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1.  Introduction
The island of Syros, Greece is known for its well-preserved paleo-subduction zone lithologies of the Cy-
cladic Blueschist Unit (CBU), including high-pressure metamorphic rocks that have been interpreted to 
represent the slab/mantle interface at depths of >60 km (e.g., Breeding et al., 2004; Bröcker & Enders, 2001; 
Dixon et al., 1987). Understanding the evolution of high-pressure rocks, such as these lends insight into 
metamorphic processes including dehydration and densification of the oceanic lithosphere, and hydration 
and melting of the lithospheric mantle (e.g., Caron and Pequignot, 1986; Duesterhoeft et al., 2014; Hacker 
et al., 2003; Peacock, 1993, 2004; Ridley, 1984). It is important to constrain the conditions and durations 
over which these processes occur, as they greatly influence global volatile budgets and heat transfer, con-
vergent margin seismicity, felsic crustal genesis, and the formation of explosive eruptive volcanoes (e.g., 
Bebout,  1991,  1995; Hacker et  al.,  2003). The prograde evolution of exhumed subduction zone rocks is 
becoming increasingly well understood (e.g., Behr et al., 2018; Kotowski & Behr, 2019; Laurent et al., 2018; 
Philippon et  al.,  2011), as are the timescales and the depth range over which cooling following (near) 

Abstract  Constraining conditions and mechanisms of the early stages of exhumation from within 
subduction zones is challenging. Although pressure, temperature, and age can be inferred from the 
exhumed rock record, it is generally difficult to derive each of these parameters from any single rock, 
thus demanding assumptions that diverse data from multiple samples can be safely combined into a 
single pressure-temperature-time (P-T-t) path that might then be used to infer tectonic context and 
mechanisms of exhumation. Here, we present new thermobarometric and geochronologic information 
preserved in a single sample from Syros, Greece, to deduce the conditions and rates of the earliest phase 
of exhumation as a part of the well-preserved high-pressure metamorphic rocks of the Cycladic Blueschist 
Unit (CBU). The sample studied here is a garnet-bearing, quartz-mica schist that records two distinct 
metamorphic events. Results from thermodynamic models and quartz-in-garnet elastic geobarometry 
show that metamorphic garnet cores formed as P-T conditions evolved from ∼485°C and 2.2 GPa to 530°C 
and 2.0 GPa, and that garnet rims formed as conditions evolved from ∼560°C and 2.1 GPa to ∼550°C 
and 1.6 GPa. Sm-Nd geochronology on garnet cores and rims yields ages of 45.3 ± 1.0 and 40.5 ± 1.9 Ma, 
respectively, thus indicating a 4.8 ± 2.1 Myr growth span. Given the decompression path calculated based 
on garnet core and rim P-T estimates, we conclude that the distinct phases of garnet growth preserve 
evidence of the initial exhumation of portions of the CBU.

Plain Language Summary  Constraining the evolution of rocks formed at great depths 
(>60 km) and their subsequent returned to Earth's surface is a challenging endeavor, because information 
regarding the pressure, temperature, and timing of formation is typically elucidated through the study 
of multiple samples and thus through the comparison of different datasets. Here, we present pressure, 
temperature, and age data that were derived by analyzing garnet crystals within a single sample from a 
well-known paleo-subduction zone locate in Syros, Greece. Our results show that the sample records two 
metamorphic events that occurred as a result of initial ascent to the surface from depths of ∼66 to 48 km.
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isothermal decompression occurs (e.g., Ring et al., 2020; Skelton et al., 2019). However, the mechanisms of 
detachment from the subducting slab and rates at which initial exhumation proceeds are still poorly un-
derstood. Accordingly, here we develop a pressure-temperature-time (P-T-t) path that constrains the rate of 
exhumation of the CBU during the first ∼25 km of ascent.

The mechanisms associated with exhumation, and particularly the onset of exhumation, are debated, and a 
variety of tools have been employed in order to better understand the ways that subducted lithologies are re-
turned to the surface. Many exhumation models have invoked channel flow mechanics, where either up-dip 
sediment flow forces the return of HP lithologies (Cloos, 1982) or serpentinization of ultramafic lithologies 
along the slab/mantle interface forms a weak, low-density channel where flow can be induced (e.g., Gerya 
et al., 2002; Hermann et al., 2000). This ultimately allows blocks of metabasic material to be transported 
upward. Previous studies have suggested that the size and location of these blocks influences the exhuma-
tion path of eclogitic material and that juxtaposition of blocks containing metamorphic assemblages with 
different P-T-t histories is possible (Cloos, 1982; Federico et al.,  2007; Neilsen & Marschall, 2017). Field 
evidence for this process has been documented in the form of “mélange terrains” in which eclogitic blocks 
within a serpentinitic (or chloritic) matrix are interpreted to represent zones of intense physical and chemi-
cal mixing along the slab/mantle interface (e.g., Bebout, 2007; Bebout & Barton, 2002; Cloos & Shreve, 1988; 
Marschall & Schumacher, 2012; Penniston-Dorland et al., 2010; Spandler et al., 2008).

Numerical simulations that characterize channel flow using parameters, such as convergence rate, degree 
of hydration, rheologic properties, temperature, and duration of the process have provided insights into 
the evolution of channel flow. These studies have shown that a minimum serpentine channel thickness is 
required to produce density contrasts between peridotite and serpentinite sufficiently large to drive ascent 
(Schwartz et al., 2001). Ultimately, forced channel flow can contribute to the development of a low viscosity 
zone along the slab/mantle interface (e.g., Herbert et al., 2009) and aid the buoyancy forces driving exhuma-
tion (e.g., Gerya et al., 2002). Such flow is predicted to result in multiple episodes of burial and exhumation, 
in which a given block can move vertically multiple times before its final exhumation to the surface. In 
some cases, metamorphic mineral assemblages may be preserved as a complex and perhaps cryptic P-T-t 
paths that could have either clockwise or counter clockwise components (e.g., Gerya et al., 2002).

Recent studies of high-pressure rocks in the Aegean (e.g., Laurent et al., 2016; Roche et al., 2016) use a com-
bination of geochronological and structural constraints to suggest that synorogenic deformation caused lo-
calized zones of extension, particularly along shear bands, resulting in exhumation. In some cases, rollback 
of the subducting slab is cited as an additional driving force, where moderate upward flow in the subduc-
tion channel (Brun & Faccenna, 2008; Husson et al., 2009) combines with localized regions of extensional 
faulting to bring deeply (>60 km) subducted material to the surface. It has been suggested that the onset of 
slab rollback in the Hellenides (e.g., Schellart, 2004; Royden & Husson, 2006) initiated decoupling of the 
CBU at ∼50 Ma, with blueschist metamorphism of the CBU at ∼45 Ma during synorogenic exhumation 
(e.g., Laurent et al., 2018; Lister & Forster, 2016; Roche et al., 2016), highlighting the fact that multiple ex-
humation mechanisms likely operate in tandem in order to exhume subducted lithologies. This is particu-
larly important to consider on Syros, because the upper unit of the CBU, well exposed in N. Syros, exhibits 
mélange characteristics while the lower unit of the CBU, well exposed in S. Syros, contains more cohesive 
volcano-sedimentary sequences (Keiter et al., 2011), suggesting that different exhumation mechanisms are 
in operation.

The pressure-temperature-time (P-T-t) paths experienced by exhumed metamorphic rocks can place im-
portant constraints on subduction zone processes. Path geometry and calculated heating, burial, and exhu-
mation rates can be coupled with field observations and structural data to infer tectonic mechanisms (e.g., 
Maruyama et al., 1996). In recent years, techniques for determining the P-T-t histories of metamorphic rocks 
have become increasingly sophisticated and include a wide range of chemical, isotopic and elastic mineral 
barometers, thermometers, and chronometers. These have contributed to a growing set of important studies 
of the high-pressure terranes exposed in the Cycladic islands (e.g., Ashley et al., 2014; Brocker et al., 1993; 
Keiter et al., 2004; Laurent et al., 2016; Philippon et al., 2013; Trotet, Jolivet, & Vidal, 2001; Trotet, Vidal & 
Jolivet, 2001). While many of these studies constrain the thermal, barometric, or temporal evolution of sub-
ducted lithologies of the Aegean plate, combined interpretations commonly require assumptions regarding 
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the relationships among multiple samples, while examples giving ranges of pressure, temperature, and age 
within the same sample are rare.

Here, we present new temperature, pressure, and age data preserved in zoned metamorphic garnets from 
a single sample from Syros, Greece and discuss likely exhumation mechanisms for the CBU. We use ther-
modynamic modeling to estimate the P-T conditions of two garnet growth events, testing and affirming 
assumptions of thermodynamic equilibration by utilizing quartz-in-garnet elastic geobarometry as an inde-
pendent barometer. The P-T results are coupled with high precision Sm-Nd garnet geochronology on garnet 
core and rim portions to establish the duration of garnet growth.

2.  Geological Setting
The modern Hellenic subduction zone is located in the Aegean Sea south of Crete, and represents the 
continued subduction of the Adriatic and later African plate beneath the Aegean plate that started in the 
Mesozoic (Figure 1). The resulting orogenic belt, the Hellenides, is comprised of several distinctive tectonic 
subunits that were progressively subducted from 145 to 50 Ma (Krohe & Mposkos, 2002; Lips et al., 1998; 
Mposkos & Kostopoulos, 2001; Ring & Layer, 2003; Sherlock et al., 1999; von Quadt et al., 2005). Most stud-
ies agree that at least three oceanic domains, the Vardar-Izmir Oceanic Unit, the Pindos Oceanic Unit, and 
the East Mediterranean Ocean, were subducted over the course of ∼80 Myr.

In this study, we examine a sample from the Pindos Oceanic Unit, which is a heterogeneous domain of con-
tinental and oceanic lithologies. While Tremblay et al. (2015) demonstrated that there is not much evidence 
for oceanic crust in the Pindos domain, we use the term in the colloquialism of studies such as Ring and 

GORCE ET AL.

10.1029/2021GC009716

3 of 24

Figure 1.  Left: Simplified geologic map of the Aegean region, modified after Ring et al. (2010). The extent of the 
Pindos Oceanic unit, which includes the Cycladic Blueschist Unit, is shaded in blue and Syros, Greece is located in the 
black box. Right: Simplified geologic map of Syros (modified after Behr et al., 2018; Keiter et al., 2004), with the location 
sample 14HSY-35E indicated by the pink star (GPS: 37°23′08.0″ and 024°56′53.7″).
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Layer (2003). The upper and lower parts of the Pindos Oceanic unit include the Selcuk Mélange and the 
CBU, respectively (Okrusch & Broecker, 1990). The CBU is interpreted to be the most deeply exhumed seg-
ment of the Hellenides, which records widespread eclogite-facies conditions that are typically attributed to 
equilibration at 60 km depth or more. The CBU is comprised of graphite-bearing schists and orthogneisses 
as well as graphite-bearing marbles, metapelites, and metavolcanics (Durr et al., 1978; Ring et al., 2010; Ring 
& Layer, 2003). Well-preserved remnants of the CBU are found on the island of Syros, Greece (Figure 1).

On Syros, the CBU is represented by a series of stacked tectonic nappes, with higher metamorphic grade 
rocks thrust onto lower grade material (Trotet, Vidal, & Jolivet, 2001). The CBU is subdivided into two ma-
jor units: (a) volcanoclastic material separated by the Kastri basal fault (Philippon et al., 2011; Schumacher 
et al., 2008) and (b) the Kampos oceanic series, which crops out as a mélange sequence in which metabasic 
and metavolcanic units are surrounded by a matrix of serpentinite. Previous studies have speculated that 
the Kampos series represents the slab-mantle interface (e.g., Breeding et al., 2004), though recent geochem-
ical evidence suggests that the serpentinites form in a hyper-extended margin setting instead (Cooperdock 
et al., 2018; Gyomlai et al., 2021). Lithologies from the Syros Kampos unit have long been the focus of sub-
duction zone studies because both eclogite-blueschist metamorphism and variable greenschist overprinting 
(e.g., Ridley, 1984) are well preserved. The Vari Unit is tectonically juxtaposed to the CBU in the southeast 
portion of the island. Most studies concluded that it represents the hanging wall of a low angle detachment 
(e.g., Keiter et al., 2004; Laurent et al., 2016; Soukis & Stockli, 2013), although Philippon et al. (2011) sug-
gested that the Vari unit represents basement material that was thrust on to younger lithologies. Almost all 
observed lithologies on Syros are strongly deformed (e.g., Keiter et al., 2011: Rosenbaum et al., 2002; Schu-
macher et al., 2008) and show metamorphic foliation and penetrative linear fabric. The timing of deforma-
tion with respect to metamorphism has been the subject of many structural studies and interpretations in-
clude syn-metamorphic (e.g., Rosenbaum et al., 2002; Trotet, Vidal, & Jolivet, 2001) and post-metamorphic 
deformation (e.g., Keiter et al., 2004).

3.  Timing and Metamorphism of the CBU on Syros
Evidence for blueschist and eclogite-grade metamorphism on Syros can be found in exceptionally well-pre-
served high-pressure minerals, such as aragonite (Brady et al., 2004), lawsonite (Keiter et al., 2004), and 
glaucophane (Dixon et al., 1987; Schumacher et al., 2008). Although most well-preserved, high-pressure 
lithologies are reported from the northern Kampos unit on Syros, high-pressure mineral assemblages can 
be found throughout the island (Behr et al., 2018; Kotowski & Behr, 2019; Laurent et al., 2016; Schumacher 
et al., 2008; Skelton et al., 2019; this study).

Ages for the Pindos Unit protolith range from Triassic to Eocene (e.g., Jones & Robertson, 1991; Okrusch 
& Broecker, 1990; Ring et al., 2010; Ring & Layer, 2003), with an age for a gabbroic protolith constrained 
by U-Pb zircon geochronology at 80–75 Ma (Keay, 1998) and by Lu-Hf zircon geochronology at 80 ± 12.4–
13.8  Ma (Tomaschek et  al.,  2003). Peak metamorphism is generally thought to have occurred between 
53 and 40 Ma. The older ages in this spectrum are constrained by Lu-Hf garnet ages in eclogites (Lagos 
et al., 2007) and U-Pb ages of zircons found as an inclusion in garnet that grew during prograde to peak 
metamorphism (Tomaschek et al., 2003), and are typically reported in samples collected from the mélange 
terrains predominately located in N. Syros. The younger ages in this spectrum are typically recorded in the 
lower, more cohesive volcano-sedimentary units found in S. Syros (Cliff et al., 2017; Laurent et al., 2016) and 
are constrained by the dating of white micas with the K-Ar, Ar-Ar, and Rb-Sr systems (Brocker et al., 2013; 
Lagos et al., 2007 and references herein; Maluski et al., 1987), though some studies report white mica ages 
as old as 53 Ma (e.g., Tomaschek et al., 2003).

Some of the recent geochronological studies have sought to derive a tectonic context for the CBU litholo-
gies on Syros by focusing on white mica age populations. For example, Cliff et al. (2017) analyzed a suite 
of phengitic (K-rich white mica) samples from primarily blueschist-facies lithologies on Syros and, using 
Rb-Sr dating techniques, reported ages of 53–46 Ma for the most northern HP/LT metamorphic belt (top of 
structural pile), and ages of 42–30 Ma in the southern portions of Syros They combined these results with 
extensional fabrics and concluded that blueschist-facies overprinting associated with extensional faulting 
must have taken place from 42 to 30 Ma. Similarly, conclusions were drawn by Lister and Forster (2016) 
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using an asymptotes and limits approach to Ar-Ar data (Forster & Lister, 2004). Other studies conclud-
ed that populations of white-mica age data represent different periods of blueschist- and greenschist-fa-
cies overprinting, and range in age from ∼45 to 20 Ma (Forster & Lister, 2005; Uunk et al., 2018). Skelton 
et  al.  (2019), who reported ages of 38–43  Ma for units located in S. Syros near Fabrika, concluded that 
the CBU is a subduction-related nappe stack that is comprised of at least three metamorphic belts. The 
spread in mica ages is typically interpreted to reflect a combination of cooling through the closure temper-
atures of these systems, excess Ar, and/or the presence of multiple generations of mica, all of which have 
been invoked to question whether mica ages preserve peak metamorphism, or some other process (Lagos 
et al., 2007; Laurent et al., 2018; Putlitz et al., 2005). Similarly metamorphic ages of ∼50 Ma are reported for 
the nearby island of Sifnos, based on high precision Sm-Nd garnet geochronology (Dragovic et al., 2015), 
and the metamorphic histories of Sifnos and Syros are frequently compared (e.g., Laurent et al., 2018; Schu-
macher et al., 2008; Tomaschek et al., 2003; Trotet, Jolivet, & Vidal, 2001; Trotet, Vidal, & Jolivet, 2001).

Using a variety of geothermobarometers, previous studies have reported a range of pressures (1.7–2.2 GPa) 
and temperatures (500°C–550°C) for peak metamorphism of the CBU (e.g., Ashley et al., 2014; Dixon, 1976; 
Dragovic et al., 2012; Keiter et al., 2004; Lister & Raouzaios, 1996; Philippon et al., 2013; Ring et al., 2010; 
Schumacher et al., 2008; Trotet, Vidal, & Jolivet, 2001). For example, Dixon (1976) placed lower limits of peak 
metamorphism at 1.4 GPa and 450°C–500°C based on assemblages of jadeite + quartz and zoisite + par-
agonite + quartz + lawsonite and the absence of lawsonite + jadeite. Ridley (1984) placed upper limits at 
2.0 GPa and 575°C based on paragonite stability. More recently, studies have constrained P and T of rocks 
from Syros and Sifnos using the coexistence of glaucophane + aragonite (Schumacher et al., 2008), mul-
ti-equilibria thermobarometry using TWEEQ (Berman, 1991; Trotet, Vidal, & Jolivet, 2001), and thermody-
namic modeling of mineral assemblages and compositions (e.g., Dragovic et al., 2012, 2015). In addition to 
dating peak metamorphism on Sifnos, Dragovic et al. (2012, 2015) constrained the rate of garnet growth, 
implying heating rates of 22.3 ± 8.0°C/Myr over the integrated growth history of garnet, and >75°C/Myr in 
the final stages of prograde metamorphism.

Additionally, substantial research has focused on constraining overprinting greenschist metamorphism in 
the CBU. On Syros, parts of the CBU are overprinted with greenschist mineral assemblages that can either 
be associated with variable extents of rehydration of subducted material during near-isothermal decom-
pression (Bröcker et al., 2013; Brooks et al., 2019; Marschall et al., 2006; Trotet, Vidal, & Jolivet, 2001), or 
related to deformation during exhumation (e.g., Keiter et al., 2004; Ring & Layer, 2003; Soukis & Stöck-
li, 2013). Temperatures and pressures for greenschist overprinting are estimated to be between 350°C–450°C 
and 0.6–1.3 GPa, as determined by the stability of mineral assemblages including chlorite, epidote, glau-
cophane, and lawsonite pseudomporphs (Breeding et al., 2004; Laurent et al., 2018; Marschall et al., 2006; 
Matthews & Schliestedt, 1984; Skelton et al., 2019; Trotet, Vidal, & Jolivet, 2001). An additional pulse of 
retrograde metamorphism has been dated at 25–21 Ma (Bröcker et al., 2013) and a final sub-greenschist 
overprinting event occurred around 12–8 Ma (Ring & Layer, 2003; Soukis & Stöckli, 2013).

While many studies have rigorously constrained portions of the P-T-t path of the CBU, the rates and condi-
tions of the early stages of exhumation of the CBU remain poorly understood. Here, we focus on elucidating 
the timing and conditions of the final phases of prograde blueschist- and eclogite-facies metamorphism, 
and the rate and P-T path during the early stages of exhumation. This information provides important con-
straints on the timescales and processes associated with the detachment and initial exhumation phase that 
preceded the previously constrained greenschist-facies overprinting conditions.

4.  Sample Description
Sample 14HSY-35E is a garnet-bearing quartz-mica schist which also contains amphibole, clinopyroxene, 
carbonate, epidote, and titanite (Figure  2). Micro-inclusions of omphacitic clinopyroxene are found in 
quartz (Figure 2b), which is itself commonly included in or intergrown with glaucophane. These textural 
relationships suggest that the HP-LT metamorphic mineral assemblage in the observed thin section con-
tained garnet, quartz, clinopyroxene, phengite, and rutile. Phengite and finely intermixed quartz bands 
define the primary foliation (Figure 2c). Glaucophane needles and paragonite are sub-parallel to each other 
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and oriented in the primary foliation plane, but clearly overgrow phengite and quartz (Figures 2b and 2d). 
Calcite overgrows glaucophane and epidote (Figures 2e and 2f).

Porphyroblastic garnets are abundant and all contain inclusion-rich cores and inclusion-poor rims (Fig-
ure 2a). Core inclusion assemblages consists of quartz, rutile, clinopyroxene, and epidote. Garnet crystal 
rims contain sparse, small (∼10–15 μm) quartz, epidote, and apatite inclusions. On average, the garnet rims 
are ∼500 μm thick and noticeably paler orange in color compared to the garnet cores. The paler, inclusion 
poor rims correspond with elevated concentrations of Mn (Figure 3). Overall, garnet crystals are relatively 
homogeneous in size (∼4–7 mm diameter).

5.  Methodology
5.1.  Chemical Analyses

A representative portion of the sample was crushed and major-element chemistry was determined via X-ray 
fluorescence (XRF) at Franklin and Marshall College, with maximum Fe3+/Fe2+ determined via titration 
(Table 1). An alternate bulk rock composition was determined from point-counted mineral abundances and 
average mineral compositions determined via electron microprobe analysis (EMPA). This composition was 
used to assess possible hand-specimen-scale compositional heterogeneities and to provide a more accurate 
composition for the specific area of the petrographic observations.

Minerals were analyzed at Virginia Tech using a Cameca SX-50 electron microprobe with a 20 nA beam 
current and 15 kV accelerating voltage. Representative compositions of pyroxene, quartz, mica, amphibole, 
epidote, and titanite are shown in Table 2. Wavelength dispersive spectrometry maps and spot analysis trav-
erses through garnet porphyroblasts were collected to reveal major element zoning (Figure 3).

5.2.  Phase Equilibrium Calculations

We constructed isochemical phase diagrams based on the compositions determined by XRF and point count 
analyses, calculating thermodynamically stable mineral assemblages and their compositions over a range 
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Figure 2.  Photomicrographs of sample 14HSY-35E. (a) Thin section image in cross-polarized light. (b) Omphacite inclusions in quartz, which is overgrown 
by later glaucophane. (c) Phengitic mica defining the primary foliation. (d) Paragonite overgrowing quartz and phengitic mica. (e) Late carbonate phase 
overgrowing glaucophane. (f) Late carbonate phase overgrowing epidote.
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of P-T conditions (Figure 4). Calculations in the chemical system K2O-MnO-MgO-CaO-Al2O3-FeO-Fe2O3-
SiO2-Na2O-TiO2 utilized the program Perple_X (Connolly, 2005) and the ds5.5 (2004) update of the Holland 
and Powell (1998) thermodynamic data set. Solution models for complex phases are listed in Table 3. Sat-
uration of a H2O-CO2 fluid was assumed ( H O2

0.999X  ), and the Compensated Redlich-Kwong model of 
Holland and Powell (1991) was used. A more thorough discussion on fluids during metamorphism can be 
found in Section 7.3.

5.3.  Fractionating the Bulk Rock Composition

Refractory phases, such as garnet can fractionate elements from the system as they grow, which modifies 
the residual reactive bulk rock composition as the system continues to evolve (i.e., Marmo et al., 2002; Tracy 
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Figure 3.  Left: Qualitative Mn map collected via WDS mapping of a garnet porphyroblast in sample 14HSY-35E. The area shaded in yellow represents the 
volume of garnet sampled for “core” age geochronology. The area shaded in blue represents the volume of garnet used for “rim” age analyses. The area shaded 
in black represents the volume of garnet lost during the micro-drilling process (∼800 μm trench). The points labeled as IC, OC, IR, and OR (inner core, outer 
core, inner rim, outer rim, respectively), are locations and compositions along a quantitative electron microprobe analysis (EMPA) transect (white dashed line) 
used for calculating P-T evolution during garnet growth. Right: Quantitative EMPA analyses of garnet, expressed as a mole fraction of end-members. Points that 
fall within the yellow region correlate with garnet core compositions, points that fall within the blue regions correlate with garnet rim composition, and points 
that fall within the shaded gray region would have been lost in the micro-drill trench. Black dashed lines labeled as IC, OR, IR, and OR correlated to labeled 
white stars in the left image.

Reactive composition SiO2 TiO2 Al2O3 MgO CaO MnO FeO Fe2O3 Na2O K2O

XRF 64.25 0.68 15.38 2.48 4.97 0.15 6.77 1.06 1.82 2.43

Point count 64.89 1.15 15.60 2.68 4.12 0.08 6.14 0.68 2.38 2.28

−50 vol % gt 66.08 0.73 14.97 2.56 4.58 0.12 5.30 1.13 1.94 2.60

−52 vol % gt 66.11 0.73 14.96 2.56 4.57 0.12 5.28 1.13 1.94 2.60

−99 vol % gt 68.03 0.77 14.53 2.64 4.16 0.09 3.74 1.20 2.07 2.77

Note. The reactive bulk rock composition labeled as “point count” was used to confirm that the XRF analysis was 
representative of the observed mineral assemblage in thin section.
XRF, X-ray fluorescence.

Table 1 
Bulk Compositional Data Used in Thermodynamic Models
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et al., 1976). To account for this, we progressively modified the bulk rock 
composition to simulate increasing garnet abundance and component 
sequestration in garnet. Mass was “subtracted out” from the bulk rock 
composition based on the composition of garnet determined via EMPA 
(Figure 3) and the abundance of garnet in the sample. Four critical points 
were identified in the zoning profiles (the compositions of two garnet 
crystals at these points are given in Table 4):

1.	 �Inner Core (IC) = the geometric and chemical core (center) of crys-
tals, assumed to represent the beginning of garnet growth if crystals 
grew uniformly in all directions and are sectioned through the core 
in the third dimension.

2.	 �Outer Core (OC) = the edge of the inclusion-rich zone (coinciding 
with a minimum in the Mn concentration along traverses), assumed 
to represent the end of the first growth episode (50% of garnet growth)

3.	 �Inner Rim (IR) = the beginning of the inclusion-free rim (coinciding 
with a stepwise increase in Mn content), assumed to represent the 
re-initiation of garnet growth (52% of garnet growth)

4.	 �Outer Rim (OR) = the outer edge of the garnet crystal, assumed to 
represent the end of garnet growth (99% of garnet growth)

Bulk rock compositions were calculated for each of these domains (Table 2), with isochemical phase dia-
grams calculated for each (Figure 4).

5.4.  Sm-Nd Garnet Geochronology

Garnets were plucked whole from a rough crush (0.5–1 cm), cut adjacently to the material used in XRF 
analyses of the bulk rock, and were selected based on size (only crystals >4 mm in diameter were used to 
avoid geochronology results that would be bias toward rim ages). Crystals were mounted on carbon blocks 
and cut with a diamond microsaw to produce 2-mm-thick garnet wafers. Distinct cores and rims could be 
identified with the naked eye, as the rim is noticeably paler in color than the core. On this basis, 21 wafered 
garnet crystals were micro-drilled to separate core and rim domains using methods described in Pollington 
and Baxter (2011). Garnet cores and rims from all 21 samples were lumped together to have enough materi-
al for bulk core and bulk rim Sm-Nd isotopic analysis. Note that we did not attempt to differentiate between 
the inner/outer cores or inner/outer rims observed in the microprobe image (Figure 3), due to the small size 
of the crystals (4–7 mm diameter) compared to sample lost in the micro-drill trench (∼800 μm width). Thus, 
the resolution of our P-T constraints, which includes calculated P-T conditions for the inner core, outer core, 
inner rim, and outer rim separately (see Section 6.1), is finer than that of the age resolution, which is limited 
to a bulk core (inner plus outer) and bulk rim (inner plus outer) age. Microdrill trenches were placed such 
that only outer core material woud be lost to the drilling (Figure 3) so our core age is dominated by the inner 
core. Garnet cores and rims, bulk rock samples, and samples of the matrix (without garnet) were crushed 
and sieved (100–200 mesh). Crushed garnet was passed through a Frantz magnetic separator and manually 
hand-picked in an initial attempt to remove all phases that were not garnet.

Once crushed to a grain size of 75–100 μm, inclusion phases in garnet were removed using partial disso-
lution techniques from Starr et al. (2020). Several fine powders were also treated in order to preferentially 
remove inclusion phases. All samples, including treated and untreated garnet crushes and powders, as 
well as rock powders, were fully dissolved. Sm and Nd isotopic ratios were analyzed on an Isotopx Phoenix 
thermal ionization mass spectrometer at the Center for Isotope Geochemistry at Boston College following 
the methods of Harvey and Baxter (2009). Nd isotopes were loaded with 2 μL of 2N nitric acid onto Re fil-
aments with 2 μL of tantalum oxide (Ta2O5) activator slurry added to facilitate greater sample ionization. 
Samples were run in multi-dynamic mode as the oxide species (NdO+). Sm was loaded with 2 μL of 2N 
nitric onto Ta filaments and run in static mode as metal species (Sm+). Instrumental mass fractionation was 
normalized to 146Nd/144Nd = 0.7219 and to 149Sm/152Sm = 0.516860 using an exponential mass fractionation 
correction. Over the period of this study, repeat analysis of an in-house 4 ng Ames Nd standard yielded 
0.5121530 ± 0.0000085 ppm 2σ (n = 11) and 147Sm/144Nd external reproducibility is 0.054%, based on repeat 
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Pyroxene Amphibole K-mica Na-mica Epidote Titanite

SiO2 58.63 58.51 54.78 49.65 40.10 31.95

TiO2 0.03 0.01 0.24 0.07 0.11 34.86

Al2O3 12.06 12.08 27.21 41.46 28.61 2.64

MgO 6.01 8.50 3.68 0.13 0.00 0.00

CaO 11.46 0.66 0.01 0.15 24.14 30.30

MnO 0.03 0.03 0.00 0.01 0.03 0.02

FeO 7.17 12.98 3.00 0.29 6.99 0.20

Na2O 7.64 7.20 0.38 7.52 0.02 0.02

K2O 0.01 0.02 10.71 0.72 0.00 0.00

Note. Analyses for garnet compositions are presented in Table 4.

Table 2 
Characteristic Mineral Compositions for Major and Minor Phases Present 
in Sample 14HSY-35E Measured via EMPA
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analysis of a gravimetrically calibrated mixed Sm-Nd solution. In isochron error propagation, the larger 
(poorer) of the external precision reported above or the internal analytical precision (in Table 5) was used 
(Baxter et al., 2017). Finally, three-column blanks run alongside samples ranged from 3 to 16 pg of Nd, and 
were thus deemed negligible.

5.5.  Quartz in Garnet Geobarometry

We used elastic barometry of quartz inclusions in garnet to determine the entrapment pressure of quartz 
where it was overgrown by garnet, in order to test and verify assumptions made during phase equilib-
ria modeling. Because Raman peak positions of α-quartz vary with pressure and temperature (Schmidt & 
Ziemann, 2000), and host minerals, such as garnet are sufficiently rigid to maintain high inclusion pres-
sures following exhumation (Enami et al., 2007), numerous studies have used peak positions of Raman 
bands to determine residual inclusion pressures of quartz in garnet. Then, the entrapment pressure can be 
estimated using appropriate equation of state (EoS; e.g., Angel et al., 2014; Ashley et al., 2014; Kohn, 2014; 
Kouketsu et al., 2014; Spear et al., 2014).

To determine the residual inclusion pressure on quartz inclusions in garnet, we measured quartz Raman 
spectra with a JY Horiba LabRam HR800 spectrometer at the Department of Geosciences at Virginia Tech. 
Spectra were collected using a 514.57 nm argon laser with a 800 mm focal length spectrometer (1,800 lines/
mm grating). Thirty-two quartz inclusions from two garnet crystals in one thick section (60 μm thick) were 
analyzed (16 analyses per garnet), using a confocal microscope with a 400 μm hole, 150 μm slit, and 100X 
objective lens. Analyses were collected over a 30 s accumulation time with three iterations. A spectral range 
of 100–800 cm−1 was used in order to measure the 464, 206, and 128 cm−1 quartz peaks. Three argon plasma 
lines (520.30, 266.29, and 116.04 cm−1) and a Herkimer diamond standard were measured for calibration 
purposes. Raman lines were fitted with Peakfit v4.12 using the Pearson IV model that allows variable peak 
asymmetry, following procedures described by Schmidt and Ziemann (2000). The Pearson IV model is simi-
lar to the Voigt Gaussian/Lorentz area model used by Cisneros et al. (2020) to fit peaks of quartz inclusions 
in epidote. A summary of these data can be found in the supporting information. Quartz inclusions were 
selected based on size (10–20 μm), their relationship with fractures, thick section surfaces and other inclu-
sions, and their distribution throughout the host garnet. We determine residual inclusion pressures using 
the hydrostatic experiments from Schmidt and Ziemann  (2000) and then used Ashley et  al.  (2014) and 
Kohn (2014) fits to data. Typical inferred pressure precision was between ±0.11 and 0.15 kbars; determined 
by propagating the error of the peak positions of standards (±0.1 cm−1 in the reproducibility of the 464 cm−1 
quartz standard peak), peak positions of unknowns, and instrument uncertainty.

Entrapment pressures were calculated with the software package EosFit-Pinc (Angel et al., 2017), an add-on 
for the EosFit7 software package (Angel et al., 2014). The EoS for almandine was from Milani et al. (2015) 
and the EoS for quartz is from Angel et al. (2017), and includes elastic softening in both alpha and beta 
quartz and a curved alpha-beta phase boundary. We used the composition of garnet adjacent to inclusions 
in order to constrain temperatures needed for determining entrapment pressures. We assumed that tem-
perature increased linearly from 485°C to 530°C during the first stage of garnet growth (inner core to out-
er core) and that temperature decreased linearly from 560°C to 550°C during the second stage of garnet 
growth (inner rim to outer rim). A summary of quartz and garnet thermodynamic and elastic properties use 
can be found in the supporting information.

The success of inclusion-host barometry relies on the assumption that the host phase behaves rigidly, and 
that both inclusion and host phase relax elastically during decompression. To behave as a rigid body, the 
host must have a high shear modulus and act as an infinite medium (Ashley et al., 2014; Enami et al., 2007; 
Kohn, 2014; Zhang, 1998; Zhong et al., 2020). Though garnet has a high shear modulus, the assumption 
that it acts as an infinite medium does not always hold true (Zhang, 1998), especially where garnet crystals 
contain a large number of relatively closely spaced inclusions (as is the case with the garnet cores examined 
here). To account for this assumption, we carefully examined the garnet surrounding each inclusion (within 
an area 3X the radius of the inclusion radius; e.g., Zhang, 1998; Zhong et al., 2020) at 40X and 100X optical 
magnification, excluding all inclusions for which this region contained less than 20% nongarnet phases (i.e., 
other inclusions).
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6.  Results
6.1.  P-T Modeling

Electron microprobe analyses reveal a distinct change in garnet composition that coincides with the bound-
ary between the inclusion-rich cores and inclusion-free rims described in Section 4 (Figure 3). This bound-
ary separates two discrete garnet growth events, and we apply thermodynamic models to constrain the P-T 
conditions associated with these two growth episodes.

Garnet compositions suggest that the mineral assemblage associated with initial growth included glau-
cophane + dolomite + lawsonite + omphacite + quartz + white mica + rutile, and occurred at ∼485°C and 
2.2 GPa (inner core, Figure 4a, ±50°C and ±0.15 GPa, as shown in the figure and applicable to all thermo-
dynamic pressures and temperatures described below. Uncertainties taken from Palin et al. (2016)). This is 
consistent with the observed inclusion assemblage, other than the presence of epidote inclusions, which we 
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Figure 4.  Isochemical phase diagrams constructed to estimate equilibration pressures and temperatures for different 
stages of garnet growth: Inner core (IC), outer core (OC), inner rim (IR), and outer rim (OR), respectively. The bulk 
rock X-ray fluorescence composition was input to represent the reactive bulk rock composition at the beginning of 
garnet growth. For each progressive model, the volumetric contribution of pre-existing garnet was subtracted from the 
reactive bulk rock composition (see Table 1 for values). Isopleth colors represent concentrations of XMn (pink) XFe (red), 
XCa (yellow), and XMg (blue) measured in garnet. Error ellipses (red) span ±50°C and ±0.15 GPa, as determined from 
Palin et al. (2016) and are superimposed onto the succeeding panel.
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suggest resulted from lawsonite breakdown during decompression and therefore do not represent primary 
inclusion phases. Garnet is inferred to have continued to grow during decompression and heating, and the 
outer core grew at ∼530°C and ∼2.0 GPa (outer core, Figure 4b).

Calculated phase equilibria for a bulk composition corrected for the removal of mass during formation of 
garnet crystal cores (i.e., the zone between the inner core and outer core in Figure 3) suggest that the inner 
part of the garnet rim (IR in Figure 3) grew at ∼2.1 GPa and 560°C (Inner rim, Figure 4c), in the presence of 
paragonite, dolomite, omphacite, rutile, and quartz. Garnet crystal rims contain too few inclusions to con-
firm this assemblage, with thermodynamic models discussed in detail below (Figure 5) showing the modal 
abundance of glaucophane reduced from approximate 20 vol% during garnet core growth to 15 vol% during 
outer rim growth and the modal abundance of lawsonite reduced to zero over the same interval.

Results presented in Figure 4 is based on the bulk-rock composition of sample 14HSY-35E, from which we 
manually calculated modified bulk compositions to simulate sequestration of elements by garnet, using gar-
net abundances estimated from thin section observations (Table 2). In an alternative approach, we calculated 
phase equilibria at 1°C increments along a P-T path derived by joining the equilibration conditions determined 
for the garnet inner core, outer core, inner rim, and outer rim (i.e., the four panels of Figure 4). In this case, 
the bulk rock composition of sample 14HSY-35E served as an initial input, with progressive modification of 
this composition after each P-T increment at which garnet and/or fluid was calculated to be stable. The min-
eralogy that is predicted to form as the system evolves is shown in Figure 5. Results are consistent with garnet 
core formation between 485°C, 2.2 GPa and 530°C, 2.0 GPa. A second phase of growth to produce the garnet 
rims occurs between 560°C, 2.1 GPa and 550°C, 1.6 GPa. Results also confirm that garnet was likely stable be-

low 485°C and 2.2 GPa, implying that overstepping of the garnet-forming 
reaction may have played a role in the first stage of garnet growth, as pre-
viously inferred for other CBU lithologies (Castro & Spear, 2017; Dragovic 
et al., 2012). For most minerals, model results and observed abundances 
agree within 1–2 wt% after the growth of the outer garnet rim (Table 6). 
The two main discrepancies between predictions and observations, that is, 
the over-estimation of epidote and mica abundances and underestimation 
of dolomite abundance by the model, are explored in greater detail in the 
discussion. Given the good agreement between calculated mineral evolu-
tion and thin section observations, we suggest that equilibrium was main-
tained during most of the inferred history of formation of 14HSY-35E. This 
interpretation is examined further below with inclusion-host barometry.
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Mineral Solution model Source

Cpx Omph (GHP2) Green et al. (2007) and Diener and Powell (2012)

Opx Opx (HP) Holland and Powell (1998)

Epidote Ep (HP) Holland and Powell (1998)

Garnet Gt (WPPH) White et al. (2005)

Feldspar Feldspar Fuhrman and Lindsey (1988)

Chlorite Chl (HP) Holland and Powell (1998)

Chloritoid Ctd (HP) Holland and Powell (1998)

Titanite Sp (WPC) White et al. (2002)

Amphibole cAmph (DP2) Deiner et al. (2007) and Deiner et al. (2008)

Ilmenite IlGkPy

Mica Mica (CHA) Coggon and Holland (2002) and Auzanneau et al. (2009)

Biotite Bio (HP) Holland and Powell (1998)

Carbonate M (HP) and oCcM (HP) Holland and Powell (1998)

Table 3 
Solution Models Used for End-Member Mixing in Thermodynamic Models

Garnet 1 Garnet 2

XFe XMn XMg XCa XFe XMn XMg XCa

C1 0.731 0.013 0.043 0.213 0.733 0.029 0.028 0.210

R1 0.710 0.008 0.044 0.238 0.710 0.007 0.046 0.237

C2 0.660 0.018 0.058 0.265 0.651 0.018 0.048 0.283

R2 0.621 0.009 0.057 0.313 0.637 0.007 0.050 0.306

Table 4 
Characteristic of Major 2+ Cation Concentrations in Garnet Along With 
Critical Points Described in Text and Illustrated in Figure 3
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6.2.  Quartz in Garnet Geobarometry

Calculated entrapment pressures of analyzed quartz inclusions in two selected garnet crystals (Figure 6) 
are in the range 0.7–2.1 GPa, with most analyses falling between 1.7 and 1.9 GPa. Due to the high inclusion 
density in the garnet cores, some of the analyzed inclusions did not meet the 2–3X radial distance crite-
ria and may be overpressured. However, results are generally within uncertainty of pressures calculated 
by thermodynamic models, as indicated by the overlapping fields associated with geologic uncertainty in 
thermodynamic modeling (±0.15 GPa, Palin et al., 2016), and with the uncertainty associated with geoba-
rometry (±0.2 GPa, Bonazzi et al., 2019; ∼0.1–0.2 GPa, Thomas & Spear, 2018). We recognize that one could 
arguably fit either an isobaric or decompression pressure profile through the quartz inclusion barometry 
data (Figure 6). However, similar metamorphic pressures to those determined via thermodynamic mod-
eling were calculated for samples from Fabrika (3 km from our sample site) by Skelton et al. (2019), and 
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Figure 5.  Calculated mineralogic evolution of a rock having the composition of sample 14HSY-35E along the P-T path 
representing complete formation of garnet from inner core to outer rim. The beginning of the path is the P-T formation 
condition of the inner core (IC), with the P-T conditions of outer core (OC), inner rim (IR), and the outer rim (OR) also 
shown. The stable mineral assemblage and abundances were calculated assuming that the XRF-determined bulk rock 
composition is appropriate for the inner core, with both garnet and aqueous fluid then removed at each successive P-T 
condition if they were stable (i.e., present) at the previous condition.

Samples
Sm147/
Nd144 SE (2σ) Nd143/Nd144 SE (2σ)

Sm 
(ppm) Nd (ppm)

Nd 
(ng)

Garnet core Aliquot 1 0.41749 0.00015 0.5126363 0.0000094 1.352 1.958 18

Aliquot 2 0.72333 0.00018 0.512735 0.000012 0.914 0.764 4.0

Dirty powder 0.14748 0.00057 0.5125682 0.0000058 2.568 10.33 92

Powder 1 1.7753 0.0080 0.513036 0.000028 0.741 0.252 3.7

Powder 2 1.9403 0.0088 0.513093 0.000014 0.733 0.228 5.4

Powder 3 2.01378 0.00033 0.513122 0.000026 0.646 0.194 3.9

Garnet rim Aliquot 1 0.046405 0.000038 0.5125412 0.0000084 0.526 6.854 29

Aliquot 2 0.87164 0.00010 0.5127552 0.0000076 0.292 0.202 6.1

Dirty powder 0.6322 0.0027 0.512708 0.000041 0.297 0.284 4.2

Powder 0.12095 0.000023 0.512551 0.000027 1.632 8.160 17

Bulk Whole rock 0.104468 0.000012 0.5125457 0.0000063 1.972 11.42 14

Matrix 0.101574 0.000017 0.5125469 0.0000061 2.835 16.89 22

Note. All garnet samples were cleaned using methods described in Starr et al. (2020) unless indicated (labeled “dirty”). 
“Aliquots” represent garnet crushed to 75–100  μm grain sizes and “powders” are fine (<75  μm grain size) garnet 
residues collected during the crushing process.

Table 5 
Isotopic Analyses From Garnet Core and Rim Populations, Determined via TIMS
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the reproducibility of calculated pressures of garnet growth suggest that 
inferences of crystal growth during decompression is justified.

The general overlap between results from thermodynamic modeling and 
those from quartz-in-garnet geobarometry provides confidence that these 
results reasonably describe the pressure evolution during garnet forma-
tion. However, several quartz inclusions preserve entrapment pressures 
that are significantly lower than suggested by both thermodynamic mod-
els and the majority of quartz inclusion barometry (by up to ∼0.5 GPa; 
Figure 6). Most notably, one inner core quartz inclusion in each garnet 
crystal (points A and C in Figure 6), one inner rim inclusion from Garnet 
1 (point B in Figure 6), and one outer core inclusion in Garnet 2 (point D 
in Figure 6), preserve lower pressures, outside the uncertainty bounds of 
the thermodynamic models.

Several possibilities may explain the outliers shown on Figure 6. Some of 
the quartz inclusions may be close to unrecognized cracks within the gar-
net host, resulting in lower confining pressures on the inclusions. This is 
especially applicable to inclusions located relatively close to the surface 
of the thick section. Proximity can also have an effect on the inclusion 

pressure. Accordingly, high magnification photomicrographs of the four “outlier inclusions” and four of the 
“consistent” inclusions are presented in Figure 7. In each case, the outlier inclusions appear to be in contact 
with or in close proximity to other quartz inclusions. In comparison, the high-pressure inclusions are more 
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Mineral Model Point count

White mica 23.4 27.6

Dolomite 1.5 4.8

Garnet 11 12

Glaucophane 15.6 14.3

Omphacite 7.5 7.3

Lawsonite 0 0

Quartz 31 27.7

Rutile 0.7 0

Epidote 9.3 3.2

Titanite 0 3

Note. Calculated mineral abundancies (model) were determined from 
Figure 5 at 1.6 GPa and 550°C.

Table 6 
Mineral Modal Abundances (Vol%) Determined for 14HSY-35E

Figure 6.  Entrapment pressures determined by quartz-in-garnet geobarometry for inclusions in two garnet porphyroblasts. Triangles in right and left panels 
represent calculated trapping pressures, color coded according to the chemical zones identified in the garnet images to the left, and plotted as a distance from 
the garnet core (center of crystal). The points labeled as (A–D) corresponds to a photomicrograph contained in Figure 7 demonstrating the spatial relationship 
of the inclusions. Uncertainty in inclusion entrapment pressures (±0.2 GPa) after Bonazzi et al. (2019). The dark red line is the pressure profile calculated for 
garnet growth in Figure 4, with a ±1.5 GPa uncertainty envelop (light red) based on results from Palin et al. (2016). The yellow box represents the approximate 
volume of garnet sampled for “core” age and the blue box represents the volume of garnet used for “rim” age. The gray box represents the volume of garnet lost 
during the micro-drilling process.
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isolated within the garnet host. A final possibility is that the geometry of the quartz inclusion itself affects 
the pressure recorded by the inclusion. This phenomenon has been experimentally observed by Bonazzi 
et al. (2019), who demonstrated that an anisotropic inclusion shape yields entrapment pressures that vary 
up to 1.4 GPa from known experimental conditions. On this basis, we consider the low pressures returned 
from these four outlier inclusions to not be representative of the P-T conditions of formation of the host gar-
net, and they are not considered further. After excluding these data, Raman pressures and thermodynamic 
modeling yield consistent results.

6.3.  Sm-Nd Garnet Geochronology

Ages calculated for garnet cores and rims are 45.3 ± 1.0 Ma (2σ; MSWD = 1.02, n = 7) and 40.5 ± 1.9 Ma 
(2σ; MSWD = 0.99, n = 5), respectively (Figure 8). A summary of isotopic values and associated uncer-
tainties can be found in Table 5. The magnitude and precision of Nd concentration, 147Sm/144Nd ratio, and 
143Nd/144Nd ratio is influenced by the extent to which REE-bearing inclusion phases were removed from 
the garnets during partial dissolution, as well as sample size and subsequent signal intensity during TIMS 
analysis.

The 7-point isochron (Figure  8) generated for the garnet core population includes 147Sm/144Nd and 
143Nd/144Nd values from the whole rock, several garnet core separates, and several garnet core fine powders. 
The whole-rock is included in the garnet core isochron because at the time of initial garnet growth, garnet 
crystals would be in isotopic equilibrium with the bulk rock, due to the fact that significant garnet growth 
has yet to fractionate the reactive bulk rock composition (Baxter et al., 2017). A 5-point isochron generated 
for the garnet rim population consists of 147Sm/144Nd and 143Nd/144Nd values from the bulk rock matrix 
(representing the reactive bulk rock composition at the time of rim growth), garnet rim separates, and 
garnet rim fine powders. Given the MSWD near 1.0 for both the core and rim ages, there is no evidence for 
heterogeneous garnet ages amongst the 21 garnet crystals lumped together for core and rim analysis outside 
reported age uncertainty. These ages represent the timing of garnet core and rim growth throughout this 
hand sample.
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Figure 7.  Outlier analyses: High magnification (40X) photomicrographs of the four “outlier analyses” from inclusion barometry results. These data met 
the filtration criteria (less than 20% nongarnet phases within 3-radii of the inclusion of interest), but yielded entrapment pressures that were lower than 
the majority of inclusion measurements. Each panel corresponds to a data point indicated in Figures 6a–6d. Consistent analyses: High magnification 
photomicrographs (40X) of four “consistent analyses” from inclusion barometry results. These data met the filtration criteria and yielded entrapment pressures 
that are representative of the majority of inclusion measurements and consistent with thermodynamic modeling results.
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7.  Discussion
7.1.  Did Garnet Grow Under Equilibrium Conditions?

Several studies (e.g., Spear, 2017; Spear et al., 2014; Wolfe & Spear, 2018) report that phase equilibria mod-
eling may not be an appropriate method to determine P-T conditions of metamorphism due to sporadic or 
persistent failures of rocks to achieve or maintain equilibrium. Evidence for such departures from equilib-
rium is indeed observed in the compositional zoning of garnet (Carlson et al., 2015) and is also inferred in 
other cases (e.g., Dragovic et al., 2012; Hoschek, 2013; Wolfe & Spear, 2018) in which garnet is predicted to 
have initially grown at P-T conditions well above the garnet isograd. If initial garnet growth substantially 
overstepped the equilibrium garnet-in conditions, alternate methods may be required to estimate the in-
itial garnet composition (Spear, 2017). Many studies have argued that such overstepping is necessary for 
crystal growth because the reaction affinity (macroscopic driving force of a reaction) for garnet nucleation 
is relatively high and thus requires a significant activation energy to overcome kinetic barriers (Carlson 
et al., 2015; Spear & Patterson, 2017).

Given this, it might be argued that quartz-in-garnet barometry results presented here provides evidence 
for a single phase of isostatic (i.e., both isothermal and isobaric) garnet growth, commonly interpreted as 
reflecting rapid growth as soon as the system overcomes the energy barrier to nucleation. Several recent 
studies have extended this to conclude that zoned garnet crystals that were initially interpreted to represent 
progressive growth during burial and heating instead grew at isobaric and isothermal conditions following 
substantial overstepping of the garnet isograd (Spear & Wolfe, 2019). However, given the garnet zoning in 
the sample studied here, the sharp transition in inclusion abundance at the garnet core-rim boundaries, and 
importantly, the 4.8 ± 2.1 Myr timescale of garnet growth determined here, we rule this interpretation out 
in this case. We acknowledge that substantial overstepping prior to initial garnet growth is possible, but nu-
cleation impediments are not an issue during the rim overgrowths on a preexisting garnet substrate. That, 
coupled with the statistically different ages of the texturally and compositionally different garnet domains 
implies that a single brief episode of garnet growth following overstepping is unlikely. It is quite possible, 
however, that the core itself did grow over a short duration. Results presented here (Figure 6) show that 
thermodynamic modeling of the growth conditions of garnet are within error of the results from elastic 
barometry. While this may not be a general case (e.g., Wolfe & Spear, 2018), it is clear that thermodynamic 
modeling captures the growth conditions of the garnet in this study.
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Figure 8.  Isochron for garnet core growth: 45.3 ± 1.0 Ma (MSWD = 1.02, n = 7) and garnet rim formation: 40.5 ± 1.9 Ma (MSWD = 0.99, n = 5). All reported 
uncertainties are 2σ.
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7.2.  Comparing P-T-t Results With Previous Studies

Results from thermodynamic models (Figure 4) indicate that garnet in 14HSY-35E grew in two stages dur-
ing decompression, with one stage from 2.2 GPa and 485°C to 2.0 GPa and 530°C (inner core-outer core) 
and the other from 2.1 GPa and 560°C to 1.6 GPa and 550°C (inner rim-outer rim). However, it should be 
noted that the uncertainty ellipses in Figure 4 (±0.15 GPa and ±50°C, as determined based on the uncer-
tainties reported in Palin et al., 2016) suggest that potential pressure fluctuations in the first three stages 
of garnet growth (inner core, outer core, and inner rim) are not resolvable within the reported uncertain-
ties. Thus, no additional tectonic conclusions can be inferred based on their relative change, and models 
suggesting small amplitude pressure variations cannot be tested further with this dataset (e.g., Beltrando 
et al., 2007; Lister & Forster, 2016; Rubatto et al., 2011; Viete et al., 2018). However, the P-T conditions of 
the final stage of garnet growth (outer rim) are outside the uncertainty of the first three estimates, implying 
that inferences of garnet growth during or after some degree of decompression are justified. These results 
are in general agreement with maximum pressure (1.7–2.0 GPa) and temperature (500°C–550°C) ranges de-
termined for the CBU by previous studies (e.g., Ashley et al., 2014; Dixon, 1976; Dragovic et al., 2012; Keiter 
et al., 2004; Lister & Raouzaios, 1996; Philippon et al., 2013; Ring et al., 2010; Schumacher et al., 2008; Tro-
tet, Vidal, & Jolivet, 2001). Furthermore, the two stages of metamorphic garnet growth predicted here agree 
with the recent findings of Skelton et al. (2019), who used garnet core compositions, co-existing inclusion 
stability, and lawsonite stability to estimate that at least two stages of metamorphism, that occurred at pres-
sures of ∼1.2–1.9 and ∼2.1–1.3 GPa, respectively, are preserved on parts of S. Syros. Given that lawsonite is 
retained in some Syros rocks and kyanite is always absent, we note that high-temperature decompression 
further into lawsonite-absent fields is unlikely. Our inferred P-T path just exceeds the maximum limit of 
lawsonite stability (e.g., Hamelin et al., 2018; Schumacher et al., 2008), implying either differential high-T 
exhumation of various lithologies on the island (i.e., some lithologies exceeded this limit but many did not), 
or sluggish kinetics of lawsonite breakdown in some cases.

Sm-Nd ages of garnet cores and rims (45.3 ± 1.0 and 40.5 ± 1.9 Ma, respectively), are consistent with the 
younger ages reported for blueschist/eclogite metamorphism of the CBU in general (∼42–46 Ma). We inter-
pret the younger garnet rim age to reflect outer rim growth during or after some degree of decompression 
because (a) by volume the average age is dominated by the outer rim and (b) most garnets are zoned such 
that Sm concentrations are constant or increasing toward the rim (e.g., Kohn, 2009; Gatewood et al., 2015). 
It is interesting to note that the garnet rim age determined in this study (40.5 ± 1.9 Ma) is in good agreement 
with the mica Rb/Sr ages reported from the same area (Fabrika, Figure 1) by Skelton et al. (2019; 38–43 Ma) 
whereas the garnet core age reported in our study is older (45.3 ± 1.0 Ma). This is not surprising as the Sm-
Nd garnet age of the core preserves an earlier part of the prograde P-T-t path compared to the garnet rim 
and Rb-Sr in mica ages reported in Skelton et al. (2019). The garnet core age thus records the maximum 
metamorphic pressures preserved in 14-HSY-35E while mica ages and garnet rims record maximum met-
amorphic temperatures preserved in 14-HSY-35E as depicted in Figure 9. Other published garnet geochro-
nology from Syros comes from Lagos et al.  (2007) and samples further north on the island; these Lu-Hf 
garnet ages are significantly older, 50–52 Ma. This garnet growth age difference may reflect tectonic or bulk 
compositional differences between the dated samples or differences in Lu versus Sm zonation where bulk 
Lu-Hf ages may bias toward the early onset of growth compared to Sm-Nd ages (e.g., Baxter et al., 2017; 
Kohn, 2009).

7.3.  Were Fluids Present During Metamorphism?

Textures observed in thin section can be used to infer the role of fluids during the metamorphism of 14HSY-
35E. For example, textural relationships between garnet crystals and their inclusions imply that the HP-LT 
mineral assemblage contained garnet, quartz, clinopyroxene, phengite and rutile, and epidote. This mineral 
assemblage is also predicted by thermodynamic models (Figures 4 and 5) with the exception of the observa-
tion of epidote. We interpret that epidote inclusions found in garnet formed through lawsonite breakdown, 
which is consistent with previous observations of epidote ± white mica pseudomorphs after lawsonite in 
other high pressure lithologies on Syros (e.g., Hamelin et al., 2018). This suggests that the breakdown of 
lawsonite was likely the primary driver for dehydration during garnet growth in 14HSY-35E. Thermody-
namic modeling results, extracted from Figure 5, suggest that ∼2 wt% H2O was lost from the bulk rock 
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composition along the calculated P-T path. Calculations suggest that lawsonite represented 20 wt% of the 
modal mineralogy at the beginning of garnet growth, with complete absence of lawsonite and the stability 
of epidote by the end of garnet grown (Figure 5).

Other mineral relationships imply that sample 14HSY-35E interacted with aqueous fluids after HP-LT meta-
morphism. For example, the primary foliation in the matrix of 14HSY-35E has been overgrown by late-stage 
glaucophane needles and paragonite (Figures  2b and  2d), suggesting that hydrous fluids were available 
during retrogression. This interpretation is further supported by the presence of fluid inclusions in recrys-
tallized quartz. These fluid inclusions likely formed from fluids produced by breakdown of high-pressure 
hydrous phases, and these same liberated fluids were incorporated into greenschist-facies minerals (Brooks 
et al., 2019). Studies of B isotopes in metasomatic tourmaline further suggest that fluids in Syros underwent 
significant alteration during interactions with surrounding material during exhumation or experienced 
mixing between multiple fluid reservoirs (Marschall et  al.,  2006,  2008). Sulfur abundances and isotopic 
compositions in serpentinites, mica-schists, and metabasic samples have also been interpreted as indicative 
of the interaction of fluids from multiple sources in the Syros mélange (Schwarzenbach et al., 2018).

Calcite is observed to overgrow glaucophane and epidote (Figures 2e and 2f) in thin section, implying that 
the late-stage fluids infiltrating 14HSY-35E were also C-bearing. This is consistent with field observations 
in which late-stage carbonate veins cross-cut high-pressure lithologies throughout Syros. Previous studies 
have concluded that fluid-mediated carbon liberation, in which aqueous fluids react with carbonate-rich 
lithologies (e.g., marble lithologies on Syros), is likely responsible for much of the carbon mobilization 
in subduction zones (Ague & Nicolescu, 2014; Gorce et al., 2018; Gorman et al., 2006; Kerrick & Connol-
ly, 2001a, 2001b). Previously published thermodynamic constraints suggest that glaucophane-bearing mar-
bles on Syros equilibrated with fluids with CO2

X  as low as 0.01 (Schumacher et al., 2008).

Exposure of sample 14HSY-35E to C-bearing fluids late in its history might explain the major discrepancies 
between the results presented in Figure 5 and the modal mineral abundances observed in this sample. Thin 
section observations suggest the breakdown of epidote and late-stage growth of dolomite (Figure 2f). While 
glaucophane overgrows high-pressure minerals such as omphacite (Figure 2b), there is also evidence of 
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Figure 9.  (a) Calculated P-T-t path for sample 14HSY-35E. (b) Potential geologic setting for sample 14HSY-35E, 
modified from Roche et al. (2016).
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dolomite replacing amphibole (Figure 2e), which could be interpreted as either dolomite growing at the 
expense of amphibole or late-stage fracture filling.

7.4.  Implications of Compositional Zoning in Garnet

Based on Sm-Nd garnet ages and P-T calculations, it is likely that garnet compositional zoning in 14HSY-
35E is representative of its early exhumation history. Detailed analyses of garnets in sample 14HSY-35E 
allow us to constrain heating and decompression rates. These results are of particular value because Sm-Nd 
geochronology for garnet core and rim populations is derived from the same garnets that were used to calcu-
late P-T conditions of metamorphism. Thus, pressure, temperature, and geochronological data all obtained 
from a single sample were combined to constrain the P-T-t history of CBU lithologies on Syros.

Garnet core and rim growth stages are separated by 4.8 ± 2.1 Myr. We cannot constrain whether each stage 
of garnet growth occurred rapidly in a short pulse (<1 Myr as in Dragovic et al., 2012) or if garnet grew grad-
ually and continuously over this entire period of time. Due to our sampling for geochronology (Figure 3) the 
core age will be dominated by inner core material (due to drill trench loss of outer core), and the rim age will 
be dominated by outer rim material (due to radial symmetry).

We suggest that the ∼3–7 Myr timescale does not support extremely rapid mineral growth following a build-
up of free energy due to overstepping for the second period of garnet growth. Furthermore, this timescale 
is significantly longer than those reported in studies that interpret oscillatory zoning within crystals to be 
the result of subtle pressure fluctuations (e.g., Beltrando et al., 2007; Garcia-Casco et al., 2002; Lister & 
Forster, 2016; Rubatto et al., 2011; Viete et al., 2018). Coupling estimated temperature conditions for garnet 
growth with garnet geochronology enables calculating of heating rates during Cycladic subduction. Phase 
equilibria modeling estimates that early garnet growth occurred over a temperature increase of 75 ± 70°C 
(assuming a temperature uncertainty of ±50°C). Coupling this ΔT with the calculated garnet growth dura-
tion (along with propagating the associated uncertainties determined by Monte Carlo simulations (n = 500) 
using ranges of ΔT and Δt; Dragovic et al., 2020) results in a heating rate of 15.6°(+21.9/−14.8)°C/Myr, 
which is within uncertainty of the 22.3 ± 8.0°C/Myr reported by Dragovic et al. (2012, 2015) for CBU lithol-
ogies from the neighboring island of Sifnos. Such rapid isobaric heating has been predicted by geodynamic 
models (e.g., Syracuse et al., 2010) and previously attributed to to either initial stages of exhumation while 
still in the subduction channel or to the presence of sharp thermal gradients as a consequence of slab-man-
tle coupling (Dragovic et al., 2015). Thermodynamic modeling and Sm-Nd garnet geochronology from this 
study yield decompression rates in the range ∼0.3–0.7 cm/yr.

The mechanisms of decompression and exhumation of the CBU on Syros remain contentious. Since the 
geometry of the P-T path coupled with Sm-Nd garnet ages (Figure 9a) implies that oscillatory zoning in the 
garnets records the early exhumation history of 14HSY-35E (Figure 9), we can use these results to infer an 
exhumation mechanism for Syros terrains. In some studies, exhumation is thought to have occurred along 
the subduction channel. In this scenario, channel flow occurs within the serpentinite that forms along the 
slab-mantle interface (e.g., Gerya et al., 2002; Hermann et al., 2000). Extensive documentation of the Kam-
pos unit on Syros (e.g., Bebout, 2007; Bebout & Barton, 2002; Breeding et al., 2004; Cloos & Shreve, 1988; 
Keiter et al., 2004; Spandler et al., 2008) supports this hypothesis. Channel flow can be simply driven by 
buoyancy differences between serpentinite and the dense mantle (e.g., Schwartz et al., 2001) or can be more 
complicated and involve forced channel flow (e.g., Herbert et al., 2009) or complex channel flow (e.g., Blan-
co-Quintero et al., 2011; Gerya et al., 2002; Hermann et al., 2000; Li et al., 2016; Qian & Wei, 2016).

We initially hypothesized an ascent of 14HSY-35E driven solely by buoyancy using appropriate densities. 
Using a density of ∼3,032 kg/m3 at 485°C and 2.2 GPa (extracted from thermodynamic models that pro-
duced Figure 5) for an average value of 2,650 kg/m3 (Schwartz et al., 2001) for fully serpentinized peridotite, 
exhumation would require a subduction channel of at least 7–15 km thick (Schwartz et al., 2001), depend-
ing on the assumed decoupling velocity. Though typical eclogite is denser than that calculated for sample 
14HSY-35E (a more silicious composition), if we were to assume a maximum density contrast of 700 kg/m3, 
upward flow would only occur if the subduction channel is a minimum of 2–3 km wide. Outcrops of the 
Kampos unit on Syros are usually less than 1 km wide, suggesting that buoyancy-driven channel flow was 
not sufficient alone to drive exhumation, and that forced and/or complex channel flow is required to ex-
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hume a rock with characteristics similar to sample 14HSY-35E. Furthermore, the decompression rates cal-
culated here (∼0.3–0.7  cm/yr) are faster than typically expected for buoyancy-driven ascension along a 
serpentinite subduction channel (e.g., Agard et al., 2009; Guillot et al., 2009).

While there is a lack of a sufficiently thick mélange channel on Syros to support purely buoyancy-driven 
ascension (see discussion above), forced channel flow exhumation models could provide a partial expla-
nation for the exhumation of the upper CBU mélange in northern Syros. Calculated exhumation rates of 
∼0.3–0.7 cm/yr are comparable with geodynamic modeling results of Gerya et al.  (2002), in which they 
assume a moderate convergence rate of 30 km/Myr during subduction and predict the development of a 
planar or wedge-shaped subduction channel with moderate flow. Thus, if the sample studied here was from 
the northern Syros Kampos unit, one might argue that the multiple pulses of metamorphism recorded by 
garnet are indicative of complex channel flow. However, channel flow mechanisms are difficult to reconcile 
with the more cohesive lower units of the CBU, as found in southern Syros from where 14HSY-35E origi-
nates. Thus, other mechanisms of exhumation must be considered in this case.

Garnet core ages reported here (45.3 ± 1.0 Ma) coincide well with combined detailed structural studies 
of the CBU and Ar-Ar dating in white mica that correlate the initiation of slab rollback (Royden & Hus-
son, 2006; Schellart, 2004) and subsequent decoupling of the CBU with blueschist-facies overprinting due to 
decompression at ∼45 Ma (e.g., Laurent et al., 2018; Lister & Forster, 2016; Roche et al., 2016). These studies 
also hypothesized a thermal excursion at ∼35 Ma and final exhumation from 25 to 9 Ma, and argued that 
the inverse metamorphic gradient observed on Syros is evidence that the CBU was exhumed as a series of 
distinct tectonic slices. It has previously been shown that inherited Ar can be trapped in mica in high pres-
sure terrains, leading to an overestimation of age (Warren, Hanke, & Kelley, 2012; Warren, Kelley, Sherlock, 
& McDonald, 2012). This has led to suggestions that the youngest reported 40Ar/39Ar ages represent true 
high-pressure metamorphism in the CBU and that slab rollback was not important until regional extension 
began around 24–21 Ma (e.g., Ring et al., 2020).

Skelton et  al.  (2019) concluded that that CBU is a subduction-related nappe stack that is comprised of 
at least three metamorphic belts: (a) the structurally higher mélange ophiolites in N. Syros, (b) the more 
cohesive units located in S. Syros, such those located near Fabrika, and (c) the structural lower CBU units 
on Evia and Sifnos. Ring et al.  (2020) extended this interpretation and proposed that metamorphism in 
the CBU was driven by continuous return-flow processes in a conveyer belt model in which an extrusion 
wedge provided the environment for the subduction and subsequent exhumation of multiple tectonic slices. 
They suggested that the short distances between shear indicators observed in SE Syros and the lack of an 
observable, systematic arrangement of conflicting shear indicators, is evidence for forced return flow within 
the subduction channel. Both Ring et al. (2020) and Skelton et al. (2019) emphasize the role of lithospheric 
shortening in the evolution of an Aegean extrusion wedge, which is consistent with synorogenic exhuma-
tion proposed by other works (e.g., Laurent et al., 2018; Roche et al., 2016).

Based on the studies described above, it is likely that multiple exhumation mechanisms drove ascent of the 
CBU on Syros. We speculate that the older, initial exhumation of the Kampos unit in N. Syros may have 
been dominantly driven by forced return flow within the subduction channel, and that exhumation of the 
younger, cohesive volcanic-sedimentary units in S. Syros initiated, was driven by slab rollback coupled with 
localized regional extension and synorogenic exhumation. In the case of sample 14HSY-35E, the sample 
location, and similarities with inferred garnet P-T growth conditions reported by Skelton et al. (2019; de-
compression from ∼2 to ∼1.6 GPa) suggest that it records exhumation of 1, the younger tectonic slices of 
the CBU present on Syros.

8.  Conclusions
Metamorphic garnets record two distinct stages of growth during HP/LT metamorphism of the CBU on 
Syros, Greece, from 2.2 GPa and 485°C to 2.0 GPa and 530°C (inner core-outer core) and from 2.1 GPa 
and 560°C to 1.6 GPa and 550°C (inner rim-outer rim). Models are in agreement with inclusion barome-
try, implying mechanical and chemical equilibrium. Zoned garnet Sm-Nd geochronology yields an age of 
45.3 ± 1.0 Ma (2σ; MSWD = 1.02, n = 7) for the inner/outer core domain and an age of 40.5 ± 1.9 Ma (2σ; 
MSWD = 0.99, n = 5) for the inner/outer rim domain. To our knowledge, sample 14HSY-35E represents the 
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first example of metamorphic pressure, temperature, and age constraints derived from a single phase within 
an individual sample on Syros. We suggest that the sample may record the exhumation of parts of the CBU 
on Syros as a series of tectonic slices beginning ∼45 Ma, with decompression rates of ∼0.3–0.7 cm/yr and 
cooling rates of ∼10–28°C/Myr.

Data Availability Statement
Data sets for this research are available in Advances in Subduction Zone Processes (Gorce, 2018), located 
in VTechWorks, which contains Virginia Tech Electronic Theses and Dissertations (EDTs) at http://hdl.
handle.net/10919/83810 (http://rightsstatements.org/vocab/InC/1.0/).
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