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ABSTRACT
From the time and money lost sitting in congestion and waiting
for traffic signals to change, to the many people injured and killed
in traffic crashes each year, to the emissions and energy consump-
tion from our vehicles, the effects of transportation on our daily
lives are immense. A wealth of transportation data is available to
help address these problems; from data from sensors installed to
monitor and operate the roadways and traffic signals to data from
cell phone apps and — just over the horizon — data from connected
vehicles and infrastructure. However, this wealth of data has yet
to be effectively leveraged, thus providing opportunities in areas
such as improving traffic safety, reducing congestion, improving
traffic signal timing, personalizing routing, coordinating across
transportation agencies and more. This paper presents opportuni-
ties and challenges in applying data management technology to
the transportation domain.

KEYWORDS
Data Management, Smart Cities, Transportation Data
ACM Reference Format:
Kristin Tufte, Kushal Datta, Alekh Jindal, David Maier, and Robert L. Bertini.
2018. Challenges and Opportunities in Transportation Data. In Proceed-
ings of The 1st ACM/EIGSCC Symposium On Smart Cities and Communities
(SCC2018). ACM, New York, NY, USA, 8 pages.

1 INTRODUCTION
Through innovations in transportation, our world has become in-
creasingly connected. However, transportation comes with multiple
challenges. It is estimated that in 2016, 37,461 people in the United
States died in fatal car crashes [34]. This number represents a 5.6%
increase in fatalities over 2015 and the highest number of traffic
fatalities since 2008 [34]. Fatalities are not the only cost of trans-
portation. In 2014, commuters spent 6.9 billion hours in congestion,
wasting 3.1 billion gallons of fuel and costing the U.S. economy an
estimated $160 billion [50]. Finally, transportation accounts for 27%
of greenhouse gases produced in the United States [13]. With in-
creasing vehicle travel in the U.S. [54] and the dramatic increase in
privately owned cars in developing countries, these adverse effects
of transportation systems are felt across the globe.
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classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
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Interestingly, transportation systems are relatively well instru-
mented; sensors and surveillance are commonly installed on free-
ways, on buses and trains, at traffic signals, in bicycle lanes and
more. In addition to such fixed sensors, vehicles are well instru-
mented, and private-sector companies gather transportation data
from location data from cell phones and vehicles [20, 23, 30, 47]. Fi-
nally, the federal government, private automakers and after-market
developers are rapidly developing automated and connected vehi-
cle technology [9]. This technology is expected to generate vast
amounts of data, in excess of 20 petabytes/second by some esti-
mates [53]. Transportation data is regularly gathered and archived
[6, 10, 15, 24, 39, 41], though approaches are inconsistent. Better
use of transportation data and archives could improve real-time
traffic signal timing; personalize routing; improve reactions to traf-
fic crashes by coordinating response across different transportation
agencies; and improve understanding of traffic congestion and bot-
tlenecks. All of these would help improve safety, reduce congestion
and limit carbon emissions. There is a wealth of data available from
transportation systems that has the potential to help address several
critical issues and therein lies opportunity.

Leveraging transportation data for applications such as safety
improvements and congestion and emissions reductions requires a
variety of new data management technologies. New data models
such as multi-graphs or semantic ontologies may be required to
represent the complex relationships among different transportation
modes. New data integration techniques are needed to combine the
truly varied, multi-source transportation data in real time. Exist-
ing physical system designs do not effectively fit the wide variety
of dynamic transportation data that needs to be analyzed. New
query processing techniques are needed to process richer declara-
tive queries which arbitrarily select and combine different pieces
of the transportation graph. The dynamically changing nature of
transportation data requires new update and query semantics. And
finally, an understanding of how to systematically re-use data col-
lected for one purpose (operating the transportation system) for
another purpose (research or planning) is required. This paper
contributes a description of opportunities and challenges in the
transportation domain based on 20 years’ work in this arena.

The remainder of the paper is organized as follows. Section 2,
discusses trends in and characteristics of transportation data. In
Sections 3 and 4, we describe different personas and use cases in
the transportation domain. Finally Section 5 considers open data
management research questions in the transportation domain.

DOI: 10.1145/3236461.3241971
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2 THE TRANSPORTATION DATA DOMAIN
Transportation data is diverse. It includes data from fixed sensors
with relatively low volumes and velocity, crowd-sourced data from
apps such as Google Maps [17] and Waze [56], and data from con-
nected and automated vehicles with potentially very high volumes
and velocities. Transportation data is regularly archived; those
archives provide a rich data source that can be analyzed to help
solve societal problems. In this section, we survey transportation
data. We begin by discussing newer data sources such as connected
and automated vehicle data, and probe-vehicle and crowd-sourced
data. We then discuss transportation data archives and traditional
data sources and conclude with a brief analysis of data volumes
and trends.

2.1 Connected and Automated Vehicle Data
Perhaps the most exciting new transportation data source is con-
nected vehicles. At a high level, connected vehicles are vehicles that
communicate with other vehicles using “Vehicle-to-Vehicle" (V2V)
technology or to the infrastructure using “Vehicle-to-Infrastructure"
(V2I) technology. The federal government is pursuing Connected
Vehicle programs based on Dedicated Short Range Communica-
tions (DSRC) [25] along with auto manufacturers and other part-
ners; SAE J2735 [42] is the likely message set for connected-vehicle
communications. The connected vehicle data sets have enormous
possibilities — both in terms of the potential to be very large (10-27
petabytes/second by some estimates [53]) and very useful.

In addition, private automakers are increasingly automating
their vehicles with functions including adaptive cruise control, lane
keeping, automatic braking for collision avoidance, steering and
parking to name a few. Recent developments include tests of fully-
automated vehicles, including trucks [18, 48].

Advances in connectivity and automation promise improved
and safer driving experiences as well as a wealth of data. Today’s
vehicles already internally amass large amounts of data, includ-
ing location, speed, acceleration, brake status, windshield-wiper
status and temperature [7]. According to the US Department of
Transportation (DOT) connected vehicles can improve mobility,
safety and the environment [25, 55]. Samples of transportation data,
including connected vehicle data, are publicly available through
the USDOT ITS Public Data Hub [22].

2.2 Probe Data and Crowd-Sourcing
Another source of transportation data comes from probe vehicles —
vehicle position data and other attributes often collected through
cell phone apps or other mechanisms. When a user allows an app
such as Google Maps to use the location of their phone, location
information is anonymously sent back to Google [16]. This “crowd-
sourced" data is used by applications such as Google Maps to esti-
mate speed and provide traffic information, but may also be useful
for transportation planning and other purposes. The National Per-
formanceManagement ResearchData Set (NPMRDS) [35] is another
example of probe data. The NPMRDS data can be up to 1-3 GB per
month for larger states [29]. A final example of crowd-sourced
data is Waze (now part of Google) [56]. Beyond standard passive
crowd-sourcing of location and traffic information, Waze further
allows users to actively enter information about events such as

crashes; this information is then incorporated into the Waze inter-
face and can also be provided to public agencies through the Waze
Connected Citizens program [56].

2.3 Fare-Card Data
Transit systems are beginning to use RFID smart cards and other
connected apps for transit payment; the ORCA card in Seattle, WA
[37] and the Hop Fastpass [14] in Portland, OR are two examples.
Data from those cards — such as where people get on and off transit
— is collected and is potentially very valuable to researchers and
transportation planners as such data can be used to understand
people’s travel and trip patterns.

2.4 Transportation Data Archives
The transportation community has realized the value of archiving
data collected for the purpose of operating the transportation sys-
tem, recognizing that this data is also useful for other purposes. For
example, data gathered while operating traffic signals — turning the
lights green, yellow and red — if archived and stored, can be used
to improve signal timing. Archives that gather and store such oper-
ational data are becoming commonplace and include PORTAL [39],
iPEMS [24], RITIS [41] and DriveNet [10]. Cities such as Atlanta
[6] and Dublin [15] are also developing archives.

To illustrate, PORTAL is the official transportation data archive
for the Portland, OR – Vancouver, WA metropolitan region [39, 51].
PORTAL archives over ten types of data (most are live data feeds)
from six different transportation agencies in the region into a ~3TB
PostgreSQL database. Major types of data in PORTAL include free-
way traffic speeds and vehicle volumes, arterial traffic volumes,

Data Type Agencies
Freeway Speed,
Volume, Occupancy

ODOT, WSDOT

Freeway & Arterial
Travel Times

ODOT, City of Portland, Clark
County, Washington County

VMS & VAS Sign Data ODOT
TOC Incident Data ODOT
Arterial Volume &
Speed

City of Portland, Regional, Clark
County (Speed is Clark County
only)

Central Traffic Signal
System Data

City of Portland, Clark County

Passenger Counts, On-
time Performance from
AVL/APC System

TriMet, C-TRAN

GTFS Schedule Infor-
mation

TriMet, C-TRAN

Weigh-In-Motion Data ODOT
Bicycle Counts City of Portland
Vehicle length data ODOT, Washington County
Signal Phase and Tim-
ing Data (Under Devel-
opment)

Clark County, City of Portland

Table 1: Data sources
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arterial traffic signal data and travel times, transit (e.g. bus, light
rail) data and freight data. (Note that “vehicle volume" is a flow
measure, based on vehicle counts past a point over time). PORTAL
has a web interface that provides analyses, customizable visual-
izations and data downloads at user-specified aggregation levels.
Table 1 lists current PORTAL data sources, with data sources under
development marked and Figure 1 shows a screenshot of the current
travel time page on the PORTAL web site. Finally, a documented,
sample PORTAL data set is available [38].

2.5 Freight: WIM and Length
Freight traffic accounts for 7% of traffic, but 17% ($28 billion) of
the estimated $160 billion cost of transportation to the 2014 U.S.
economy [50]. Understanding freight traffic is therefore important.
Freight data comes in multiple types including "weigh-in-motion
(WIM)" data in which trucks are weighed and their lengths and
heights measured as they travel along key state highways for ef-
ficient enforcement of vehicle size and weight limits [32]. WIM
data provides accurate vehicle-type (semi-truck vs. pickup-truck,
etc.) and length data. Data on vehicle lengths is also available from
standard freeway detectors (dual inductive loop).

Key Data Features: Structural and Quality Differences. The two
types of freight data are similar in that both can be used to estimate
the percentage of freight trucks on the road. The WIM data is
detailed and accurate, but is available for limited locations, while
the newer vehicle-length data is less detailed, but is available from
many more locations.

2.6 Transit: Ridership and On-time
Performance

Transit (e.g., bus, streetcar, and light rail) systems collect large
amounts of data from Automatic Vehicle Location (AVL) and Auto-
matic Passenger Counter (APC) systems on their vehicles. This data
includes information such as whether a bus stopped at a stop, how

Figure 1: Screenshot of PORTAL Travel Time Interface

long the bus was stopped, the number of passengers who boarded
the bus, the number who alighted, and whether the handicap lift
was used. Used by transit agencies for fleet management, the data
are collected every time a bus stops at or passes a bus stop.

Key Data Features: High-Volume, Standardized Formats. Transit
data is relatively high-volume. In addition, transit-schedule data
and actual arrival times and locations are typically provided in a
standard format called General Transit Feed Specification (GTFS)
[19]; a format originally developed by a collaboration between
TriMet, the Portland, OR transit agency [49], and Google [17], which
is now used by more than 1,350 agencies.

2.7 Arterial: Vehicle Volume, Travel Time,
Traffic Signal Phase and Timing

Loosely, arterials are major roadways with full access (not limited-
access freeways) Arterials also typically have interrupted flow (not
uninterrupted as on freeways) involving traffic signals or round-
abouts for intersection control. Traffic is intended to stop on arteri-
als (not on freeways).

Vehicle Volume: Arterial vehicle counts are collected from either
high-definition radar or inductive loops and are typically reported
at 1–5 minute intervals.

Travel Time: As arterials are interrupted-flow facilities (due to
traffic signals), travel times along arterials aremeasured directly and
are not interpolated from spot speed measurements. Vehicle arrival
information at one location is matched with arrival information
from a second location to determine travel time between those
location. This matching can be done using technologies such as
Bluetooth readers or license plate readers.

Traffic Signal Data: Sensors are installed in arterial roadways to
help operate traffic signals. Arterial traffic signal data includes logs
of traffic signal cycles, vehicle volume counts and signal phase and
timing data — data detailing when traffic signals change phase.

Key Data Features: Point-based vs. Segment-based. A key feature
of this data is that while arterial volumes are point-based by defini-
tion, arterial travel time is segment-based, requiring the ability to
combine point-based and segment-based data.

2.8 Freeway: Speeds and Vehicle Volumes
PORTAL has archived freeway traffic speeds and vehicle volumes
from the Oregon Department of Transportation (ODOT) since 2004
and from the Washington Department of Transportation (WSDOT)
for Vancouver, WA since 2012.

Key Data Features: Multiple Sensing Types; Low Data Volume.
Lane-level traffic speed and volume data is collected from multi-
ple sensor types including traditional inductive loops and newer
high-definition radar detectors which have different sensing char-
acteristics. The differing characteristics do not impact relatively
simple data usages such as creation of speed maps and calculations
of travel times; however, the differences may impact more sophisti-
cated analyses such as automatic identification of the location of
freeway bottlenecks.

2.9 Data Volume and Trends
The volume and types of transportation data available have grown
significantly in recent years and this growth is expected to continue.
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Data growth has come from new data sources such as probe vehicle
data, crowd sourcing and soon-to-be-available connected-vehicle
data. Connected vehicle data may be tens of petabytes a second
[53], Signal Phase And Timing (SPAT) is estimated at a TB/year or
more for a small community and finally data collected from mobile
phones by companies such as Google and Nokia with detailed travel
data is expected to be multiple TB/s per year [26]. These data sets
are all relatively large in volume and velocity, experience shows
that the major impediments to using the data are issues including
institutional barriers, modeling, combining, cleaning and repurpos-
ing the data. This section has summarized the rich transportation
dataset, the next section describes the personas of the data users
who may leverage this data.

3 PERSONAS
The transportation system and transportation data have a wide
variety of stakeholders; as such transportation applications must
serve a variety of users with varying needs. In this section, we
describe four personas that use transportation data: Traveling Pub-
lic, System Operators, Transportation Planners and Private-Sector
Businesses.

3.1 Traveling Public
The traveling public use routing services, such as provided by
Google Maps [17] or a transit agency, on-line speed maps, and
variable message signs that provide travel times or warn of con-
gestion ahead. In the not-too-distant future, we expect the trans-
portation system to interact directly with on-board systems on ve-
hicles (vehicle-to-infrastructure) and for vehicles to communicate
with each other (vehicle-to-vehicle). Applications that customize
information to users’ preferences or combine data from multiple
transportation modes will be important.

3.2 System Operators
System Operators are responsible for day-to-day operation of the
transportation system. Operators make real-time decisions such as
deploying incident response teams, adjusting traffic-signal timings
or adding additional transit vehicles in response to traffic conditions
or incidents. Operational systems are currently siloed with transit
agencies managing and responding to transit data, departments of
transportation managing freeways and responding to data from
freeways, cities and counties managing arterials and local roads,
and so on. Combining data across systems and agencies would be
of great value to transportation departments. System Operators and
the systems they manage have both hard and soft response-time
limits and need reliable systems with high availability.

3.3 Transportation Planners
Transportation planners are responsible for long-term planning
and decision making, such as evaluating options for reducing con-
gestion, determining if a new lane is needed, fixing speed limits,
supporting budgetary allocation priorities, and making transporta-
tion plans which require accurate estimates of current traffic levels.
They also are responsible for calculating performance metrics such
as service quality and sustainability. Their use of the system is

offline, but includes integration and analysis of large volumes of
diverse data.

3.4 Private-Sector Businesses
Private-Sector Businesses are rapidly getting into the transporta-
tion sector including companies such as Google, which provides
mapping services [17] and is incubating Sidewalk Labs [45], Waze
(now owned by Google), which allows the public to report traffic in-
cidents [56] and Transportation Network Companies (TNCs), such
as Uber [52] and Lyft [33], that connect passengers with drivers
to provide ride services. RideScout is a relatively new application
which allows a user to compare transportation options acrossmodes
(buses, bikes, TNCs, etc.) to give users choices [40].

4 POTENTIAL APPLICATIONS
Transportation data has a wide variety of applications. Selected
potential applications are described in this section. A detailed list of
connected vehicle applications can be found on the US Department
of Transportation web site [25].

4.1 Multi-modal Routing
Traditional routing services, such as in Google Maps, provide the
Traveling Public point-to-point routes between two locations, typ-
ically using a single mode of transportation and optimizing for
shortest time or shortest distance. Routing services that integrate
multiple modes in one trip, such as drive to the light rail station,
take light rail into the city, rent a bike from bikeshare to get to final
destination are desired and are under development in some cities.
Routing based on user preferences such as find the shortest route to
my work stopping by the coffee shop I like or more complex find me
most sustainable route to my home are also desirable. Routing based
on current or forecasted actual traffic conditions is also sometime
available and very desirable.

4.2 Improved Transit Arrival Predictions
Today transit arrival feeds have information about when buses and
trains are estimated to arrive at locations. Real-time transit arrival
data (available in GTFS format [19]) feeds the “transit tracker" signs
that are seen at bus or light rail stops or through apps. However,
this data may not correctly predict future arrivals in part because it
is based on current location, but does not integrate live information
on road congestion. If live congestion data can be jointly analyzed
with live real time GTFS data, the accuracy of arrival predictions
can be improved. Combining these data sources requires on-line
data integration and dynamic merging of geo-spatial data. Such
accurate arrival data can also feed apps [3] that provide transit-
arrival information.

4.3 Real-time Congestion Detection
In transportation, a bottleneck is a point on a roadway where con-
gestion (queueing) occurs on a regular basis. For example, a bottle-
neck may be caused by a sharp turn or a narrowing of the roadway.
It is common in transportation to use off-line analysis of traffic
data and knowledge of the structural road network to identify
bottlenecks. However, dynamic identification of congestion — rec-
ognizing congestion that occurs due to non-recurring events such
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as inclement weather, maintenance, construction, crashes or special
events — and its secondary effects where congestion on a primary
road or highway causes congestion on alternate routes is also im-
portant. Traffic managers would like to identify and react to such
secondary congestion. Live traffic updates in conjunctionwith static
road network data can be used to model primary and secondary
effects of congestion. Betweenness centrality measures might be
used to identify secondary effects of congestion; however, doing so
would require updating standard algorithms to run incrementally
over on-line data.

4.4 Integrated Corridor Management
Integrated Corridor Management (ICM) means managing move-
ment of people through a "transportation corridor." For example,
many people travel back and forth from downtown Portland to its
eastern suburbs; this route is considered a transportation corridor.
One can use many different ways to travel from downtown Port-
land to the eastern suburbs — freeway (I-84), arterial (US 26/Powell
Blvd), light rail, multiple bus lines or even a bicycle. These facilities
are managed by different agencies; ODOT manages I-84, City of
Portland manages US 26/Powell Blvd and TriMet manages the light
rail and bus lines. The desired goal is for Operators to manage
these facilities in real-time in an integrated manner, focused less
on vehicles and more on people.

For example, in the case of a crash on the freeway, traffic sig-
nals on the parallel arterial can be re-timed to accommodate the
additional traffic that spills onto the arterials when the freeway
is congested. Additional buses and light rail trains could be dis-
patched.

Off-line analysis can answer two key questions of interest to
transportation planners: 1) How do travel times compare across
these different “modes" of transportation? and 2) What is the “mode
split" between the different “modes" (freeway, arterial, transit) of
transportation?

4.5 Improved Traffic-Signal Timing
The average driver spends many hours a year stopped at traffic
signals. Currently, most traffic signals change phase based either
on fixed plans that take into account time of day and day of week
or on sensors local to the intersection, which indicate, for example,
if there is traffic demand on a side street. Such systems do not take
into account the general state of the system. Further, for the signals
running on “fixed plans," traffic-signal timings are updated every
three to five years depending on signal location and municipality.

The SCATS System [43] uses real-time data from in-road sensors
to dynamically adjust traffic signal timing. Potential improvements
include more advanced algorithms and incorporating connected-
and automated-vehicle data. There is an opportunity to use real-
time analytics to improve dynamic, adaptive signal timing.

5 RESEARCH CHALLENGES
In the previous sections we described transportation data users
and potential applications. In this section, we describe research
challenges in building a transportation-data management system.
We argue that there are challenges across the entire stack, including

data model, data integration, physical data stores, query processing,
data dynamics, data re-purposing, and standardization.

5.1 Unified Data Model
In recent years, graph-based data models have been used in big-
data problems where the data could be naturally mapped to entities
and relationships between those entities. Indeed, the transporta-
tion data from different sources has an underlying transportation
network imbued with multiple relationships types, e.g. “Rita likes
Dutch Brothers Coffee Shop and knows Hector". Analysts want to
inherently leverage that network and co-explore different types of
relations in their analysis. However, such co-explorations lead to
expensive joins based on foreign key relationships in the traditional
relational model. The idea of using graphs is to walk across the
data structure, i.e., do look-ups instead of performing joins.

A graph is a collection of nodes or vertices and links or edges
between them, which may have one or more meta-data attributes.
For example, in transportation, bus schedules could be directly
mapped to a graph with bus stops as vertices and bus routes be-
tween stops as edges. Such a graph may have additional meta-data
indicating whether the stops (vertices) have shelters or not and
whether the bus connections (edges) have bicycle racks or not.
Other data sources might need to be preprocessed into graphs. For
instance, we can aggregate the average speed recorded by speed
sensors on different road segments and represent them as edges on
the road network. This preprocessing step embeds the large join
or group by operation required to establish the links between two
objects, which is analogous to establishing the foreign key relation-
ships. However, the cost is justified as it occurs one time during
ingestion [27] as opposed to repeatedly doing joins during query
processing in the relational model. Also, the dynamic merging of
multiple geo-spatial data sets is a very difficult problem. Systems
such as OpenLR show promise in addressing the merging issues
[36].

Analysts need to view data from different sources as a single
connected multi-graph, which essentially means that we connect
(logically) different types of entities and their relationships from
individual graphs into a single unified graph. Here the join operator
to unify the graph could be a straightforward equality match, e.g.,
joining train and bus networks on their common stops (vertices).
Alternatively, we could also apply more fuzzy join conditions, e.g.,
joining coffee and bus networks based on the geographic proximity
of their vertices. The multi-graph data model can provide a unified
view of the transportation data while letting the system take care
of the integration.

5.2 Just-In-Time Data Integration
Typically, transportation data collection and use has been siloed
by transportation agencies. However, advances in technology and
more sophisticated management of transportation systems are be-
ginning to require real-time, cross-agency integration of this data.
TheMulti-modal Routing, Improved Transit Arrival Predictions and
Integrated Corridor Management applications from the previous
section require cleaning and integrating large volumes of data of
different types and from different sources in real time.
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Data integration has been long studied in computer science
[4, 5, 31]. Traditional data integration aims to integrate several
source schemas into a single final schema. However, transportation
data sources cannot be converted to a new “final" schema; the data
sources will continue to produce data in their respective schemas
— and continue to evolve — so an on-line integration approach
is needed. Furthermore, different users have different integration
requirements. For example, transportation planners want to analyze
traffic congestion data for all freeways in a city sorted over time
and grouped by month. This sorting operation is starkly different
from system operators who want to view operational data from
all buses around an intersection where an accident occurred a few
seconds ago. It may be that every user — or even every task — needs
data integrated in a different way.

Thus, there is a need for a just-in-time approach to data integra-
tion, that considers both the real-time data as well as the real-time
user requirements. For example, an Integrated Corridor Manage-
ment (ICM) application may need to adjust bus dispatch or re-time
traffic signals on an arterial to accommodate an incident on the
freeway. ICM must take the input data from transit, DOT and city
and county agencies and produce output data customized for each
of the three agencies. Recent efforts, such as lazy ETL [28], do lower
the data load and integration costs; however, they would need to
be adapted to an on-line setting for continuously arriving data.

5.3 Choosing an Efficient Storage System
Transportation data sets are highly heterogeneous — with opera-
tional (i.e. transactional), streaming and archived data. The design
decision to select an efficient storage subsystem to manage such
diverse data or whether to create a new system is an open research
question. The traditional no one-size-fits-all [46] approach would
suggest using separate database backends to manage the diverse
data. In this direction, two alternate approaches have been proposed
in the recent past. The first is to build one-size-fits-all store that is
self-adaptive and automatically configures the backend store for
the current workload at hand. Examples include OctopusDB [8]
and H2O [1]. The second approach is to build middle-ware that
efficiently combines multiple backend stores into one seamless
data view for the user. Examples of this include the BigDawg Poly-
store [11, 12], and invisble glue [2].

Applying the approaches above to transportation data, one could
create one or more physical views to map the transportation multi-
graph data to storage back-ends leading to better query perfor-
mance. For example, a multi-graph can be stored in part as re-
lational tables, multidimensional arrays, de-normalized flat files,
standardized ontologies using Resource Description Framework
(RDF) triplets [21], or simply as key-value pairs. In addition, ap-
proaches such as creating secondary physical views on the same
data, i.e., the same piece of data represented in multiple ways phys-
ically by creating secondary indexes and other materialized views
can also be pursued. Selecting the right physical views (both pri-
mary and secondary) is challenging because of the large design
space (there are multiple data sources which could be combined
and stored in a large number of ways), lack of a fixed query work-
loads (transportation workloads are often exploratory or ad-hoc in
nature), and the presence of multiple storage backends. Exploring

these different approaches and picking the best storage back ends
for transportation data is an interesting research challenge.

5.4 Multi-graph Query Processing
Processing queries over the transportation data introduces a num-
ber of challenges. First, traditional graph analytics involves loading
and analyzing a given (typically static) graph. In contrast, as de-
scribed earlier, the transportation dataset is essentially a graph of
graphs and one or more graphs may be dynamically loaded and
processed depending on the analysis. For example, an analyst may
look for routes where every transfer has a coffee shop, thereby
involving the bus and the coffee shop graph. This ad-hoc selecting
and combining different pieces of the multi-graph is challenging.

Second, as a result of the complexity of the data sources, pro-
cessing descriptive declarative queries on transportation data is
challenging. For instance, a user may need to quickly find a route
rather than waiting minutes to find the best route. Thus, there is
a trade-off between producing fast answers versus good answers.
Furthermore, the complexity of the queries mean that the best or
exact answer may not be always possible, e.g., no route may satisfy
all conditions in case of personalized routing. In such situations, the
system could consider producing non-empty results which satisfy
the maximum number of predicates, ask users to rank the predi-
cates, or even decorate predicates as (soft) preferences or (hard)
constraints. These design choices need to be explored in more detail.

Third, query processing on multi-graphs blows up the search
space for many of the graph algorithms. For example, path find-
ing algorithms now need to consider several path combinations
between each of the input graphs. This makes finding the right
answers difficult for the users. In many cases, a user may want
to try out several sets of predicates before settling on ones which
best satisfy his requirements and which could be computed in a
reasonable time. The question then is whether the system can help
users to iterative explore the search space, e.g., slice and dice it into
regions of interest, and discover their results [44].

Finally, transportation data analytics could involve multiple
workload types over the same data set. Examples include support-
ing both real-time (for monitoring and trouble shooting) as well as
off-line (for reporting and planning) analytics, supporting graph
queries (e.g. identifying congestion) and relational operations (e.g.
joining two or more graphs) on the same underlying data, and run-
ning both batch as well as streaming analytics. Supporting these
mixed workload scenarios is challenging and there are several
recent efforts to build multi-workload and multi-store systems. Ap-
plying those ideas to the transportation domain, where the data
comes from a variety of data sources and maps naturally to a graph
structure, is an interesting problem.

5.5 Data Dynamics
Any transportation data system is sensitive to time as parts of the
data are frequently updated, such as traffic, load, etc. The queries
have a time dependency and a predictive nature aswell. For example,
a user may want to wait for bus on which he or she can get a seat,
but will the bus be still empty by the time the user actually boards
it? What will be the traffic conditions be by the time a user reaches
the road segment? And so on.
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Thus, transportation data systems needs to (i) efficiently manage
updates to portions of the multi-graph, (ii) consider the timing
of the transportation activity and how the data might change in
the near future, and (iii) consider the tolerance for stale results
for different users/applications, i.e., what should be the refresh
rate in case new data arrives? Note that different data sources
have different update schedules. Data streams from on-road or
vehicular sensors are updated multiple times a second or minute,
crash information may be on line for larger crashes, but may be
delayed for smaller incidents that do not have a major impact on
traffic. Transit schedules may change quarterly or more frequently,
e.g. in Portland bus schedules are refreshed every two weeks. Some
data has reporting schedules, for example, data from some sensors
might be reported every 6 hours, whereas events such as crashes
or inclement weather come up as they occur. While a traditional
database system can clearly handle infrequent updates to static
data such as transit schedules and sensor locations, a specialized
time series database e.g. IBM Informix are required to efficiently
order and index time series data availed from the sensors. It is an
additional challenge to combine static data with the streamed data.

In addition to automated responses to time-sensitive data by the
transportation data system, the users may want to influence some
of these decisions. For example, Starbucks may want a new outlet
to be immediately discoverable. Other updates can be driven by
the user, e.g., a user may want to try any new coffee shop on the
way, thereby requiring the system to update the coffee shop graph.
We believe that these requirements need an efficient meta-data
management system and standardized interfaces to represent the
data changes from these different organizations.

5.6 Data Re-Purposing
As described earlier, transportation data is most often collected for
the purpose of operating the transportation system and this “oper-
ational data" is often archived and then used for planning, analysis,
and research; we call this use of data collected for one purpose
and used for another, referred to as data re-purposing. A primary
motivation for data re-purposing is opportunistic — that is to take
advantage of readily-available, low-cost data with good temporal
and spatial coverage. Operational data has very broad coverage
compared to what is typically available for planning, analysis and
research. For example, a targeted traffic study completed as part of
a planning or research process might collect 48 hours of counts at
a particular location; in contrast, operational data gives 24x7x365
data at hundreds of locations across a city.

While re-purposing data allows planners and analysts to use low-
cost, high-coverage data sources, data re-purposing is challenging.
Specifically re-purposed data typically does not exactly match the
user needs. For example, data collected for the purpose of displaying
travel times to the general public might be re-purposed and used in
a research study to identify locations of traffic bottlenecks. As such,
the locations of the sensors (which were placed for the purpose of
travel time calculation), will not be ideal for the bottleneck study.
Similarly, the data quality may be lower than ideal for the bottleneck
study. However, due to coverage and low cost, the operational data
is still valuable for the bottleneck research study. Techniques for
assisting researchers and planners in bridging the gap between the

needs of their study and the available, but not perfect, data are
needed. Lastly, institutional barriers regarding the sharing of data
may prevail in some areas.

5.7 Standardization & Architectures
The standardization of transit data through the development of
the GTFS format [19] enabled the integration of transit routing
information in the Google Maps and other apps. In current practice,
transportation data is collected from a variety of sources. Data is
collected from multiple agencies, but more importantly different
agencies use different providers for the same service. For example,
the PORTAL archive receives traffic signal data from three different
vendors. The data produced by all three vendors is similar in con-
tent, but different in structure and in details. These differences lead
to inefficiency during combination. Standards or specificationsmust
be developed for all types of transportation data to enable its effec-
tive usage. As demonstrated by TriMet’s (the Portland, OR regional
transit agency) experience with GTFS, successful standardization
efforts require community engagement and simplicity.

6 PORTLAND URBAN DATA LAKE (PUDL)
The Portland Urban Data Lake (PUDL) is a collaborative project
which aims to begin to address some of the challenges described
above. The goal of the PUDL project is to develop Urban Analytics
for use by decision makers and to provide data access to public
agencies and the general public, especially innovators in the tech
community. From a policy perspective, PUDL will contribute to
increased transparency through open data and improved safety and
improved mobility through urban analytics, especially for tradi-
tionally underserved communities. From a technical perspective,
this project will collect, store and integrate Smart Cities-related
data and other data from a variety of sources including new sensor
deployments and existing data sources to provide a foundation for
data-driven decision making in the City of Portland. The project
is a collaboration between the City of Portland, Portland State
University, TriMet, Metro and Portland General Electric.

A key goal of PUDL is to develop a data architecture and platform
that can integrate and fuse the many Smart City data sources that

Figure 2: Proposed PUDL Architecture
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are available and that are required to effectively develop Urban
Analytics to achieve effective data-driven decision making. PUDL
aims to use the new architecture and platform to enable the effective
use of Data. At this time, PUDL pilot projects are underway with
community-based organizations and private sector partners. Figure
2 shows the proposed PUDL architecture.

7 CONCLUSION
The transportation domain presents significant challenges and op-
portunities for data management researchers. The vast store of
transportation data has yet to be fully leveraged and presents a
variety of interesting research areas with potentially large impacts.
We have presented a description of the transportation data do-
main, personas that may use the transportation data along with
their potential applications, and a detailed research landscape for
building a transportation data system. Open problems for the data
management community include unified data model, just-in-time
data integration, choosing efficient storage systems, multi-graph
query processing, handling dynamic transportation data, and data
re-purposing.
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