jamaica Bay, this would require much larger volumes of sediment than 

beach replenishment. Moreover, designing an optimal in-fill strategy that would allow a bathymetric 

equilibrium to quickly develop is a challenging engineering problem. 

At the other extreme, shallowing could simply be initiated by decommissioning a dredged channel 

and allowing natural sedimentation to occur over a longer period of time. This could be a simple and 

potentially cost-effective strategy, though the shallowing would need to occur at a rate faster than the 

sea level rise rate, to reduce flood levels. The cessation of maintenance dredging is referred to by the 

USACE as “de-authorization” and would require an economic assessment of tradeoffs. De-authorization 

is not likely viable for large, high-traffic channels. However, one recent example exists with the 

Mississippi River Gulf Outlet canal, a shipping channel that was de-authorized by the USACE in 2007, 

in part because of a debate over whether it caused increased storm surge penetration. The channel was 

physically blocked in 2009 [45]. 

These considerations suggest that further study is required to understand the morphodynamic 

processes and timescales that control long-term sedimentation in Jamaica Bay and the broader New York 

Harbor area. At least one formerly-dredged system within New York Harbor area, the Passaic River 

estuary, has recovered to pre-dredging depths over the time scale of decades [46]. There is some evidence 

that Jamaica Bay is sediment-starved [44], but a shallowing of the Jamaica Bay might naturally occur 

over many decades. More research is needed to better understand the sediment transport processes and 

budget for Jamaica Bay and the surrounding region, and the potential effects of channel-depth 

modification thereon. It is possible, for example, that channel shoaling would reduce sediment transport 

by reducing tidal exchange, thus exerting a self-reinforcing effect, once initiated. 

A gradual channel shallowing over many decades could provide flood risk reduction on a timescale 

that is similar to that of the sea level rise. The full shallowing scenario results reported here show 

reductions in flood levels of 0.50 and 1.16 m for Sandy and the 1821 Hurricane, comparable to the 

central range of sea level rise estimates (25th–75th percentile) expected for the 2080s, 0.56–1.27 m [47]. 

It is also noteworthy that the reduction in peak tide levels for adaptation scenarios 2 and 3 (Figure 9) 

would also protect against nuisance-flooding from “king tides” or from rainfall at times when sewer 

drainage is blocked by high tides. These types of flooding already occur in the low-lying Jamaica Bay 

neighborhoods such as Old Howard Beach and Broad Channel. 

The water-quality and ecosystem impacts of shallowing for a given site would also require considerable 

study. Creek and inlet bathymetric recontouring has been identified as a restoration technique appropriate 

for smaller-scale tidal tributaries of Jamaica Bay, to decrease residence time of water and improve water 

quality [48]. However, the shallowing of an inlet can reduce the water exchange between the bay area 

and the open ocean, which could adversely impact the water quality inside the bay. An extreme example 
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of the relationship between inlets and flushing is the breach on Fire Island, which was left open because 

of its potential to improve water quality due to increased flushing of stagnant bay waters [49]. 

5. Summary and Conclusions 

In this study, we have explored the potential for mitigation of coastal flooding by natural systems, 

focusing on New York City’s Jamaica Bay. Water depths in the bay have increased from an average  

of 1 m to 5 m since the mid-1800s, due in part to extensive channel dredging, and tidal marsh islands in 

the Bay have been rapidly eroding. For these reasons, we conducted numerical model experiments into 

how much leverage extensive restoration of wetlands or shallowing of dredged channels can have in 

reducing coastal flooding from the city’s two highest historical storm tide events, Hurricane Sandy and 

the 1821 Hurricane. 

Results show that restoring wetlands in the center of the bay to their 1879 footprint results in relatively 

small reductions in peak water levels (0.3% and 2.4% for Sandy and 1821, respectively) and flood area, 

while shallowing of dredged channels leads to much greater reductions (15% and 46%). A third scenario 

that shallowed only the narrowest region of the bay’s inlet found roughly half as much (46%–65%) 

reduction in flood levels in the bay, relative to the full shallowing scenario. 

Flood waters are widely known to be slowed by increased friction when passing through wetlands, 

and this can in some cases reduce flooding when it prevents inland propagation of a storm surge. Water 

depths and friction have been shown to have parallel influences through estuarine channels when it comes 

to tide propagation, and here we have demonstrated similar effects for storm tides at Jamaica Bay. The 

relative efficacy of shallowing for the 1821 Hurricane demonstrates that channel shallowing is particularly 

effective at reducing peak water levels at inshore locations for fast-pulse sea level events with periods 

of several hours. 

For Jamaica Bay, we have begun conducting deeper analyses into the impacts that a broader set of 

coastal adaptation measures would have on flooding, water quality and storm waves, as well as for a 

range of different storms. The realism of channel shallowing must be evaluated in terms of other societal 

interests (e.g., recreation or shipping), costs, time frame, and the availability of sediments or other materials 

for in-fill. However, no method of coastal flood mitigation is without its limitations, and here we have 

demonstrated a novel and effective approach for reducing coastal flooding. 

These results suggest that when looking at nature-based solutions to sea level rise, more focus needs 

to be placed on sedimentary systems and bathymetry, including deep channels and topography in wetland 

areas, and not simply on wetlands. Regardless of whether Jamaica Bay shallowing is ever practical or 

economically affordable, we hope that the modeling and physical conceptualization above will help inspire 

additional creative research into nature-based and gray-green solutions for coastal flooding. 
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