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Inductive Learning of Quantum Behaviors

Martin Lukac and Marek Perkowski

Abstract: In this paper studied are new concepts of robotic behavidetermin-
istic and quantum probabilistic. In contrast to classigeduits, the quantum circuit
can realize both of these behaviors. When applied to a rebgéantum circuit con-
troller realizes what we caljuantum robot behaviorsWe use automated methods
to synthesize quantum behaviors (circuits) from the exasfgxamples are cares of
the quantum truth table). The don’t knows (minterms not gige examples) are then
converted not only to deterministic cares as in the claseaaning, but also to output
values generated with various probabilities. The OccanoRpinciple, fundamental
to inductive learning, is satisfied in this approach by segkircuits of reduced com-
plexity. This is illustrated by the synthesis of single aittguantum circuits, as we
extended the logic synthesis approach to Inductive Mach@zening for the case of
learning quantum circuits from behavioral examples.

Keywords: Quantum circuits, machine learning, logic synthesi, quantobot be-
havior.

1 The Concept of Learning Quantum Behaviors From Examples.

Itis well-known that logic synthesis methods applied tapynfunctions with many
don't cares (don't knows) are used as a base of various mads@nning (ML) ap-
proaches [1, 2, 3]. The learning process creates circudrigig®n and as a byprod-
uct converts don'’t cares to cares trying to satisfy the OcBaor Principle of the
circuit’s simplicity. While the method of logic synthesisiged machine learning
was already applied to binary and multiple-valued circ[lits3], here it is applied
for the first time to quantum circuits [4, 5, 6].

It is well-known that an Einstein-Podolsky-Rosen (EPRYuwir [4, 7] com-
posed of a Hadamard gate and a Feynman gate realizes entengjleln an ex-
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tended EPR circuit the Hadamard gate can be additionally@ted, which means
that when controlled with signa0), the EPR circuit changes to a single Feynman
gate and the entanglement is removed, thus the circuitavi@hbecomes deter-
ministic. Similarly the controlled Hadamard and Contrdli8quare-Root-of-Not
(CV) gates can be used as sources of randomness when thefstagecircuit’s
output is measured [4]. This way we designed several irtiagesircuits and used
them to control the behaviors of various kinds of robots [8].

A robot controller is a mapping between inputs (sensors)@argduts (actua-
tors). So the mapping is closely related to the behaviormiseon the robot. If the
mapping is specified by a unitary matrix it is a controller @fumntum robot. These
behaviors combine quantum-probabilistic and determistve call thesequan-
tum robotsand we say that they exhilguantum behaviorgd8, 9]. From now on
we will not distinguish between the quantum-controlleda®lits quantum circuit
controller (unitary matrix) and its behavior.

a a="P
N Jan\ =
L N b=Q

e V; aboe=R

Fig. 1. Toffoli gate realized using 2 2 controlled quantum gates. When used
as a quantum robot controller, signals a,b and ¢ can cometfsaoh, sound or
other sensors and outputs P, Q and R through measuremengaria motors or
other actuators.

b

The well-known quantum realization of the reversible Toffmte (Fig. 1) us-
ing Controlled-NOT (CNOT), Controlled-V (CV) and Contretd-\V' (CV') gates
[10, 11, 4] is another source of inspiration because it shibasa deterministic be-
havior of a permutative quantum (classical reversiblejuitris created using truly
guantum gates (such as Controlled-V) that operate in HilBpace and with in-
termediate signals that are superposed [4]. By truly quargates we understand
those that their unitary matrices are not permutative. Ifwaaild thus measure
the data path signal in the lowest qubit in Fig. 1 in the midaflehis circuit,
after two CV gates controlled by inputs a and b respectivibly, behavior would
be deterministic for some input signals and probabilisticdther ones, leading to
very interesting behaviors of a Quantum Braitenberg Vehig] controlled by this
circuit. Even more complicated binary quantum circuitstfiwiermutative unitary
matrices) can be composed from gates that are the conti@detl X rotations by
anglesmi/k where k is a power of two. This leads to gates such as NOT ¢ 180
rotation, square-root-of-not - 9Qotation, fourth-order-root-of-not - 45-otation,
etc. Gates that rotate by« (271/3) where k is an integer are used in ternary quan-
tum logic. These all rotation gates can be controlled bytemyi quantum states
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[5]. When the resultant signal in the data path bit (the aletd qubit) is an eigen-
value of the unitary transformation(s), the behavior id®inistic. When it is not,

the behavior is probabilistic according to the rules of quammeasurement [4, 7].
This means that a system in a superposed state, when measunitagdses to one
of the possible observables given by the measurement opefdtis way, a circuit

can be designed from a set of examples corresponding to teendaterms of a

truth table. For instance, value 0 may correspond to sermuditons when we
want our robot to turn left, and value 1 to the true mintermrgilit variables ( a
positive example) when the robot should turn right. Basetlisrdesign goals the
designer specifies examples of robot behaviors as inppbpairs. The software
induces behaviors for all other input states that are plassib

With the above background it is now possible to define thecjplas of induc-
tive learning used in this paper.

Definition 1.1 Inductive Learning in Logic Synthesis for conpletely Specified
functions

Let | be a set of vectors such thif = {io,i1,...,in}, N = 2N is the k-th input
vector (of N qubit) of pattern P (or function specificatiomdaf : 1 — O be a
reversible function, WithE = {00,01,...,0n} being the expected result vector for
the input patternlf and O is the set of all output vectors.. Lete {0,1} andok €
{0,1} be the elements of the input and output vectors respecﬁamiyiﬁio a2 =
zfio |a’|2 = 1 specifying thd, — norm space. Lefty) be a 3-qubit quantum state
andG be the set of possible operators (quantum gates). Thendkists a quantum
logic circuit U such that for any pair of input and output patte(h® O); 1P €
IP, OP € OP wherevOP € 031 € | such thatf (1,°) = O is a one -to-one mapping.
For quantum learning this means that there is a unitary fisamson a quantum
systemUs|y) — ') for |@) € IP, |¢') € OP. The learning of such a function
implies to find the minimal set of quantum gates implemenfimgction f (and
realizing unitary matriXJs).

Example 1.0.1 Completely specified reversible function réaed in quantum
logic

The verification of the above definition is simple becauseddiinition implies a
permutative function mapping to which directly correspsmdsingle unitary trans-
form (which is also permutative). Let f be a completely dedirienction repre-
sented by the Karnaugh Map in Table 1.

Then one of possible realizations of function f is shown igufé 2. The eight
cells of the K-map from Table 1 correspond to eight inpupotitpatterns. Thus
input patterrabc= |110) is mapped for instance to the output pattB@R= |100),
etc. As we see this function is reversible as it is a one-®+oapping (set of output
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Table 1. A K-map of a completely specifieck3 reversible function

c 0 1
ab
00 000 | 001
01 011 | 010
11 100 | 101
10 110 | 111

(PQR)

patterns is a permutation of the set of input patterns). g@amatrix multiplication
and Kronecker products of the elementary matrices of alPyates involved, one
can verify that mappings of all cells (shown by the permotatf the inputs in
Table 1) are satisfied [4, 12]. The circuit in Figure 2 is thos tesult of learning
(synthesis) from the initial set of examples (Table 1). lis tase there are many
circuits to satisfy all input-output pairs, but they all leathe same unitary matrix.

a P

b JaA Q
N

Fig. 2. Example of a completely specifiedk3 reversible function realized as
a quantum circuit using quantum primitives Controlled-W(CControlled-Vf
cV' and Controlled-NOT (CNOT).

Although the Example 1.0.1 was given for completeness arsthow the link
between logic synthesis and learning, very rarely in réalthe system learns (gen-
eralizes) from a complete specification(an exhaustive fsexamples). In case of
robotics it is so only for very small number of sensors andt thiates.

Definition 1.2 Inductive Learning in Logic Synthesis for incmompletely Speci-
fied functions

Let | be a set of input vectors defined as in def. 1.1 and let heesét of output
vectors such as in def. 1.1 but with € [0,1, —]. The symbol ’-’ represents a don't
care and corresponds to an unknown output. The set of exansgie/en as a set of
pairsP = {ix,0o¢}, k=1,...,n < 2N, The inductive learning for incompletely spec-
ified functions can be defined as: the process of explicitlgifig such a mapping
or function satisfying each pait}’,OF) from the given set P such théfl)}) = Of.
The result of learning is thus a circuit that describes a detepnapping that agrees
with the set of input-output pars from the specification egka®.

Example 1.0.2
Let f be a 3-qubit incompletely specified reversible funetiefined by the Table 2
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(it can be checked that the function can be completed to asible map since all
output care cell§000,001,100 101} are different). Table 2 represents thus the set
P of learning examples called also the problem specification

Table 2. Anincompletely specified reversible function f

c 0 1
ab
00 | 000 | o001
01 - -
11 100 | 101
10 - -

Then an arbitrary unitary transformation U that satisfiéshal specified transi-
tions,

U|000 — [000)
U|001) — [001)
U|110 — [100)
U|111) — [101)

(1)

together with its corresponding circuit is a valid solutitmthe learning problem
specified in Table 2. Thus the circuit from Figure 2 is a solutalso to the
learning problem specified in Table 2. Let us observe thdtisidase there are not
only many circuits that solve this problem but also manyamitmatrices. Because
of Occam Razor the circuit is reduced and as a byproduct itsmynmatrix is
simplified as well.

To complete the definition of the Learning of an incomplesggcified function
let us have a closer look at the don't cares.

Lemma 1

Any quantum-permutative function being build accordingtie above Inductive
Learning method and for arbitrary quantum basis staten complex Hilbert space
He" from a set of single-qubit and two-qubit qubit operatorc(sas for example
G ={[l], [Controlled-V], [Controlled-V/], [Controlled-NOT?}) will result in a com-
pletely specified function allocating the unknown elemagaisording to the unitary
evolution matrix defined such as

Ufl) =10), (@)

where |O) is the binary basis output state vector. For every othee $tatthere
exists a unique quantum statel’).
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To prove Lemma 1 is is sufficient to observe that we select gatés that the
unitary matrix of their compositions (using Kronecker puotfor parallel connec-
tions of gates and matrix product in reverse order for seoanections of gates) is
a standard unitary matrix (with no don't cares). This maisixreated in such way
that for every vectotl;) from the pair(l;,O;) we have that |I;) = O;. Applying
matrix U to an arbitrary other input vectdlr), superposed or basis, produces cer-
tain output vectofQ’) space (in general of complex numbers) so thdt) = |O').
This vector|O') is a completely specified quantum state in a sense that itig@a-q
tum state that is known and deterministic (expressed by &\eguation). On the
other hand, after the measurement, there may be very massicdhstates to which
this statgO’) will collapse.

We see thus here a difference between classical and quae&unirlg. In clas-
sical learning we learn a deterministic function. In quamtiearning we learn a
guantum unitary mapping to a quantum state that is quantterdinistic only
before a measurement, but the observer never knows to wlashical state this
deterministic state will collapse as the result of the meament. The designer of
the robot sets thus certain constraints for robot’s beldwid he can only proba-
bilistically predict how the robot will behave within thesenstraints.

ab|c=0[c=1
Determinjstidd0 | O 1
/_k 1|1 |o
110 1
ab Lc= olc=1 10| 0 1
00| 0 -
011 —
11 | — 1
10 | — 1 ap |c=0jc=1
00| o0 Vi
01|1 Vo
11 | Vo 1
Quantum-—probabilistig g Vi 1

Fig. 3. Two modes of learning based on the properties of quarsystems. On
the left the desired single-output function is representsitig cares and don't
cares. The top Karnaugh Map represents the result of the in@being the

deterministic learning. The bottom K-map represents thenked function using
the quantum probabilistic learning.

Taking into account the above introduced quantum phenonggraantum logic
design and the inductive learning, the general mappingeofiin’t cares to cares in
inductive learning can be separated into two categoriegirgi 3 illustrates the two
learning methods for a single output Boolean function. ThelBan function to be
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learned is represented on the leftmost Karnaugh map (K-muilp)cares (desired
output values from examples) and don’t cares (that corme$pmcases not known).
To make this function reversible the input qubits are foidreat to outputs and a sin-
gle ancilla bit is added (which is typical for quantum orad#3]. The first type of
learning is shown on the top of Figure 3 and it will be referte@s the Determin-
istic Learning (it corresponds to the classical learningoblean functions). The
output of the deterministic learning process is a compjedefined Boolean func-
tion or a complete reversible Boolean function, if requif@&kample 1.0.2). The
second type of learning called the Quantum-Probabilisigering, is shown on the
bottom of the Figure 3 and has similar results as standardapitistic learning,
with the difference that the probabilities are calculatemif quantum states (com-
plex vectors)y andV; (the values/y andV; will be explained later) according to
the measurement operation. This paper is focused on eipjaihe second type
of learning; the quantum probabilistic behavior learninggingle output Boolean
reversible and quantum functions. This is because of itk hiterest in robotics
where we need to specify symbolically deterministic quamttates with expected
probabilities of their measured binary outcomes.

Quantum robot has been introduced by Benioff [14, 15, 16ahd]is described
as a quantum system exploiting the superposition and tlamgieiment of the state
of the robot with the state of its environment. Recently i8][firesented are quan-
tum robots with respect to the quality and speed of decisiaking using the
Grover quantum search algorithm [13]. Unlike in these wpikare the focus is
not on how the robot is implemented with respect to its emriment, but rather on
the strategies for learning the robotic behaviors basediantym circuit structures.
From the Machine Learning aspects, quantum computing rexs dleesady studied
in [19, 20, 21, 22, 23] and shows expected speedup of quargamihg with re-
spect to its classical counterpart problems. The macharaileg introduced in this
paper is focusing on how the structure of the quantum systambe used to build
guantum circuits usable as behavioral controllers foratycinteractive robots.

With respect to emotional social robotics, our previougaesh introduced the
emotional state machine [9], that is being investigateda@soller of a robot. To
explain, Figure 4 recalls the basic concept of the Emotighantum Finite State
Machine (eQFSM). Such machine can be described as mixeduwjparassical
machine with both classical and quantum state transitionotfans. In Figure 4 the
classical logic is labeled F and the quantum-unitary is Ue §lobal state of the
eQFSM is unitary in order to be able to represent quantumabioeis carried by
the logic block U. The classical state of the machine is & sthsmaller dimension
than the global statép) and is the only part of the machine that interacts with
the environment using the measurement. The quantum bekawithis particular



568

model represent only the quantum logic control that is ncgadly observable in
the environment or controllable from the environment.

In paper [9] behaviors with respect to social context andt@nal expression
of a social robot built from eQFSM'’s were analyzed and hellg tre methods of
inductive learning will be explained. In particular theerdctions on the quantum

level are shown

@)
et

Fig. 4. Emotional Quantum State Machine. The emotional corept repre-
sented by the logic block U is connected in parallel with otledots emotional
components. The logical part represented by block F, intereither with the
environment or with other functional elements. This logigack also performs
the measurement on the output states (block M). From the pbiriew of real-
ization technology both F and U are quantum, but F is desgidisea permutative
unitary matrix, like an oracle in Grover Algorithm, while g an arbitrary unitary
matrix.

with respect to incompletely specified functions that repré input-output be-
havioral patterns. As already mentioned, the learning ggeds implemented as
inducing the combinational quantum circuit which speciffeswhole function and
thus maps the 'don’t cares’ to output values. This circuii@gt inserted as U into
the eQFSM. In particular, circuits with up to four qubits weanalyzed by us in
terms of learning. In short, we can say that the classicat I@gtional) behavior
F of the robot is controlled by emotional behavior U thus eiasponsible for
probabilistic behaviors of the robot. With an appropriaarhing approach these
behaviors should be still somehow rational and explainabte instance, a "hys-
teric” robot will bump more often into obstacles than a "coabot would, but it
should still follow the light, if so specified by the expectiedjic behavior. It is
similar to a behavior of a person under influence of emotist@ss that behaves
differently in an observable way but still within certairgio of the situation.

The robotic behavioral framework also requires a certaapgation of the robot
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with respect to the environment. Some of its actions mightdogiired not to be
performed exactly as ordered or even that the robot shodldciively learn some-
thing from its environment. Thus when learning robotic bebis it is possible to
allow a certain percentage of wrong outputs. As will be sesdov in the quantum
behavior-learning problem it is acceptable that some spwaflient of cares in the
solution is not in agreement with the symbolic cares of thigairspecification.

The inductive learning process presented here learns tive elescription in
one run (in contrast to incremental learning). Thus mackeaening is the same
as logic synthesis. The synthesis process preserves the lmatrreplaces all don't
cares (don’t knows) with deterministic, probabilistic oit@ngled states. The mea-
sured probabilities of outputs result from the circuit'susture and the types of
controlled 2x 2 gates used by the synthesis algorithm (here, we use gaiearth
controlled roots of unity with various angles).

Definition 1.3 Quantum Logic synthesis

The synthesis problem is to find the simplest circuit for dhtiable with (usually

few) given cares (examples) and (usually many) don't catest G be a set of

single-qubit and two-qubit unitary operators on comphe, then the process of
synthesis can be expressed as a minimization of the giveatiétnwith respect to

the width of the circuit and the amount of elementary opegatsed. Thus it can
be written

S (n.G) ™ V(n,G) @3)
whereV (n,G) is the cost of the circuit constructed of gates from set G.

The minimization of the cost of the circuit with respect te tlogic function
can be studied using a genetic algorithm (or exhaustivecedar small number
of variables). The automatically synthesized controllges. learned from exam-
ples) produce very interesting and often unexpected butcbrobot behaviors
[8, 9]. Moreover, the method presented here uses truly quamfates; unlike in
other papers on quantum logic synthesis here only singbi-qud two-qubit gates
are used. Thus, the circuits learned by this method aretbjiresplementable in
guantum hardware and they satisfy Occam Razor with respélsetreal hardware
costs. Then, we can say that these behaviors are more natugahntum world
than behaviors learned with many-input Toffoli gates thatild push the solutions
towards less probabilistic behaviors or to no probabdistehaviors at all. This
is again more similar to human learning that includes alwsy®e probabilistic
component (at least as related to body motions and to speech)
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2 Symbolic Quantum Synthesis

Assume a single output function defined by a Karnaugh mapfgperthe desired
outputs as would result by observing values 0 and 1 on thetgoaoutput in some
special cases of the state of the environment as shown ie Tabl

Table 3. Single output Boolean functions R to be synthegjieztned)

c|0|1 c| O 1
ab ab
00 - - 00 - -
01 | 0| - 01 | Vo | M1
11 1|0 11 - -
10 -1 10
R R

As already specified, the quantum circuits may generateutaitpith certain
probability p. The Table 3a has half don't cares and half cares, and asguh@re
is a method to synthesize the cares, the problem that ren@ibs solved is in
what manner it is possible to specify the values of don't €aihe unitary opera-
tors used in this work are mainly [W] (Wire/Identity), [NOTV], [V ], [CNOT],
[CV] and [CV'] and thus it should be specified how the don't cares are filled wi
respect to inductive learning. For this, Bt= {0,1,Vo,V1} be the set of all possi-
ble (symbolic) outputs of the given single output functigaljit R in Fig 5). Then,
0 and 1 represent 100% probability of obtaining O and 1 reaspdy after observ-
ing (i.e. measuring) the system’s outpug.= V|0) andV; =V|1) are symbols that
represent quantum states (vectors of complex numbersktnssponds to mea-
suring/observing the system in statd\p) andM (V1) with M being the quantum
projective-measurement operator. The symbol '~ is a danbw or can also be
seen as a non-observation/measurement of the system atsl @xiy in the initial
problem specification. An example of an obtained resultgiautomated synthesis
is shown in Figure 5 and as will be discussed later, its benasideterministic for
the desired qubit R, while the global state might be in a qugstion of states. Let
us note that when all controls of gates are binary the passjbantum states are
only 0,1,y andV; (this was proven in [11]).

a a="P

: oo

Fig. 5. Example of a solution to the learning problem for theimplete function
from Table 3. Although the circuit as a whole is not deterstiiaj its behavior
observed on qubit R is deterministic.

N
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It is possible to synthesize any single-output Booleantfonaising the above
set of gates with the expected value of the outcome speciiei.bProof for this
has been already shown in other works [24, 11] however theoiitapt point is
the methodology. A systematic application of the aboveggi¢he correct qubits
will realize this function. Proofs of this methodology fouantum-permutative
multi-output functions were given in [24, 11] where the Sdsed search method
was presented for exact minimum solutions. In the new pdperabove function
was realized using a Genetic Algorithm presented in [25, @61 the learned the
circuit from Fig. 5 with output function for a single outpuanable R takes the
following form R(a, b,c) = [0,1,0,1,0,1,1,0] replacing all don't cares of the initial
specification (Table 3a) with either 0 or 1. In this case,@ltfh we did not restrict
the synthesis to deterministic circuits the determinibgbavior was found.

One could however desire to restrict the specification of te ga a circuit
by quantum related symbolic values. Using the above set tefsgand control-
ling the gates only with binary signals it can be seen thabatput symbols from
the initial specifications should be converted to quantunesas shown in Table
4. This means that if one would replace the Controlled-V afmes by Controlled-
Hadamard, the expected input-output mapping will be chdageordingly, despite
the fact that after measurement the output values mightéedme. For instance,
for an input combination 010 (Table 3b) the user specifiesityuma state/y which
after the measurement will produce 0 or 1 each v@tprobability of being ob-
served. Forinput 011 the symbolic stat&/is This would produce the same output
after direct measurement as stegebut has a different phase, which can be used if
the value of the output qubit is used in some other circuit.

Table 4. Possible mapping between input specificationstaiddymbolic representation as a result
of learning (learned circuit); each well defined input va{Oel) is to remain as it is. The don't care
input specifications can be mapped up to four different symb® 1,Vp, V1. The "-"s will be thus
replaced with 0,1 or V;.

0 . 0
1 1
Vo | Vo
\A : Vi
- 0,1,Vo,V4

For example the incompletely specified function (definedahl& 3a) could be
learned to the completely quantum-defined functfoa [Vo,V1,0,V1,Vo,1,1,0] as
a result of the synthesis process and as such would stikpreshe requirements
as well as its probabilistic behavior for certain inputs.

Thus the probabilities of the output states directly depamthe logic elements
(quantum gates) selected by the synthesis algorithm. I|ef@mple we would
extend the set of gates to include also the ga{éd,[[v/VT], [¢V] and [VVT], the
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output state values would be appropriately changed anda ptbbabilities than%
would be possible.

It is even more interesting that with respect to the spedifindfrom Table 3a
the circuit from Figure 5 has a single deterministic outpotder measurement
(as required), but its global three-qubit state is in supgitipn. For example for
state|110 transition is:|110 L 17—‘|1O]> + 1T+i|111>, but the first and last qubits
are unaffected by the measurement. Now assume determil@atning in which
the circuit from Figure 6 was found. Observe that it alsos$is the incomplete
function from Table 3a for single qubit R.

a P

b Q

JdAY
U
¢ VIV V][ e

Fig. 6. Example of a deterministic quantum circuit being #wdution to the
learning problem with the set of examples specified by thermaete function
specification from Table 3a

A more detailed view on the implementation from Figure 6\wldo make a
transparent analysis based on symhb\' and their algebradV = NOT, VTV =
NOT,VV' =V =1). This is done in Table 5.

Table 5. Example of analysis of the signal R in the circuihfrBigure 6

abc 0 1 abc 0 1 abc| 0| 1
00 I I 00 I I 00 |01
01 | vvt | vt — 01 I I - 01 |01
11 | vivh | vivT 11 | NOT | NOT 1 [1]0
10 | viv | viv 10 I I 10 (0|1

For functions with multiple outputs, the above methodolagplies as well but
the analysis is more complicated. The circuit from Figure oBsigenerate deter-
ministic output for the single measured qubit however hababilistic behavior
from a multiple qubit measurement. For example the traositor the input state
|100 can be analyzed as follows:
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1100 2
apply the Leftmost gates W (wire) and Controlled-V
wecv! 1100
apply the gates Controlled\spanning the
the whole width of the circuit (jumping over the middle qybit
1—i

cvt
— ‘1O>W(|O> +11))

apply the gates Controlled-NOT and W

CNOT®EW 1-i
111) 7 (10)+11)) (4)

apply the gates W,Controlled-V
WaCV 110
apply the gates Controlled-V,W

CVaW 1+i

— |1>ﬁ(\0> +11))[0)
1+i

— \1>ﬁ(|0> +11))[0)

1+i
W(I100>+|110>)

—

Thus the original three-to-one incompletely specified fiomcfrom Table 3a
is mapped to the reversible quantum three-by-three cifowit Figure 5 to which
corresponds the fully specified and deterministic (but pholistic after measure-
ment) quantum function that is represented in the Karnaug fnrom Table 6.

The Table 6 can be formally minimized (allowing the Toffalinction) using
the following conditional notation that allows to expres® tlogical and causal
dependence between the control and data qubits. For exatoglenote a CNOT
gate one could writ€NOT — (]1),NOT)|b). To explain, the CNOT gate described
shows two qubits: théb) is the output qubit and the control qubit activates the
unitary transform orjb) only when equal to 1. Thu§1),NOT) means the when
the control bit is is in statél) the NOT operation is applied to target qubit. Thus
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Table 6. Function mapped by the circuit from Figure 5. Forhequbit in the register the unitary

evolution is sub-scripted by a, b and c for each qubit respedgt

abc 0 1 abc 0 1
00 TasTps e Ta,Ip, lc 00 Tas0b, e Tas b, Ic
01 la, b, (VVT)e la, Ib, (VVT)e - 01 la, b, lc la: I, lc
11 | Ia, Ve, VIV | Ta, Ve, (VIVTe 11 | 13,Vp,NOT | 1a,Vb,NOT
10 | la, Ve, VIV | 1o, Ve, (VIVT)e 10 la, Vb, lc la, Vb, lc

abc 0 1

00 [000) [001)

| o1 010 ~|o1y)
1 \1>1—j§'(|0>+\1>)b\1>c |1>a%(|0>+\1>)b\0>c
10 \1>%(|0>+\1>)b\0>c |1>a%'(|0>+\1>)b\1>c

the above function can be rewritten to:
|a) EN |ay, —Identity
b) =(|1)a(V x NOT))|b)
©) =(|12)abNOT)c)

(5)

and the minimized circuit is shown in Figure 7.
a="P
b=Q

¢ ————P c=Rr

Fig. 7. The final circuit minimized by using the symbolic retlan method to
function specification from Table 3

o D
+
fan
NP,

3 Learning Quantum Behaviors

In this section we illustrate few examples of formulatinggtum behavior learning
problems as quantum circuit synthesis problems accordiriget Inductive Learn-
ing from Section 2. The synthesis of quantum circuits is shapplying a compo-
sition method with a restricted set of gates used. This ambrds based

on the structured exhaustive and GA-based generator frgm 8i Functions
f; are arbitrary Boolean functiorend functiongy; are arbitrary quantum rotations
It can be proven that each gate composed of a control fundticand a data
path(target) gateg; below is a quantum operator specified by a unitary matrix. It
is a reversible(permutative) gate whgnis a binary logic operator (i.e. NOT op-
erator). In the exhaustive approach all control functidgn&om certain class are
systematically investigated as well as all data functignsom some other class.
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Q0 oTo

) [ @ [0
: [

I
e—o o | {o |
Fig. 8. The general concept of controlled rotation gatestierexhaustive and
genetic search-algorithms.

The gates from this class are substituted in all possiblesviaryf; andg; in Fig.

8 and the quantum state is symbolically simulated. The numlzé segments is
the synthesis parameter and we start from small valuesisfystite Occam Razor.
In the GA approach vectors of these functiohsndg; are chromosomes. Each
chromosome represents a circuit and is built from unitatggéhat are available to
the GA. The GA minimizes the circuits with respect to the nemdif gates in each
chromosome as well as with respect to the correctness ofrthiemented circuit.

Example 3.0.3

Let us first look at the well-known Peres gate circuit from.Fig
a a
b /) a®b

\d
o L@} e

Fig. 9. The Peres gate discovered by the exhaustive and Ghitalgs. Its cost
is four 2-qubit gates

Many similar circuits were generated automatically usingaus software ap-
proaches in papers [11, 25] but none of them was yet spetjfstaidied and used
in behavioral robotics. They use only 1-qubit gates - iremesrand 2-qubit gates -
controlled-V, Controlled¥ T and Controlled-NOT. Observing these circuits one can
appreciate that all controls are linear or affine Boolearcfioms since only two-
qubit permutative gates are allowed (in contrast to the ggrsehema from Figure
8). Thus in our first variant of the general schema for quantinguits generation
all controls f; were assumed to be affine functions. In case of binary lodficiea
functions are linear functions and their negations. Lirfeactions are constant 0
and XOR'’s of subsets of the set of input variables. We do nce a&this point
how the upper part of the circuit, the contrfy) is realized as a minimal reversible
circuit - we have developed elsewhere efficient methodsyloitesis of such affine
functions without ancilla bits. To be precise, single otiffounctionF is a Boolean
irreversible function, in general, arbitrary. It is madeeesible by taking into ac-
count inputs/outputs a, b, c, d, etc. The controlled fumdtim the lowest (target)
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OoTo

|fi=a | [f=b | |[f=asb |
[ [ [
e _| o=V |_| =V |_| g;g,:VT I_ aboe

Fig. 10. Applying general schema from Figure 8 to discoverdlassical Peres
structure from Figure 9. Correct substitution values foandg; (found by the
Genetic Algorithm) are shown in boxes. In the solution theuinwire c is not
used. Note also that the function appears in an output quikidlized to e.

qubit are inverters, V andl T gates. This way the 3-qubit Peres gate from Fig. 9
was found from its complete truth table. Figure 10 illustsahow Peres gate can
be obtained by applying the scheme from Figure 8 restriciede length of 3 seg-
ments. This was an example of deterministic behavior swigheom a complete
specification of behavior, i.e. (a truth table with all casdues). Using this method
with limited number of segments some useful new gates hagae bwented that
will be presented in our next papers. Again, Occam Razosléathe invention of
useful new concepts, powerful and inexpensive quantunsgathis case.

Example 3.0.4
Given is a set of examples in the form of a standard incompteata table repre-
sented by the standard K-map from Table 7. The learning pnob$ defined as

Table 7. A set of positive (1) and negative (0) examples inrmfof standard Karnaugh map of a
single output Boolean function.

cd |00 |01 11| 10
ab
00 - - 1 0
01 0 1 0 1
11 0 0 - -
10 0 1 0 1

learning the function, i.e. to design a deterministic direising only gates CV,
cv' and CNOT and not more than 4 segments. The genetic algoritasnused
for the deterministic learning. It found the circuit fromgri 11. Observe that the
symmetric Boolean functio&3(a,b,c)was found as a component of the learned
complete Boolean functiof = S3(a,b,c) & d = ab® ac® bca d. Such symmet-
ric functions result in this and similar problems from thedam Razor principle.
Interestingly, this discovery leads to the same class aftfans as those invented
by mathematical definitions in an unrelated research byS@34.

The unitary matrix of this circuit is also a permutative nratnd thus its be-
havior is deterministic. The graphical method of analydishe solution circuit



577

A
Y

f = S3(a,b,c)@d

o 0 T w

Fig. 11. The final circuit for the majority-controlled gateexified in Table 7

that is applied in the cost function evaluation is shown ifl&a 8. Identities
VIV = VvVt = andVV = NOT were used. The numerical equivalent of this
method is used in our exhaustive and evolutionary software part of the fithess
function calculation.

Table 8. Stages of the symbolic analysis of the Majority Gatection.

cd [ 00 01 11 10
ab
00 - - vVT vVvT
o1 | vvi | vt \aY vV
11 VV | VV | VWV | vyt
10 | v | vt \aY vV
!
cd [ 00 01 11 10
ab
00 I I I I
01 I I NOT NOT
11 NOT | NOT | NOTx ! | NOT x|
10 I I NOT NOT
!

cd [00[ 01 11 [ 10

ab

00 Ol 11O

01 o101

11 10|01

10 ol 1|01

Table 9. Example of K-map with half of the values as don't sare

c|O0]|1
ab
00
01
11
10

RO

1
0

Example 3.0.5

Given is a set of examples represented as cares from K-magbie . All other
minterms are don'’t cares. Use the probabilistic learninghime: presented in this
paper to design a circuit that may have both probabilistit @eterministic behav-
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iors. The circuit with three segments was found, Fig. 12&ag a determinis-
tic output with respect to the desired functiofi:= {000 — 0,001 — 1,110 —
1,111— 0}. This mapping agrees thus on all cares with the initial setxaimples.
The circuit is deterministic and obviously not minimal snibie minimal circuit is
justa®c. In another learning attempt the circuit from Fig. 12b wasnio with
two segments. In this circuit the probabilistic behaviotisi as can be easily seen.
For examplg010 — %(|010) +011))}. Analysis of the control for the circuit in
Figure 12a using symbolic values is shown in Table 10. Anslg§the circuit
from Figure 12b is done in Table 11.

Table 10. K-map for analysis of the learned specificatiomfitable 9 that has a learned circuit
from Figure 12

C 0 1 C 0 1 c|O0]1
ab ab ab
00 | 1(0) | VV(0) 00 0 NOT(0) 00 [0 1
o1 | 1(0) | vv(o) || o1 0 NOT() | | o1 |0 |1
11 | vv(0) | 1(0) 11 | NOT(0) 1 1 |10
10 | VV(0) | 1(0) 10 | NOT(0) 1 10 |10

As it can be seen the K-map from the Table 11 agrees on all gatkeshe
specification from Table 9 but the don’t cares from the Tablar@now replaced
with valuesVp =V (0) andV; = V(1) which leads to measuring the values 0 and 1
with equal probabilitys.

a___
b__|

() agc
age  c4v
a) b
Fig. 12. The final circuits for the function from Table 9. Obsethat the circuit
12ais not optimal as the twontrolled—V gates can be combined to a CNOT.

o0 T o

If one would request that the circuit should have a non-datestic behavior
for minterm—abcthen there would be no choice between the circuit from Figa 12
and one from Fig. 12b, and only the circuit from Fig. 12b wolbida solution to
this quantum learning problem.

Table 11. Quantum K-map for analysis of the specificatiorction from Table 9 that has a learned
circuit from Figure 12b

[§ 0 1 9 0 1 c| O 1
ab ab ab
00 | - E 00 IO) 6N 00 | 0| 1
o1 | v | v || o1]| V() v |7l o1 | Vo | v
11 | v | vV 11 | NOT(0) | NOT(2) 1 1|0
0|V |V 10 | V(0 V(1) 10 | Vo | Vi
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Table 12. K-map of a more complicated function

c| 0|1
ab
00 0|0
01 -
11 | Vo | -
10 0|1

Example 3.0.6

Given is a quantum truth table in a form ofgaantum Karnaugh ma@QKM) as
shown in Table 12. Observe that the output values in a QKM eacabes, don't
cares and also quantum states suc¥pas [V]|0) =V (0) andV; = [V]|1) =V(1).
Design a circuit that has both probabilistic and deterntimibehaviors specified
by the cares of this truth table. First solution is deterstioj Fig. 13a which
leads to K-map from Fig. 13b and the circuit with four segrseftg;(but five
gates). Observe that for minterai—c the value was changed frovg to 0 and the
symbolic quantum carg, is not satisfied. This means that for input combination
110 the robot will always generate 0 and not only in half of¢hees. Observe that
this circuit does generate the function with a relaxed stmec This means that in
the original idea of Symbolic Synthesis tfeontrolled-\] and [CNOT] gate can
only be controlled in the top-down manner; the control qibilways above the
controlled bit. In the circuit from Figure 13 the Genetic Alghm had relaxed
structural constraints on the synthesis and thus the rissalslight deviation form
the original paradigm. The second solution circuit, Fig.a,14ads to the learned

alc0 1
a 00[0[0
ORI ‘ii
C——|VTHV |—|V I_f 10|01
a) b)

Fig. 13. Solution to non-completely specified quantum fiamctrom Table 12. Observe the different
structure of the circuit as the requirements are relaxed.

function from Fig. 14b. The circuit has with four controll&lgate segments and
non-deterministic behaviors. In this case all symbolicrquen cares (i.eVp, 0 and
1) are satisfied, as can be verified by comparing Table 12 vigihr& 14b. Stages
of symbolic analysis are shown in Fig. 14c.
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a abc 0 1
b 00{0 |0
| 01| Vo Mo
c : —— 11| Vo M1
0 _I vV H vV H vV HvT |_ f 10({0
a) b)
B 0 1 0 1 0 1
al
00 A% I 0o |o
01 v Vvvt \% \% Vo Mo
R VAYAVAR AVAVAY] Vv VT Vo M
C) 10|w* |wv I |NoT| |0 |1
—_—

Fig. 14. A more complicated solution to the function from Eabl2. a) the
circuit, b) the Karnaugh map and c) the analysis of the CtiatteV based logic
executed in fitness function calculation. Let us observedahancilla bit initial-
ized to 0 was added.

4 Experiments and Results

The genetic algorithm was tested on various benchmarks @andifferent initial
parameter settings. Table 13 refers to various settinggparameters of the vari-
ous experimentations with the GA. The genetic algorithm wasunder all these
conditions, and each time a solution was found. From therexpatal point of
view, there are various parameters that allow to force thetGparticular areas of
the problem space. For example, the GA starts with the minmamber of seg-
ments equal 2 and the maximal number of segments set up t@Bother case, the
GA will start with the minimum of 9 and the maximum of 15 segrtseper chro-
mosome. This limitation has been automated to allow the G#loe® particular
subspace in space with a limited size. In other words, the &#ches for a given
solution in a non-limited space, and when a solution is fatitrées to find a similar
solution in the more size-restricted space. For a givenlprolihat has a known
solution with 8 segments, the GA is given freedom to exploresginding problem
space with four segments more than the current known mininkkonmore explo-
ration it is possible to adjust the segment number to highkres, so as to restrict it
to a more tight search space. Also, when the individual closmmes are evaluated,
if they are too long, they are not to be shortened at the segpiirements given by
the user, but the maximum operating length of individualbamosomes is double
of the user required. Experimentally this measure was fawsedful, when search-
ing for a solution to an unknown circuit that the user doeskmaiw the minimum
representation of. In the case when the maximum circuittteangder-estimates the
realizable minimum, the solution can still be found due is tlouble size measure.
This can also be observed during the synthesis process. Wbling for a circuit
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Table 13. GA settings

Population size: 10, 50, 100
Mutation: 0.01,0.1,0.3
Crossover: 0.6,0.7

Fitness function: Type 3and 4

Input gate set: CNOT, CW*), Full
Min/Max Segment size:  (2/5) 3/6, 6/12, 9/15

of a known length n (and assuming this length is minimal) iteiguired to allow
the GA to search space above and below the given length. Frewiops work in
this area [28, 12] it was shown that a "messy GA” algorithmtiwandom length
of the individual circuit (chromosome)) was not completsbiccessful because of
the many local maxima of the fitness function in this probleim.this approach
(as already mentioned) the size of the circuit is much morgrotled, however it
is required that the initial estimate of the maximal sizeh tircuit appropriately
over-estimates the minimal length (or the expected minieagth) of the circuit.
This is important as it allows to design the given functiorihwiarious costs and
thus to obtain different results close to the minimum. Thhbe, search space has
to be restricted around the expected minimum as close agf@s#oreover, as
the GA converges towards a local or global minimum (maximurres) the intro-
duction of the new individuals should be in the problem speose to the global
optimum. This way, there will be a global convergence in tasigkd region of the
problem space.

4.1 Symbolic synthesis - single output functions

The GA was used to search three and four qubit-single ouifpetits for fully or
partially defined functions. Some of the benchmarks haweadly been introduced
in Section 3 and they all are incompletely specified fundioffable 14 shows
some benchmark functions used in the discussed experitizerstand their qubit
numbers.

Table 14. GA benchmark functions
fi=[—,—,0,1,0,4,1,0,0,0,—,—,0,1,1,0]
f,=[0,1,—,—,—,—,1,0
fa= [070777770717V077]
f4=10,—,0,—,Vo,1,—,1
f5s = [~,Vo,—,1,—,1,Vo, ]

f7=1[0,—,0,Mo1,Mo1,1,—,1]

WWwWwwwwbh

For the discussion of the results and synthesis four of thesehmarks have
been selected. In particular, functiog fs, fg and f; have been analyzed and
studied.
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Example 4.1.1

The first function wasf(a,b,c,d) = M; = [0,—,0,—,Vp,1,—,1] with the least
significant qubit being the output. As already introducee \¥§ operator repre-
sents the probabilistic behavior of this function for a givaeput. Its realization
is shown in Figure 15, with top qubit being constaniop and bottom qubit be-
ing the output. Because the measured qubit can be entangledhe rest of the
circuit, the output qubit can present the entangled beha®@nme observation can
be made about the function realization from Figure 15. Tlvsud maps the
desired outputs (specification) t¢j0000 — |0000,|0010 — |0010,|0100 —
$(/0100) + (/0101),|0103) — [0001),|0111) — [0011}. This illustrates an ex-
act matching of the circuit mapping to the desired functiamith respect to the
single-output function learning method introduced in égper this circuit can be
written as:[0,1,0,1,Vo, 1, Vo, 1] which covers the quantum cares with 100% accu-

racy.
Ced o 8T
T
) or|lo |-
11 - |1
c v} 10w |1
(a) (b)

Fig. 15. Benchmark function 1: a - the learned circuit, b -itligal specification

Example 4.1.2

The next benchmark is another partially specified functishpwn in Figure
16. Similarly to the previous example, this function is definover a subset
of desired mappings. Circuit from the Figure 16 generatesdisired outputs
such as:{|001) — 1(]000 + |010) +|100) + [110)) + 3(|102) + [111)),|011) —
1(1101) + 3(|1111), ]112) — $(/00) + $(/011),1100 — (/000 + [010) +
1100) +[110)) + 3(]001) +[011))}. As can be seen this function uses superpo-
sition to generate the correct result.

Interestingly, adding two gates: Controllgd-on wires b and ¢ at the begin-
ning of the circuit and Controlled-V right after the first doolled-Not on the a
and b wires, will generate partially deterministic and fadist probabilistic behav-
ior. Again, it is possible to describe this function usingagtum symbolic values:
V1,Vo,0,1,V1,Vy,0,1]. Also observe that we allow the change frdfnto Vy in the
case of the input state&00) and|101). This is both because under normal stan-
dard projective measurement it is not possible to dististyeiasily between the two
states (both states will generate a 0 with 50% probability avith 50% probabil-
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a ab |[€=0]|c=1
00 | — Vo
b 01| — 1
1m|- |1
¢ 10w |-
(@ (b)

Fig. 16. Benchmark function 2: a - the learned circuit, b -itligal specification

ity) as well as becausé|1) = V'|0). However depending on the specification of
the behavior the solution can have multiple undesired dsitpu

Example 4.1.3
The last result is for the 3-qubit majority function [5]

f ={0,0,0,1,0,1,1,1} (6)

The function is shown on Figure 17 and is a pure permutativigixna

a Y K\ mf\ ab c=0(c=1
L L\ 00| o0 0
b () o1|o |1
— 11 |1
; v VI 3 le |;

Fig. 17. Function Majority 3.

In this case the analysis is a little more complicated
vvivivi vyt vt vivi vvivivT vivt v (7)

however again the correct result is obtained. Observe ti@tPauli Y rotation
operator was used by the Genetic Algorithm and that thistisplus not minimal.

From the point of view of the synthesis costs it is valid to éiske concepts of
superposition and entanglement can be useful for learmidgagic synthesis. In
other words, can the given function be designed cheapeg siperposition and
entanglement? So far, the research in quantum logic syiatitesn the usage of
a particular set of gates for minimization, possibly rasgltin entanglement, but
it is possible that logic synthesis should intentionallg tise entanglement, super-
position and measurement to synthesize the desired funaither measurement
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independent of measurement dependent. This problem reraaimpen research
area.

The GA synthesis algorithm itself used in this work is simila our previous
work in this area [28, 25] however particular settings akalito generate circuits
from certain subspaces. For example, when one wishes thesiné circuits using
the presented method, the set of declared component gattsaomiain only those
gates that the user intends to be used. Thus, it is simplélteeirce the behavior of
the GA in this direction. More interesting is the problem lo¢ terror/fitness func-
tion. For example assume that the GA is to synthesize citbait has to have at
least one state in superposition. This will generate a $itatieis in superposition.
However, now assume that the designer wants to synthesizegubit output state
transition such af)0) — %. If the GA is using only the probabilities of out-
come, the specification in the amplitudes of observatioh siscabove could easily
synthesize the output using simple superposition. Thusifgiter dimensionality
of quantum circuits, particular measurement operator rhagjenerated allowing
to distinguish the desired states.

5 Conclusions

We showed a new approach to machine learning; i.e. learnirgntgm circuits
from partially specified examples with symbolic quantuntegaThis has applica-
tion in robotics [8, 9]. The behavior is specified by a trutbléawith don’t cares
and symbolic quantum states such/gs-V|0) andV; =V |1) which lead to known
probabilities of observation of the output under certairaswgement operators[25].
A circuit matching the symbolic cares of the specificatiofoisnd. This circuit has
both deterministic and probabilistic behaviors when onésofjubits is measured.
Such behaviors have been designed for robots and obsensayeral small mobile
and humanoid robots[8, 9]. This paper introduced also theeot of a quantum
function with binary inputs and a single (quantum symboba)ary output. We
formulate the synthesis problem for such functions andestivs problem using
the genetic algorithm and exhaustive search. Quantum taliles can be repre-
sented as standard Karnaugh maps with symbolic quantuss stattheir outputs.
We called them Quantum Karnaugh Maps. This new representhtis a didactic
value because it links the quantum concepts to the binarghegis concepts such
as minterms, symmetry, unatness, implicants and othep#wile are familiar with
while using K-maps. This representation, similar to mapbioary input multiple-
valued output functions, allows to create new quantum isdrom K-maps. These
methods are more knowledge-based than the GA or exhaustivelts We created
for instance methods based on encircling large groups obsisni, Vo andV;
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similarly as it is done in hand methods for ESOP synthesis.

Finally, the future work includes:

1. extension of the synthesis process to multi-output sgler, and truly quan-

tum functions, and

2. observation of physical robots with their controllersiglated on a quantum

simulator.

In particular, we are investigating the quantum robot calgrs with respect to

social behavior and the automatic generation of social\betg
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