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Logic Synthesis for a Regular Layout
MALGORZATA CHRZANOWSKA-JESKEa’*, YANG XUb’t and MAREK PERKOWSKI

Electrical and Computer Engineering Department, Portland State University, 1800 6th Avenue, Portland, OR 97207-0751"
b Lattice Semiconductor Corporation, 5555 NE Moore Count, Hillsboro, OR 97124-0118

(Received 7 September 1998; In finalform 20 November 1998)

New algorithms for generating a regular two-dimensional layout representation for
multi-output, incompletely specified Boolean functions, called, Pseudo-Symmetric Bina-
ry Decision Diagrams (PSBDDs), are presented. The regular structure of the function
representation allows accurate prediction of post-layout areas and delays before the
layout is physically generated. It simplifies power estimation on the gate level and allows
for more accurate power optimization. The theoretical background of the new dia-
grams, which are based on ideas from contact networks, and the form of decision dia-
grams for symmetric functions is discussed. PSBDDs are especially well suited for deep
sub-micron technologies where the delay of interconnections limits the device perfor-
mance. Our experimental results are very good and show that symmetrization of real-
life benchmark functions can be done efficiently.

Keywords: Logic synthesis, deep submicron, regular array, decision diagrams

1. INTRODUCTION

Performance improvement of ULSI ICs fabricated
in deep sub-micron technology depends very strong-
ly on the delay of interconnects. For the current
leading technologies with active-device count reach-
ing the tens of millions, the delay of interconnects is
responsible for about 40-50% of the total delay
associated with a circuit. With constantly improv-
ing technology and more metal layers being avail-
able for interconnections, this contribution is
predicted to increase. As the amount of intercon-

nects among devices has a tendency to grow
superlinearly with the number of transistors, the
chip area is often limited by the area needed to
accommodate the interconnects. Therefore, the
interconnect dimensions are scaled as much as
possible along with the device and voltage scaling.
So with the width and the thickness of the metal
stripes decreasing and the average length of the
interconnects, using current approaches to layout
synthesis, remaining the same or increasing slight-
ly, the resistance of interconnects increases. For
delay calculation it is also necessary to consider the
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36 M. CHRZANOWSKA-JESKE et al.

capacitance of interconnects. Luckily the capaci-
tance per unit length usually does not change
with scaling.

Therefore, it has become more and more
important to be able to predict and control the
length of interconnections. The obvious but quite
challenging approach is to develop synthesis meth-
ods integrating logic and layout synthesis steps.
Such integration could be accomplished by synthe-
sizing functions with the objective being not a
standard minimization of the number of gates or
logic levels but generating a regular netlist with a
defined interconnection structure. The regularity
of the structure would permit the creation of a
layout directly from the logic level description
without any placement or routing, or alternatively
a simplified placement and routing which would
start from the "floor-plan" created with these
regular structures.
The concept of a regular array to realize logic is

an old one, but so far, only PLA-like structures
have succeeded commercially. In 1972 Akers [1]
proposed a universal, two-dimensional planar and
regular array for arbitrary single-output functions.
It was shown that any Boolean function can be
mapped to such an array by the consecutive re-
petition of variables. But since the array size was
calculated for worst case functions, such layout
was very inefficient for real functions and the idea
was not adopted. A multilevel, PLA-like array,
called a Complex Maitra Logic Array (CMLA),
was introduced in [8], but no efficient and effec-
tive algorithms to generate such representation
have yet been developed.

In this paper we present a logic synthesis
method for generating Pseudo-Symmetric Binary
Decision Diagrams (PSBDDs), a new, regular
two-dimensional function representation for both
completely and incompletely specified multi-out-
put Boolean functions. PSBDDs can be directly
mapped to a two-dimensional layout without
placement and routing. The idea originates from
an OBDD [2] representation for totally-symmetric
functions and generalizes the known switch realiza-
tions of symmetric binary functions [7]. The meth-

od is general and applicable to arbitrary multi-
output incompletely specified Boolean functions,
additionally the results can be improved when the
original function is first decomposed to blocks
realized as PSBDDs. We introduce synthesis
methods for generating such regular representa-
tions and define the structure of an array to which
PSBDDs can be mapped. A Join-Vertex operation,
introduced in [9], is used to combine two geome-
trically-adjacent nodes such that the function is
represented as a pseudo-symmetric network (two-
dimensional regular array with only local connec-
tions between abutting cells) instead ofa binary tree
or DAG. To further optimize PSBDD sizes, we
define a flipped Shannon expansion in respect to a
geometrical realization ofthe diagram. We define an
array as a geometrical concept. Thus, for instance,
PSBDDs can be mapped to a Shannon Lattice
Array which is a two-dimensional array of multi-
plexers, each with two inputs and one output,
connecting with four neighbors of a node, and one
input (control variable) from a diagonal bus.
PSBDDs, which have a structure of contact net-
works for symmetric functions, can also be im-
plemented using pass transistors with inverters
and buffers added.
The remainder of this paper is structured as

follows. Section 2 presents background on regular
arrays. In Section 3 we describe Pseudo-Symmetric
Binary Decision Diagram generation. The basic
concept of function symmetrization is presented
in Section 4. Newly developed heuristics for
generating PSBDDs are described in Section 5.
Comparison of PSBDD layouts to other function
representations is given in Section 6. Section 7
presents our experimental results for the MCNC
benchmark functions and Section 8 concludes the
paper.

2. SYNTHESIS FOR REGULAR ARRAYS

The approach of Akers from 1972 was the only
one in the literature that proposed an array which
is similar to one of the possible implementations of
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PSBDDs. The array is based on a rectangular grid
and uses multiplexer cells which are associated
with Shannon expansions. The arrays of Akers are
unnecessarily large, because the order and repeti-
tion pattern of input variables is universal and
calculated once for all functions by repeating
consecutively the same variables. The number of
times each variable has to be repeated, in Akers’
approach, depends only on the variable’s position
in the variable order. No efficient procedures for
finding the order of (repeated) variables are given,
and it is easy to show simple functions that have
very large arrays.
Our approach is quite different from that of

Akers. We do not want to design a universal array
for all functions, instead we developed a layout-
driven logic synthesis method that gives efficient
results for many real-life functions. We derived our
ideas from the observation that a Binary Decision
Diagram for a totally symmetric function is a
regular two-dimensional structure. This is due to
the fact that for totally symmetric functions every
two geometrically-neighboring nodes on the same
level of a planar drawing of a BDD are isomorphic
and can be represented as one node. For non-
symmetric functions the geometrically-neighbor-
ing nodes are usually non-isomorphic and, there-
fore, the BDD structure is an (irregular) Directed
Acyclic Graph (DAG) not suitable for mapping to
a regular array. In our approach we first create a
tree expansion, but after expanding each level, we
combine together non-isomorphic geometrically-
neighboring nodes on that level using the Join-

Vertex operation, thus creating a layered regular
Directed Acyclic Graph. During the Join-Vertex

operation, variables are reintroduced back into the
function, therefore, combining nodes leads in turn
to the requirement of variable repetition. The re-
gular diagrams created with the Join-Vertex opera-
tion are called Pseudo-Symmetric Binary Decision
Diagrams (PSBDDs). In contrast to Akers ap-
proach, the variables in PSBDDs can be repeated
in any order and the number of repetitions of
a variable depends on a particular function rather
then being precalculated universally. The concepts

of node joining and non-consecutive variable
repetition add much power to the diagrams. We
propose a number of heuristics for variable order-
ing, and show that with a good order a substantial
minimization of diagram sizes can be achieved. We
use Shannon (S), and flipped Shannon (fS)
expansions. Flipped Shannon expansion, very
important for PSBDDs where the actual positions
of nodes on the plane are considered, can be
viewed as Shannon expansion performed for the
inverted control variable. It obviously does not
apply for BDDs where relations between nodes
are not defined geometrically. In addition, we
take advantage of "constant pseudo-expansions",
which means we assume constant values in con-
trol variables. In our approach, which is feasible
for multi-output, incompletely specified functions,
arbitrary non-symmetric functions are symmetri-
cized by repeating variables in order to realize
them as regular arrays.
One possible way to implement PSBDDs is with

an array of multiplexers, and we can represent it
as a geometric concept in the following way. First
let us define a general two-dimensional structure
which we call Lattice Array.

Lattice Array, shown in Figure 1, is the data
structure that describes the regular geometry of a
circuit. Each non-zero entry L[i,j] in array L is

sum=2 sum=4level--1 / level=3

sum=3
level=2 / 2,2

3,2 3,3

4,2 4,3

3,4

4,4

2,5

5,2 5,3 5,4 5,5

FIGURE Concept of a lattice array.
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called a node and includes a link to a data struc-
ture that describes the logic placed in this entry,
in the simplest case it can be a logic constant.
L[1, 1] is the root node of the lattice. Boolean
functions in the links can be represented as BDDs
or arrays of cubes. Inputs to each cell (i,j) come
from their neighbors (i,j + 1) and (i + 1, j) or are
set to Boolean constants, 0 or 1.
A Lattice Array for a single-output function is

represented by a matrix L.

DEFINITION A diagonal of the matrix L is a set
of entries that have the same sum of indices. The
sum in the first diagonal is 2, in the second dia-
gonal is 3, and so on. A diagonal corresponds to
an expansion level in the Decision Diagram.

DEFINITION 2 An Ordered Lattice Array is a
lattice array in which there is one variable on
a diagonal.

DEFINITION 3 An Ordered Lattice Array with
repeated variables is a lattice array in which the
same variable may appear on various diagonals,
but there is only one variable on a diagonal.

DEFINITION 4 A Free Lattice Array is a lattice
array in which there is more than one variable on a
diagonal.

In this paper we consider a two-dimensional
array of multiplexers each with two data inputs
and one output, which can be connected to two
other neighbors ofa node, as well as one input (con-
trol variable) coming from a diagonal bus. Both
polarities of variables are allowed for implement-
ing Shannon and Flipped Shannon expansions. We
say a variable has a positive polarity when it is
present in a function, and has a negative polarity
when a negation of the variable is present. Pseudo-
expansions corresponding to constant values 0
and of control variables are also included.

DEFINITION 5 An Ordered Shannon Lattice Array
/s an ordered lattice array in which all cells are
multiplexers.

Thus in an Ordered Shannon Lattice Array, on
a diagonal, all cells are of type S, 0 or 1, or all cells

are of type fS, 0 or 1. It can be proven that
every binary function can be realized with such a

structure, but in the worst-case an exponential
number of levels is necessary (which means the
control variables in diagonal buses will be repeated
very many times). In the Akers’s array the same
variable is subsequently repeated without other
variables interspersed and such arrays are called
variable interval arrays. In our approach, however,
we assume no constraints on variable order. In
many cases this allows a dramatic decrease in the
number of variable repetitions and thus in the size
and delay of the design. We will focus our atten-
tion on the neighbor-to-neighbor connections,
which in the case of four neighbors and four
I/O connections constitute planar routing re-
sources. The shape of implemented PSBDDs is
approximately triangular or trapezoidal in various
sizes.

3. GENERATING PSBDDs FOR
COMPLETELY SPECIFIED FUNCTIONS

The idea of our approach originates from sym-
metric networks and BDDs. Let us recall two
definitions of the symmetries which will be used
here to explain our approach.

DEFINITION 6 A functionfexhibits a non-equiva-
lent-symmetry (NE-symmetry) [6] in variables a

and b, denoted as aNEb or {a,b} ({a’,b’}), if

A’ fa’.

DEFINITION 7 A functionfexhibits an equivalent-
symmetry (E-symmetry) [6] in variables a and b,
denoted as aEb or {a,b’}({a’,b}), iffa’b’ =fab.

If tWO variables exhibit non-equivalent symme-
try, the function’s two cofactors, fab’ and fa’b, (in
respect to these two variables) are equal and can be
represented as one node in a planar drawing of
the function’s OBDD, as shown in Figure 2a. We
assume that OBDDs are always drawn such that
the true cofactor is drawn as the right child and
the negative cofactor is drawn as the left child.
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f f
S a SaSa

b
fa’b’ f a’b fab’ fab f a’b’ g f ab

g fa’b fab’ Non-equivalent symmetry

f f
f

sFlippedShannon S aS a .._.
fa’b’ fa’b fab’ fab fa’b fa’b’ fab fab’ fa’b g fab’

b) g-- fa’b’ fab Equivalent symmetry

FIGURE 2 Use of isomorphic cofactors: (a) Shannon expansion, (b) Flipped Shannon expansion.

Therefore, in order to take advantage of the equi-
valent symmetry we introduce a Flipped Shannon
expansion which is shown in Figure 2b, where
black nodes represent the equivalent nodes. If a
Boolean function is totally symmetric with only
non-equivalent symmetries holding between its
variables, then its OBDD can be drawn as shown
in Figure 3. The OBDD there has a desired struc-

f= a’b’c’ + a’bc + ab’c +ab

FIGURE 3 An OBDD for a totally symmetric function.

ture, regular and with only neighbor-to-neighbor
connections. Decomposition variables are assign-
ed to diagonal busses. Such structures can be direct-
ly mapped to Ordered Shannon Lattice Arrays.

Unfortunately, not all functions are totally
symmetric. The regular OBDD for a totally
symmetric function is a result of merging together
isomorphic geometrically-adjacent nodes. This
merging idea is extended here by us for the case
of non-isomorphic nodes through the Join-Vertex

[9] operation presented below. The underlying idea
of the Join-Vertex operation using the BDD and
the PSBDD representations is shown in Figure 4.
The penalty to be paid is the reintroduction of the
expansion variables back into the function. The
reintroduction of the variable makes it necessary
to use the same expansion variable more than once
which increases the number of levels.

Functionfcan be expressed using four cofactors
of any two of its input variables as shown in Eq.
(1). By grouping together terms with cofactors fa’b
andfab’, functionfcan be represented as in Eq. (2).

f a ’b %,t,, + a ’bfa,b + ab %, + abfa (1)
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u3

BDD PSBDD

f f

/\. /\"
ul u2 ul Utb

u6 u3 w u6

f a’u + au w bu + b’u

bl! b’u + btl

u b’u + bu

FIGURE 4 Generating a PSBDD using a Join-Vertex operation on nodes u4 and u5.

f a’b %’b’ + (a’b + ab ’)g + abfab (2)

For the Eq. (2) to be satisfied, function g has to
be equal to fa’b for a 0 and b 1, and to fab’ for
a= and b=0. So, if the two cofactors are
not equal, to satisfy the Eq. (2), we use the Join-

Vertex operation. The Join-Vertex operation given
in Eq. (3) is defined for variable order (a, b}.

on which more general lattices would be based.
The concept of the Join-Vertex operation is very
powerful and general in logic design as it applies
to combining any two nodes which are not iso-
morphic (not necessarily combining neighbors),
and therefore can find many other applications in
decision diagrams and function representations.

g bfa,b + b %b’ (3)

We can verify the correctness of the Join-Vertex
operation by substituting it back to Eq. (2).

f a’b fa’b’ + (a’b + ab ’)(bfa’b + b fab’)
+ abfab

(4)

f a’b %’b’ + a’bbfa,b + ab tbfa,b + a’bb %b’
+ ab’bTab, -+- abfab

Two elements of the Eq. (5), ab’bfa,b and
atbb fab’, are equal to 0 because the law of Boolean
algebra states that btb 0. The resulting function
is given in Eq. (6).

f a’b %’b’ + a’bfa,b + ab ’fab’ + abfab (6)

As can be seen, Eqs. (1) and (6) are the same,
therefore, with the Join-Vertex operation the
function remains unchanged. The law b b 0 of
Boolean algebra or similar properties in non-
binary algebras must hold in any algebraic system

4. THE BASIC CONCEPT OF FUNCTION
SYMMETRIZATION

Applying the Join-Vertex operation to all geome-
trically-adjacent nodes on a level has the same
effect as introducing a repeated variable in the
process of function symmetrization using variable
repetitions. The symmeterization of a function
can be viewed in terms of introducing don’t cares
to the function. Let us discuss this in more detail.
A repetition of a single variable introduces don’t

cares into the half of the Kmap minterms of a new
function with the repeated variable, so the more
variables are repeated, the more weakly specified
the function becomes..If one starts from a com-
pletely specified function and repeats two vari-
ables, 75% of the minterms of the new function
will be don’t cares as shown in Figure 5.

DEFINITION 8 A symmetry index S of a totally
symmetric function F(X1, x2,..., Xr,..., Xn) is S;

when F(Xl, X2,...,Xn)= for every of its
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0
bb

a O0 01

oo 1

O1

11

11 0 1

10

FIGURE 5 Introducing don’t cares through the variable re-
petition.

argument variables xr set to and other variables
set to 0 (see Fig. 6). The layer of index S i, in an
arbitrary function, is the set of cells of gmap that
have exactly of its argument variables xr equal

to 1. For an incomplete totally symmetric function
F(Xl, x2,..., xr,..., x), for every Si, 1,..., n,
all cells are either all l’s and DC’s or all O’s and
DC’s [7].

DEFINITION 9 An incomplete function is totally
symmetric iff in the layer of every symmetry index
all minterms are either l’s (and DC’s), or all
minterms are 0’s (and DC’s).

DEFINITION 10 A layer of symmetry index is
called consistent if all minterms are either l’s and
DC’s, or all minterms are 0’s and DC’s.

It can be easily proved that Definition 9 is a
generalization of Definition 8 for the case of the
incompletely specified functions.

aa

(a,a,b)
1 / Sl(a,a,b)

’’ )2 (a,a,b)

S3(a,a,b)

(a) (b)

0 1

FIGURE 6
PSBDD.

(c)

Symmetrization of the function using a variable repetition. (a) original function, (b) symmetricized function, (c)
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THEOREM Every Boolean function can be made
totally symmetric (symmetricized) by repeating
some of its variables [15].

The above theorem was presented for the first
time by Arnold and Harrison [15] for a total of
2 variables for the n-variable function. These re-
sults were further improved by others and finally
Lee and Hong [16] presented an iterative algo-
rithm which optimizes the number of repeated
variables based on partial symmetries. Below we
present an illustrative reasoning of the symmetri-
zation process.

If for every value of the symmetry index the
corresponding layer is consistent the function
can be converted to a completely specified totally
symmetric function by replacing all don’t care cells
in a layer of at least one "1" with 1-cells, don’t care
cells in a layer of at least one "0" with 0-cells, and a
layer with all "-" with either all 0-cells or all 1-cells.
We say that variable x separates zero-cell zl from

one-cell o in a Kmap when z c_ x and o c_ x or
z c_ x and o c_ x. To simplify the discussion and
the example given in Figure 6, we only consider
non-equivalent symmetry. If for a given function
there exists a layer with both ones and zeros (such as
layer Sl(a,b) in Fig. 6a) by repeating a variable
that separates these ones and zeros a new Kmap is
created as shown in Figure 6b. In Figure 6a, both
variables a and b are the separating variables for
cell zl ab and cell ol ab so any of two can be
used. In the new Kmap (Fig. 6b) the 0-cell and the
1-cell that were in the same layer in the previous
map become now partitioned to two different
layers. Because adding one variable partitions the
set of cells to two sets, after a finite number of
partitions there will be a single "1" or a single "0"
plus don’t cares in each layer (in the worst case).
Thus the process will always terminate (usually it
terminates earlier without a need to have a single
care cell in every layer).

In Figure 6b, just by repeating variable "a" all
the layers become consistent. Figure 6c corre-
sponds to a PSBDD for the function shown in
Figure 6a and represents the totally symmetric
function S ’1’3 (a, a, b).

DEFINITION 11 Symmetrization is the process of
converting an arbitrary function to a totally sym-
metric function by repeating some of its variables.
It creates a new incomplete function.

DEFINITION 12 Function Fis lattice-realizable in a
lattice of type Ti when its diagram can be mapped
(monomorphism) to the lattice of type Ti without
variable repetitions.

THEOREM 2 Every totally symmetric Boolean

function is lattice-realizable in Ordered Shannon
Lattice Array. Every Boolean function can be im-

plemented in Ordered Shannon Lattice possibly with
variable repetitions.

Observe that many functions characterized as
non-symmetric are still lattice realizable.
A function can be totally symmetric, partially

symmetric, pseudo-symmetric or non-symmetric.
The type of the function can be found from the
analysis of cofactors and their negations [5, 6]. In
the case of a PSBDD with two types of expan-
sions, Shannon and flipped Shannon, we have
two degrees of freedom for the algorithm; selec-
tion of S or fS for the level; and the order of
variables (this takes into account repetitions,
too). The selection of a good order of variables
is based on generalized partial symmetries for
cofactors.

DEFINITION 13 The generalized partial symme-
tries for cofactors are the following properties
of cofactors and relations between pairs of (in
general, multi-variable) cofactors.

(a) a single cofactor is an incomplete tautology
with (fi 1).

(b) a single cofactor is an incomplete tautology
with 0 (f 0).

(c) incomplete tautology of any two cofactors
(fi =fj).

(d) incomplete tautology of a cofactor with a
negation of any another cofactor (fi fj’).

Note that cofactors are calculated while creating
a PSBDD and these symmetries can be applied
to any cofactors of a (sub) function.
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If the function is symmetric and complete, it
is represented as a diagram with an arbitrary
order ofvariables without any repetitions. If a func-
tion is partially symmetric or non-symmetric, a
PSBDD is generated level-by-level, using different
variable ordering heuristics until the entire func-
tion is mapped to a diagram with some variables
repeated only if necessary. In the process of
generating a diagram we need to try not only to
decrease the number of variable repetitions, but
also to decrease the total area occupied by the
diagram.

4.1. Multi-output Incompletely Specified
Functions

The method to create PSBDDs can be easily
extended to multi-output incompletely specified
functions as illustrated in an example. First, in
Figure 7 we give the overview of how the Join-
Vertex operation can be used without modification
for any multi-output function. A step-by-step
illustration of the PSBDD generation is explained
in Example and shown in Figure 8. The initial
distances between root functions f, f2, and f3
as well as their orders can be arbitrary. The dis-
tance between two functions can be understand as
the number of variables which are expanded
in individual functions before the geometrically-
adjacent nodes of two functions are joined to-
gether with the Join-Vertex operation. In Figure
7 the distances between all functions are equal

to one (only variable a is expanded in the indi-
vidual functions; all other variables are expanded
after the functions are joined together). The dis-
tances and orders strongly affect the size of the
solution layout and the delay value.

Example 1 In Figure 8 functions f, f2, f3 are
represented by three Kmaps. As shown in the figure,
calculating the positive cofactorfa means replacing
the half of Kmap corresponding to a with don’t
cares. Similarly, calculating the negative cofactor
f, means replacing the half of Kmap corresponding
to a with don’t cares. In Figure 8a, the PSBDD
generation process using Kmap is given and the
Shared PSBDD is shown in Figure 8b. The Join-

Vertex operation for the node is just the set-theo-
retical union of all care sets in its parent Kmaps.

The above example shows constructively that
for every function we can design a PSBDD with
repeated variables, thus every function can be
symmetricized.

5. VARIABLE ORDERING HEURISTICS

The order of variables and the type of operation
(S or fS) influences very strongly the size and
shape of a PSBDD. As these diagrams are related
to OBDDs, our first approach was to examine
variable ordering methods used for BDDs. A
number of successful variable ordering heuristics
for OBDDs [13] are based on changing the posi-
tions of variables in the variable order and recal-
culating the sizes of the OBDD. Exchanging the

BDDs

fl f2 f3

fl a’ fl a a f2a f3a’ f3a

PSBDD

fl f2 t3

fla’ w v f3a

W afl dp a’f2a, V af2 + a’fa,

FIGURE 7 PSBDD for a multi-output function.
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(b)

(a)

=0

11

10

a

O 1

fl f2 f3

alk ’Ii, ."I

a’ joina a a ajoin

a/ 4 joi:’l 4 joina’l a
01

11

10

cl join c; c44
,CO a a .

11

FIGURE 8 Creation of the Multi-output Shared PSBDD for the incompletely specified functions. (a) demonstration of the PSBDD
generation using K-maps; (b) the complete Shared PSBDD.

positions of two consecutive variables requires Therefore, these methods cannot be adopted for
the recalculation of the OBDD’s vertices for only PSBDDs. The variable order has to be determin-
one level, while in PSBDDs such operation would ed before or during PSBDD generation. We use
require the recalculation of vertices in all levels function characteristics to determine the order of
following the levels of the exchanged variables, variables.
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In this section we first focus on developing
heuristics to generate PSBDDs without using
any symmetry information. As it will be shown,
such heuristics can be developed independently
and then combined with symmetry information
to improve results. We compare the orders of
variables generated by our heuristic algorithms
with the symmetry properties of the tested func-
tions to evaluate our approaches. In most tested
benchmark functions the symmetric variables are
placed together at the beginning of the variable
orders, which is the best strategy for minimizing
the sizes of PSBDDs. Some characteristics of the
function variables which are used in our methods
are given below.

DEFINITION 14 A variable appearance is the num-
ber of cubes in an optimized two-level function
representation in which a variable is present.

DEFINITION 15 A positive appearance is the num-
ber of cubes in an optimized two-level function
representation in which a variable is present ifi
positive polarity.

DEFINITION 16 A negative appearance is the
number of cubes in an optimized two-level func-
tion representation in which a variable is present in
negative polarity.

Initially we created an algorithm called "Fixed
Order Method" in which the order of expansion
variables was determined at the beginning of the
PSBDD generation process based on variable ap-
pearances in the root function. For incompletely
specified functions, the variable appearance is cal-
culated using only "ON" (true) terms. All original
function variables were used as expansion vari-
ables in the determined order, and the set of corre-
sponding decomposition levels is called the first
loop. Next, the variables which were reintroduced
to the function by the Join-Vertex operations were
used again as expansion variables in the same
order as in the first loop and created the second
loop. This procedure continues until a function is
completely decomposed.

In Figure 9, three PSBDDs for the non-symmetric
functionffor variable orders {c, a, d, b}, {b, c, a, d }
and {c, b, a, d} are presented. Variable loops are
indicated. Please notice that the variable order in all
loops is the same, however, some variables may be
missing in higher loops. No Join-Vertex operation
was necessary for the diagram in Figure 9c, there-
fore no repeated variables appear in the expansion.
The influence of the variable order on the size of
PSBDDs can be observed. The number of the ex-
pansion nodes is nine for the cadb order and cbad
order, and eighteen for the bcad order. Vertices
which are marked with "." were created using
the Join-Vertex operation. Please notice that in
Figure 9b variables a and d appear twice in the
path and variable c appears .three times. A num-
ber of PSBDDs for different functions from the
MCNC benchmark set were generated using Fixed
Order algorithm, but their sizes were quite large.
Our first improvement was to allow different

orders of variables in different loops. Variable
orders for each loop were defined based on vari-
able appearances in the function representation
at the beginning of each loop. The justification
behind this heuristic is that a variable with higher
appearance reduces a larger number of cubes/
terms when cofactors are calculated. Such an
algorithm was implemented and we noticed small
improvements for some benchmark functions.

In our next approach we decided to relax loop
restrictions and all variables appearing in the
function were used in the selection of the next
variable. Two groups of methods were developed;
Greedy and Look-ahead.

S.1. Greedy Methods

We dynamically choose a variable for the next
level expansion by recalculating appearances of all
variables at each decomposition level. The variable
with the maximum appearance number is chosen.
Two ways of breaking ties were implemented.

G1-choose a variable with the minimum differ-
ence between positive and negative appearances.
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variable order cc, a, d,

variable order

b, c, a, d

loop

(a (b)

loop

loop 2

loop 3

variable order ,
c, b, a,

loop

(c)

f a’cd’+ ac’d’+ acd + ab’d’+ a’bc’d

FIGURE 9 Influence of different variable orders on the number of nodes, loops and variable repetitions.

G2-choose a variable with the maximum differ-
ence between positive and negative appearances.

5.2. Look-ahead Methods

To choose the expansion variable for the next
level, the expansion to the next level is performed
for all variables and both expansions, Shannon
and Flipped Shannon. We use only one type of
expansion per level. All adjacent isomorphic nodes
are detected and combined together, and the
number of nodes and literals for each expansion
variable is calculated and used in the next-level
variable selection. Comparing to the Greedy-
methods the complexity of Look-ahead methods
increases approximately 2n times.

L1. a variable which generates the minimum
number of nodes in the next level is selected.
In case of a tie, the variable which has the
minimum appearance is selected.

L2. a variable with the minimum appearance num-
ber is selected. In case of a tie, the variable
which generates the maximum number of
nodes in the next level is selected.

L3. a variable with the minimum appearance num-
ber is selected. In case of a tie, the variable
which generates the minimum number of
nodes in the next level is selected.

The diagram presenting all methods is shown in
Figure 10. There is a common-sense justification
behind each of these heuristics. For the given order
of variables and every variable using one of two
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PSBDDGenerating a

Fixed Order Method

;P+rarCnece, ianPffar:e,[ Min nodes
max appearance

L1

Greedy Methods Look-Ahead Methods

Min appearance

Max nodes,
L2

Min nodes,
L3

FIGURE 10 Methods for PSBDD generation.

expansions, Shannon or flipped Shannon (only
one expansion per level), there exist 2 different
PSBDDs and our heuristics serve to select the best of
them. With our heuristics, the symmetric variables
are usually selected at the top of the set of ordered
variables.

6. LAYOUT COMPARISON

One possible implementation of PSBDDs is with
Sea-of Muxes as shown in Figure 11, although the
Sea-of-Muxes can be substituted with Sea-of-
Gates, or with a standard cell library composed
of cells built with standard gates or pass transis-

tors. Pass transistor networks as a direct choice
for PSBDD realization are currently under inves-
tigation. Additional buffers for large fanout vari-
ables and large pass transistor networks should
be considered where necessary. As realizations
of PSBDDs can have different shapes (usually
trapezoid or diamond), decompositional prepro-
cessing and additional floorplanning is required
for larger designs. Delays are proportional to the
number of levels and can be accurately predicted.
To determine all advantages of this new layout-

driven logic synthesis method, a detailed compar-
ison between the final layouts of PSBDDs and the
layouts of other multilevel representations should
be performed. Such comparisons are currently

(a) (b)

FIGURE 11 (a) an initial PSBDD, (b) its mapping to a Sea-of-Muxes.
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being pursued. In this paper, we present a
simplified analysis and comparison between two
representations, a PSBDD and a BDD, and be-
tween their mappings to a two-dimensional array,
built with neighbor-to-neighbor connected multi-
plexer cells and diagonal busses. For illustration
we use the function given in Eq. (7).

f atbrcre + acrde + acde + acdre
+ a’e’d’e’ + a’c’de (7)

The diagram and its implementation, for the
function from Eq. (7), realized as a BDD and as a

PSBDD are given in Figures 12 and 13, respec-
tively. It can be observed that the overall BDD
layout is larger than the PSBDD layout and not
as regular. In addition, the BDD representation
requires more diagonal buses (8 versus 7 for the
PSBDD) and has two variables assigned to the
same bus for two diagonals (e with a, and d with
c), which results in additional connections. Ob-
viously, creating a layout using a BDD representa-
tion is more complicated than using a PSBDD
representation. Based on the above example we
expect that there exist functions for which the

d/ a/,

(a) (b)

FIGURE 12 (a) OBDD for the function from Eq. (7), (b) its two-dimensional layout. M-multiplexer cell.

(a) (b)

FIGURE 13 (a) PSBDD for the function from Eq. (7), (b) its two-dimensional layout. M-multiplexer cell. W-wire.
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PSBDD layout is more compact and delay is
shorter than the BDD realization, however more
detailed comparison is needed to determine the
quantitative relations. The comparison between
the number of nodes and levels in BDDs and
PSBDDs for the MCNC benchmark functions are
given in Table II.
PSBDDs are regular structures, therefore, it

seems natural to compare them with PLAs, the
regular two-level representation which is still used
in design implementations. For totally symmetric
functions, it is easy to find examples when PSBDD
layout is better than PLA layout, because there are
no repeated variables. For instance assume the
function given below.

S2’3(a,b,c,d) abe + ac’d + bc’d + a’cd

+ b cd + bcd + acd
(8)

The diagram and its implementation, for the
function from Eq. (8), realized as a PLA and as a
PSBDD, are given in Figures 14 and 15, respec-
tively. When realized as a PLA (Fig. 14a) it has 14
AND gates and 6 OR gates, therefore, the area
cost of its realization can be estimated as 20 gates.
Such estimations are favorable for the PLA as
in reality if not folded, it will occupy an area equal
to the number of variables and their comple-
ments multiplied by the number of terms (for this
example 8.5 40units). The delay cost of this
implementation is equal to 8 gate delays plus 7

TABLE Comparison between Fixed-order, Greedy and Look-ahead methods

Fixed-order method Greedy methods (only S) Look-ahead methods (S and fS)
Benchmark functions (only S) G G2 L L2 L3

Name #in out# SOP #1o #le #no #1e #no #1e #no #1e #no #le #no #1e #no
apex7 17 29 28 2 21 124 25 150 25 148
c8 10 13 47 19 118 10 29 10 29
clip 9 44 18 103 20 108
clip 9 2 45 27 223 27 220
cm162a 10 2 12 3 18 48 12 35 12 35 11 19 11 29 11 24
count 20 15 26 2 37 226 22 53 20 53 20 37 20 55 20 55
cps 22 0 15 113 657 26 134 27 136
cps 18 27 26 164 28 158
cps 22 2 30 39 342 41 338
cps 18 4 16 62 325 24 71 25 68
duke2 17 2 10 18 54 18 52
duke2 17 13 13 21 105 20 90
duke2 18 17 15 22 92 23 86
duke2 15 18 7 28 107 28 108 15 48 16 53
duke2 18 19 6 18 58 18 48
duke2 16 21 10 19 76 20 81
duke2 17 6 7 38 119 17 63 18 47
duke2 18 7 15 21 109 25 134
example2 16 22 12 58 256 17 52 19 57
example2 14 58 6 14 30 14 30 14 30 15 31 15 31
example2 13 62 11 44 203 14 37 15 34
g2 20 98 20 66 337 22 189 32 228
g2 19 99 39 28 164 32 177
k2 12 0 6 6 37 144 15 34 16 57 25 94 12 27 12 20
sao2 10 20 10 45 18 75 18 71
sao2 10 2 22 10 55 17 87 16 73
sao2 10 3 26 10 47 31 171 16 68 17 70
ttt2 14 15 13 15 43 15 43 133 1001 14 31 14 31
vg2 14 10 28 74 14 30 14 30
vg2 25 10 40 421 30 187 25 91 25 91
vg2 10 3 10 38 342 18 77 18 77
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Benchmark functions

Name #in out #

TABLE II Comparison between PSBDD, BDD and PLA representations

Comparison Look-ahead methods (S and fS) Comparison

ROBDD OBDD L1 L2 L3 PLA PSBDD
[14] [51

SOP # no # no # le # no # le # no # le # no delay area delay area

apex7 17 29 28 62 141 25 150 25 118 52 980 50 578
b9 11 0 6 25 49 11 29 11 28 28 138 22 242
c8 x 13 10 13 47 22 85 10 29 11 28 57 987 22 200
cm162a 10 2 12 19 30 11 29 11 29 11 24 32 252 22 242
duke2 8 23 4 16 23 11 16 9 20 9 16 20 68 18 162
example2 16 22 12 32 50 58 256 17 52 19 57 44 396 48 722
example2 14 58 6 27 31 15 31 15 31 29 319 28 392
example2 13 62 11 24 24 44 203 14 37 15 34 37 297 30 450
k2 12 0 6 20 30 25 94 12 27 12 20 30 150 24 288
Average 13 15 38 55 16 72 17 72 37 399 29 364

f abc’ + ac’d + bc’d + a ’cd + b’cd + bcd’ +acd’

d’

a
a’

C

C’
d
d’

(a) (b)

FIGURE 14 PLA realization of the function from Eq. (8). (a) AND-OR planes, (b) AND plane-OR tree.

wire delays. So, the total cost of this realization
is 20 gates and 8 delays, not counting wire unit
delays. When the OR cascade plane is replaced
with the OR tree (Fig. 14b) it requires 6 OR gates.
The OR tree introduces 3 gate delays and 2 wire
delays. Therefore, the cost of AND-OR tree reali-
zation is 20 gates and 7 delays for the complete
design.
For comparison we implement the same func-

tion, from Eq. (8), using the PSBDD shown in

Figure 15a. It requires 6 mux cells and 3 gate
delays when implemented in the Ordered Shannon
Lattice Array, as shown in Figure 15c. The multi-
plexer array is built with abutted multiplexer cells,
and a unit multiplexer cell is shown in Figure 15b.
Assuming the cost of a mux cell to be equal to
that of two AND gates and one OR gate and the
delay of that cell to be equal to two gate delays, the
total cost of the PSBDD realization is 18 gates and
6 gate delays without wire delays. Therefore, we
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f abc’ + ac’d + bc’d + a’cd + b’cd + bcd’ +acd’

(a) (b) (c)

FIGURE 15 PSBDD realization of the symmetric function from Eq. (8). (a) PSBDD, (b) multiplexer cell, (c) arrays of abutted
multiplexer cells.

can observe, that for the given totally symmetric
function, the PSBDD layout is superior both to
the PLA and the PLA with the OR plane realized
as a tree.
Now, we will generalize our observations by

analyzing the PLA and PSBDD layouts for a
symmetric function on n variables. Because the
PSBDD representation is developed primarily for
deep-submicron technologies, we assume that wire
unit delay is equal to gate delay. The total number
of cells (muxes) needed to realize an arbitrary (thus
including the worst case) symmetric function of n
variables as a PSBDD is n2/2 and the area is equal
to 2n2 gate area (the area of the multiplexer is
equal to the area of 4 gates). The delay is equal to
the number of levels, which is n, multiplied by two
(two gate delays per level). For an arbitrary
symmetric function realized as a PLA, the total
number of columns is k (k is a number of terms in
SOP) and the total number of rows is 2n. Thus,
assuming wire delay equal to gate delay, the delay
in PLAs is 2n + k unit delays. The ratio given in
Eq. (9) shows that for totally symmetric functions
a PSBDD implementation has smaller delay than a
PLA implementation. And from the area compar-
ison in Eq. (10) we conclude that the area of the
PSBDD layout is smaller for symmetric functions
with k larger than n. It should be noted that for
this comparison we have chosen the multiplexer

implementation of PSBDDs, which is the least
favorable.

delay PLA 2n + k
=>1 fork>0 (9)

delay PSBDD 2n

area PLA
area PSBDD

(2n + 1)k
2n2

> for k > n (10)

Using the same delay and area assumptions and
the same evaluation procedure as above, we com-
pare areas and delays for a number of bench-
mark functions implemented as PLAs and as
PSBDDs, and we present results in Table II. For
PSBDD calculations we substitute the number of
function variables, n, with the number of levels in a
PSBDD, 1. (1_> n).

7. EXPERIMENTAL RESULTS

The algorithms are coded in the C language, and
run in the UNIX environment on SPARC work-
stations. In Table I the results for functions from
the MCNC benchmark set are presented. The
function name, the number of input variables,
the output number, and the number of terms in the
Sum-Of-Product (SOP) representation, optimized
with Expresso, are all given in columns one, two,
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three and four, respectively. In the next three
columns the results for Fixed-Order Method are

given; the number of loops (#1o), the number of
levels (#1e) and the number of nodes (#no). The
results, the number of levels and the number of
nodes, for Greedy Methods, G1 and G2, are given
in the next four columns. In the next six columns,
the results for three Look-Ahead Methods, L1,
L2, and L3 are listed. The "-" means that the
PSBDDs could not be generated using the
particular algorithm with the given memory and
time limitations.

It can be noted that for most of the tested
functions the Look-ahead heuristics, especially L3,
give better results than the Greedy ones. However
for some functions, as for example cm162a and
count, the results were best for L1 heuristic. In a
few cases, example 2 (output 58), and sao 2 (all
tested outputs) the Fixed-Order Method gives the
better results than the other methods. Reported
results were generated on relatively medium sied
functions to allow us to better understand and
analyze these algorithms for future research. In
addition, there exist functional decomposition
methods which can be used as preprocessing,
therefore the size of the function is not of great
concern at this time.

It can be easily seen that for these real-life
functions we have generated PSBDDs with accep-
table numbers of nodes and levels. For the major-
ity of the tested functions the number of levels is
smaller than two times the number of func-
tion variables. Only for function clip (both out-
puts) it is close to three. This function is currently
being analyzed to give us hints for further
improvements.

In Table II we compare PSBDDs with Reduced
Ordered Binary Decision Diagrams (ROBDDs)
generated by the algorithm from [3] and OBDDs
generated with the algorithm from [5]. Column
meanings are the same as in Table I. As was shown
in Section 6, mapping OBDDs to a two-dimen-
sional array is not a direct process. It usually
requires adding dummy nodes to make routing
feasible. Therefore, the final area and delay could

be larger than suggested by the number of nodes
and the number of variables. In case of ROBDDs,
which are not planar, it is necessary to duplicate
nodes to make ROBDDs planar and add dummy
nodes for routing. Therefore, the initial conclusion
can be drawn that, despite the larger number of
nodes, PSBDDs are attractive alternatives and
should be further investigated. In the same table
we also included comparison with PLA for some
benchmark functions. Both delay and area for
PSBDDs and PLAs are calculated using Eqs. (9)
and (10). However, for PSBDD calculations for
non-symmetric function in the place of n, the num-
ber of function variables, we use the number of
levels in PSBDD l, which is always larger or
equal to n. As it can be observed, for a number
of benchmark functions delays were smaller for
PSBDD implementations. The area was also smal-
ler for functions where the number of SOP terms
is larger than a number of function variables.
We expect the delay and area of PSBDDs to
decrease with further improvements in PSBDD
generation algorithms.
One must also remember that, to show the

power of this approach, only non-decomposed
benchmark functions were tested and no symmetry
information was explicitly used in the present
experiment. To understand better how our heur-
istics work we compared the variable orders
generated by our heuristics with the functions’
symmetry sets, as shown in Table III for L3
heuristic. The number of levels and the number of
nodes in PSBDDs are given in columns labeled
"#1e" and "#no", respectively. It is indicated by
"y" in column "match" if variables from a
symmetry set are together in the variable order
and "y" in column "on top" indicates that the
symmetry set was placed at the beginning of the
variable order. Upper case letters indicate com-
plemented variables. For all but one of the
reported functions we found a match and the
symmetry set was placed on top of the order,
which indicates that our heuristics are really good
and generate good orders of variables. Interest-
ingly, for a high percentage of functions that
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TABLE III Variable order versus symmetry sets

Benchmark functions L3

Name # in out # Order of expansion variables # le # no

Symmetry sets Comparison

From [11] Match On top

b9 11 0 (aBfJ) ecHIKgd 11 28
c8 10 13 (heiabcdg)jf 10 29
cm162a 10 2 (gBedf)Ch(ih)(gj) 11 24
example2 14 58 (gDc)cEbaf(hijklmn) 15 31
example2 14 59 (cdaeh)bf(gijklmn 14 23
k2 12 0 GFD)aBieChK(jl) 12 20
ttt2 14 15 (gakjCHEIflmn) 14 30
sao 10 0 (JE)dbhaagGgcEhicAi 18 80
vg2 15 0 (bdK)JCHEIflmnodb 15 30
vg2 25 bdegijlmogr 25 91
vg2 14 2 (acegil)nkHDjfmb 14 30
vg2 18 3 bdfhjlprGnEKOM(ci)ga 18 77

aBfJ y y
heiabcdg y y

aBedf, ih, gj y y
gDc, hijklmn y y
cdaeh, gijklmn y y

GFD, jl y y
gakjCHEIflmn y y

JE y y
dbKfim partial y

ck n n
acegil y y

ci y y

would be characterized as non-symmetric in
previous papers [3], we still find isomorphic nodes
and realize these functions in lattices without
repeated variables.
The generated results are good in terms of the

small number of variable repetitions and the small
number of nodes. The small number of repetitions
is due to the following reasons: (1) there are many
partial symmetries in these functions [11], and our
heuristics take those symmetries into account (2) it
was shown experimentally that many real-life
functions have a lot of single variable symmetries
[11], (3) even if there are initially no symmetric
variables in a function, they can be created by
repeating variables and applying the Join-Vertex
operations.
Power analysis of the presented approach will

not be discussed here, however it should be
mentioned that the power dissipation associated
with interconnects can be easily determined be-
cause in our approach the interconnect length and
delays are known directly from the diagrams. That
also allows to accurately estimate various circuit/
layout parameters before the actual layout is com-
pleted. Using these algorithms we have demon-
strated that a regular multilevel, two-dimensional
representation of a function can lead to practical
solutions.

8. CONCLUSIONS

Our experimental results demonstrate that effec-
tive heuristics can be developed to minimize the
size of PSBBDs by proper variable ordering and
very good results can be obtained for practical
benchmark functions. Next, we showed that by
adding one more expansion type, flipped Shannon,
in Look-ahead methods, the numbers of nodes
and levels were smaller when compared to pure
Shannon PSBDDs. Dynamic generation of the
variable order proved to be a good approach in
situations where variable exchange-based methods
are totally unpractical. At a time when intercon-
nection delay is becoming the major factor in
limiting device performance, these diagrams,
which offer localized connections and well-defined
structure, are one of the solutions to the problem.
Our method is good for completely as well as

incompletely specified functions. It can be general-
ized by allowing more powerful neighborhood
geometries (more inputs and outputs from neigh-
bors while maintaining a regular structure) and
by mixing control variables in levels, which is an
extension to Free Pseudo-Symmetric Diagrams.
This concept can also be extended to function
representations based on XOR gates as was shown
in [10].
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In conclusion, there are important advantages
to PSBDDs from the point of view of deep sub-
micron technologies, because: (1)connections are
short and based only on local cells abutting, (2)
delays are equal and predictable, (3) late-arriving
variables can be placed closer to the output, (4)
logic synthesis can be combined with layout, so
that no special stage of placement and routing is
necessary or it can be a good starting point for
specialized physical design algorithms, and (5)
power estimation is simplified as the interconnect
contribution can be easily calculated from the
length of interconnections. Our Look-ahead meth-
ods of variable ordering for PSBDD generation
offer significant improvements in reducing sizes
and delays of PSBDDs.
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