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Abstract 

Recent studies have found an association between functional variants in TREM2 and PLD3 and 

Alzheimer’s disease (AD), but their effect on cognitive function is unknown. We examined the 

effect of these variants on cognitive function in 1,449 participants from the Wisconsin Registry 

for Alzheimer’s Prevention, a longitudinal study of initially asymptomatic adults, age 36-73 at 

baseline, enriched for a parental history of AD. A comprehensive cognitive test battery was 

performed at up to five visits. A factor analysis resulted in six cognitive factors that were 

standardized into z scores (~N [0, 1]); the mean of these z scores was also calculated. In linear 

mixed models adjusted for age, gender, practice effects, and self-reported race/ethnicity, PLD3 

V232M carriers had significantly lower mean z scores (p=0.02), and lower z scores for Story 

Recall (p=0.04), Visual Learning & Memory (p=0.049), and Speed & Flexibility (p=0.02) than 

non-carriers. TREM2 R47H carriers had marginally lower z scores for Speed & Flexibility 
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(p=0.06).  In conclusion, a functional variant in PLD3 was associated with significantly lower 

cognitive function in individuals carrying the variant than in non-carriers. 

 

Keywords: TREM2, PLD3, family history, Alzheimer’s disease, memory, cognition, 

longitudinal 

 

1. Introduction 

Alzheimer’s disease (AD) is the most common form of dementia, accounting for 60-80% of 

dementia cases. Over 5 million Americans have AD and that number is expected to increase to 

nearly 14 million by 2050 due to the projected increase in the number of older Americans 

(Alzheimer's Association, 2016). AD is the sixth leading cause of death in the United States and 

the only of the top ten causes of death with no way to prevent, cure, or impede its progression 

(Alzheimer's Association, 2013). There are currently few known risk factors that are highly 

predictive of AD. Individuals with a family history of AD are known to be at increased risk for 

developing the disease, and the 4 allele of the apolipoprotein E gene (APOE) is also a well-

established risk factor. Carrying one copy of the APOE 4 allele results in a three-fold higher 

risk of developing AD than those with two copies of the more common 3 allele, and those with 

two copies of the 4 allele have an 8- to 12-fold higher risk (Holtzman, et al., 2012,Loy, et al., 

2014).  

Recent genome-wide association studies (GWAS) have identified 19 additional genetic 

regions that are associated with AD (Lambert, et al., 2013,Naj, et al., 2011). While potentially 

important for risk prediction, the genetic variants in these regions are of unknown function and 

have modest odds ratios (OR) ranging from 1.1 to 1.2 per risk allele. Moreover, these variants 
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together explain a relatively small portion of the full genetic contribution to AD (Ridge, et al., 

2013). GWAS have typically focused on common genetic variants, with minor allele frequencies 

5%, as these were historically the types of variants included on genome-wide chips. However, 

recent sequencing studies have identified three functional low frequency (minor allele frequency 

0.5-5%) variants with a more substantial effect (OR of approximately 2-5) on risk for AD: R47H 

in the triggering receptor expressed on myeloid cells 2 gene (TREM2) [(Guerreiro, et al., 

2012);(Jonsson, et al., 2012)], and V232M and A442A (splice site variant) in the phospholipase 

D family, member 3 gene (PLD3) (Cruchaga, et al., 2013). We sought to examine the effect of 

these variants on cognitive performance in a longitudinal study of middle-aged adults who were 

cognitively healthy at enrollment and enriched for a parental history of AD.  

 

2. Methods 

2.1. Study population 

Study participants were from the Wisconsin Registry for Alzheimer’s Prevention (WRAP), a 

longitudinal study of initially asymptomatic adults, age 36-73 at baseline, that allows for the 

enrollment of siblings and is enriched for a parental history of AD (i.e., a biological parent with 

either autopsy-confirmed AD, probable AD as defined by NINCDS-ADRDA research criteria 

(McKhann, et al., 1984), or dementia due to AD based on the Dementia Questionnaire (DQ) 

(Ellis, et al., 1998)). Details of the study design and methods have been previously described 

(Engelman, et al., 2014,La Rue, et al., 2008,Sager, et al., 2005). Baseline recruitment began in 

2001 with initial follow up after four years and subsequent ongoing follow up every two years or 

until a participant receives a clinical diagnosis of AD, at which point they are no longer 

followed. Data from up to five study visits were available for the current analyses. A total of 
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1,449 WRAP participants had genotypic data for the low frequency variants analyzed in the 

current study. This study was conducted with the approval of the University of Wisconsin 

Institutional Review Board and all subjects provided signed informed consent before 

participation. 

2.2. Neuropsychological assessment 

The WRAP cognitive test battery assesses many domains and has been previously described 

(Darst, et al., 2015,Sager, et al., 2005). For these analyses, we used one composite variable 

estimating cognitive functioning at age 54 (the mean age at baseline) and six factor scores 

representing longitudinal functioning across memory and executive function domains.  

2.2.1. Composite Progression Score 

A composite index, named progression score (PS), was computed using a set of eight cognitive 

measures, including Trails A and B (Reitan and Wolfson, 1985), Digit Span Forward and Digit 

Span Backward (Wechsler, 1997), Rey Auditory Verbal Learning Test (AVLT) summed score 

across five learning trials (Lezak, et al., 2004), AVLT delayed recall (Lezak, et al., 2004), 

Boston Naming Test (Kaplan, et al., 1983), and the Mini-Mental State Examination (Folstein, et 

al., 1975). Visits with fewer than four of these measurements were excluded. We applied the PS 

model (Bilgel, et al., 2015,Jedynak, et al., 2012) to align individuals along a linear cognitive 

trajectory based on their longitudinal cognitive measure profiles, adjusting for inter-individual 

differences in rates of change, with a higher PS indicating greater overall cognitive decline 

across the eight measures. We accounted for correlations among cognitive measures and 

constrained the progression scores to increase linearly with age within each individual. To 

remove confounding effects of age at entry into WRAP, the progression score was estimated at 

age 54, the mean age at baseline. 
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2.2.2. Longitudinal Factor Scores 

A factor analysis of the neuropsychological test scores was performed as described previously 

(Dowling, et al., 2010,Jonaitis, et al., 2015,Koscik, et al., 2014). The resulting factor scores were 

standardized into z scores (~N [0, 1]), using means and standard deviations obtained from the 

whole sample at baseline (visit 1) or visit 2 for a subset of tests that were first administered at 

this visit. There were four cognitive factor z scores for memory (Immediate Memory, Verbal 

Learning & Memory, Story Recall, and Visual Learning & Memory) and two for executive 

function (Working Memory and Speed & Flexibility). Tests comprising each of these factors 

have been previously described (Darst, et al., 2015).  Due to the small number of individuals 

carrying the functional variants, these six factor scores were also averaged to create a summary 

cognitive measure of the factor scores for each individual. Consequently, we did not adjust for 

multiple comparisons when examining the mean z score and used the individual cognitive factor 

scores to inform which domains were driving the association with the mean z score.  

2.3 DNA Collection, Genotyping, and Quality Control 

DNA was extracted from whole blood samples as described previously (Engelman, et al., 2013). 

Genotyping of the TREM2 variant R47H (rs75932628) and PLD3 variants V232M 

(rs145999145) and A442A (rs4819; splice site variant) was performed using competitive allele-

specific PCR based KASPTM genotyping assays (LGC Genomics, Beverly, MA). The quality 

control process has been described previously (Darst, et al., 2016). The PLD3 splice site variant, 

A442A, was monomorphic in our sample. Consequently, no genetic association analysis could 

be performed on this variant. The other PLD3 variant and the TREM2 variant were in Hardy-

Weinberg equilibrium. 

2.4. Statistical analysis 
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Differences in allele frequencies between those with a parental history of AD and those without 

were tested using a Fisher’s exact test. TREM2 and PLD3 associations with each of the cognitive 

factor scores and the PS at age 54 were tested using linear mixed models (SAS PROC MIXED) 

by comparing carriers of one of the rare variants to non-carriers of either. For each cognitive 

factor score, models included fixed effects for age, gender, practice effects, and self-reported 

race/ethnicity and random effects for family (siblings) and participant (repeated measures). For 

the PS, the model included fixed effects for gender and race/ethnicity (age was not adjusted for 

as it was used to calculate the PS) and a random effect for family. To visually display the 

cognitive factor z scores, adjusted mean z scores (a weighted average of the predicted z scores 

across all classes of gender and race/ethnicity, and for the average age) were calculated and 

plotted for TREM2 R47H and PLD3 V232M carriers, as well as for APOE 4 homozygotes, 4 

heterozygotes, and non-carriers of any of these three risk variants, using the LSMEANS 

statement in PROC MIXED with the OM option to weight the average of the predictions to be 

proportionate to the input data set.  This was especially important for race/ethnicity, which was 

not evenly distributed in the WRAP cohort. All analyses were performed in SAS v9.4 and used a 

p value threshold of < 0.05 to determine significance. 

 

3. Results 

Characteristics of the 1,449 participants, according to TREM2 and PLD3 carrier status, are 

shown in Table 1. No participants carried both the TREM2 R47H (T allele) and PLD3 V232M 

(A allele) low frequency variants. There were no significant (p < 0.05) differences in the 

characteristics between carriers of either variant and non-carriers.  Of the 16 participants who 
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carried the TREM2 variant, 15 were non-Hispanic Caucasian, 1 was Hispanic, and none were 

African American or another race/ethnicity. All 13 PLD3 carriers were non-Hispanic Caucasian. 

Presence of the TREM2 R47H variant was associated with AD parental history status; all 

sixteen participants with R47H were in the parental history group (Table 2). Patterns appeared 

similar for the relationship between PLD3 V232M and AD parental history. 

 In linear mixed models, PLD3 carriers had significantly lower mean z scores, and lower z 

scores for Story Recall, Visual Learning & Memory, and Speed & Flexibility than non-carriers 

(Table 3; results for APOE 4 count are shown for comparison). TREM2 carriers had marginally 

lower z scores for Speed & Flexibility (p = 0.06). While the PS at age 54 was higher for both 

TREM2 and PLD3 carriers, indicating greater disease progression, these differences were not 

statistically significant. Adjusted mean z scores for the six cognitive factors for TREM2 carriers, 

PLD3 carriers, as well as for APOE 4 homozygotes, 4 heterozygotes, and non-carriers of any 

of these three risk variants are shown in Figure 1.  

 

4. Discussion 

Functional low frequency variants in TREM2 are established risk factors for AD and an 

additional variant in PLD3 has been reported (Cruchaga, et al., 2013), but their effect on 

cognitive function in the years prior to the typical onset of AD is unknown. We examined the 

effect of these variants on cognitive performance in a longitudinal study of middle-aged adults 

who were cognitively healthy at enrollment, the majority of whom had a parental history of AD. 

The TREM2 R47H variant was found in 15 non-Hispanic Caucasians and 1 Hispanic, all with a 

parent who had AD. The PLD3 V232M variant was only found in non-Hispanic Caucasians and 

was twice as common in individuals with a parental history of AD than in those without a 
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parental history. Although both variants were generally associated with lower cognitive function 

in carriers of either variant than in non-carriers, only carriers of the PLD3 variant had 

significantly lower cognitive function than non-carriers. 

Our study population was intentionally enriched for individuals with a parental history of 

AD (72% of participants). While the carrier percentages in the parental history group were 1.5% 

for TREM2 R47H (T allele) and 1.1% for PLD3 V232M (A allele), the percentages in the 

participants with no parental history of AD were 0% and 0.5%, respectively. The TREM2 R47H 

carrier percentage is 0.4% in the Exome Aggregation Consortium database (ExAC; N = 60,145; 

accessed 11/15/16) (Lek, et al., 2016) and 0.5% in the Genome Aggregation Database (gnomAD; 

N = 140,485; beta mode available at http://gnomad.broadinstitute.org; accessed 11/15/16; 

includes samples from the Alzheimer’s Disease Sequencing Project and from ExAC). The PLD3 

V232M carrier percentage was 0.6% in ExAC (N = 57,683) and 0.7% in gnomAD (N = 

141,023). Taken together, for both variants, the percent of individuals carrying the low frequency 

risk variant was higher in WRAP participants with a parental history of AD than in WRAP 

participants without a family history or in publicly available reference databases, illustrating the 

statistical power to be gained from a study design focusing on individuals with a family history 

of AD, in which low frequency risk variants are likely to be more prevalent. 

 Our cohort is 89% non-Hispanic Caucasian, with only 113 African Americans and 34 

Hispanics, however, despite these small sample sizes, we did observe one Hispanic carrier of the 

TREM2 R47H variant. In gnomAD, the largest compilation of large-scale sequencing projects, 

the TREM2 R47H (T allele) was carried by 0.7% of Latinos (n = 18,221), 0.5% of Europeans 

(non-Finnish; n = 62,674), and 0.1% of Africans (n = 12,921). This higher carrier frequency in 

Latinos and lower carrier frequency in Africans is consistent with our observation. Moreover, 
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our lack of PLD3 V232M (A allele) carriers in any group other than non-Hispanic Caucasian is 

not surprising given that the carrier percentage in gnomAD for this variant is 2.5 to 5 times 

higher for Europeans (non-Finnish; 1%) than for Latinos (0.4%) or Africans (0.2%).    

PLD3 V232M carriers (six of whom were APOE 4 heterozygotes [Table 1]) had least 

square mean (predicted) cognitive z scores that were lower than both APOE 4 heterozygotes and 

homozygotes across all six cognitive factors (Figure 1). This suggests that the effect of the PLD3 

V232M variant on cognition may be even stronger than carrying two copies of the APOE 4 

allele. However, this requires replication in other longitudinal studies of cognitive function. 

Although our findings show consistency across multiple cognitive factors, many of our 

findings were not statistically significant, and those that were would not survive a correction for 

multiple testing. This is likely due to the rarity of the variants assessed, but could also be because 

our relatively young (early 50’s at baseline) population may not yet have experienced enough 

cognitive decline. It will be crucial to validate these findings with an external population, 

particularly one that has a larger number of carriers for these rare variants. Further, in order to 

determine how these variants influence the pathology of AD, it will also be essential to evaluate 

their influence on β-amyloid and tau, as the accumulation of both occurs long before an AD 

diagnosis.   

In conclusion, our results support previous findings that show an increased AD risk in 

carriers of low frequency functional variants in TREM2 and PLD3 by suggesting that these 

variants may also be associated with lower cognitive function, likely due to an AD trajectory. 

This is particularly notable for the rare PLD3 variant, which is a less established AD risk factor. 

While these functional variants are found at low frequencies in the population, their effect on risk 

for AD is much larger than common variants found through GWAS. In fact, their effect on 
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cognition may be similar to, if not greater than, that of the APOE 4 allele. Further research is 

necessary in order to assess the influence of these rare variants on other crucial neurological 

changes such as the accumulation of β-amyloid and tau that are biomarkers of AD pathology. 
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Table 1. WRAP Participant Characteristics at Baseline, Mean (SD) or n (%) 

 

 

Characteristic 

TREM2 (R47H) 

Carriera 

(n=16) 

PLD3 (V232M) 

Carriera 

(n=13) 

 

Non-carrier 

(n=1,413) 

Age (years) 52.4 (5.6) 51.8 (8.9) 53.8 (6.6) 

Gender (female) 13 (81.3) 10 (76.9) 898 (70.0) 

Race/ethnicity    

Caucasian 15 (93.8) 13 (100.0) 1,253 (88.8) 

African American 0 0 113 (8.0) 

Hispanic 1 (6.3) 0 33 (2.3) 

Other 0 0 12 (0.9) 

Years of Education 15.3 (2.8) 15.7 (3.1) 16.2 (2.3) 

APOE Genotype    

ε2/ε2 0 0 5 (0.4) 

ε2/ε3 1 (6.3) 3 (23.1) 113 (8.0) 

ε2/ε4 1 (6.3) 0 46 (3.3) 

ε3/ε3 6 (37.5) 4 (30.8) 742 (52.5) 

ε3/ε4 7 (43.8) 6 (46.2) 447 (31.6) 

ε4/ε4 1 (6.3) 0 60 (4.2) 
aNo participants carried both the TREM2 and PLD3 variants; seven participants had a 

missing genotype for either TREM2 or PLD3 and are not included in this table. Minor/risk 

allele for TREM2 R47H was T; minor/risk allele for PLD3 V232M was A. 

 

 

 

 

 

 

 

 

 

Table 2. Carrier Frequency (n) by Parental History of AD 

Gene (variant) 

No parent with AD 

(n=409) 

Parent with AD 

(n=1040) p valuea 

TREM2 (R47H) 0.00 (0) 0.015 (16) 0.009 

PLD3 (V232M) 0.005 (2) 0.011 (11) 0.54 
aFisher’s exact test of the difference in allele frequency in individuals without versus with 

a parent with AD. 
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Table 3.  Association Between Risk Variant and Cognitive Function 

Cognitive Function 

β ± SE (p value) 

TREM2 (R47H) 

(n=1,446) 

PLD3 (V232M) 

(n=1,445) 

APOE ε4 count 

Composite Progression Score    

  Progression Score at age 54a 0.19 ± 0.29 (0.52) 0.46 ± 0.33 (0.16) 0.11 ± 0.05 (0.04) 

Longitudinal Factor Scores    

  Mean of six Factor Scores -0.14 ± 0.16 (0.38) -0.41 ± 0.18 (0.02) -0.10 ± 0.03 (0.002) 

  Immediate Memory -0.12 ± 0.20 (0.56) -0.23 ± 0.23 (0.32) -0.07 ± 0.04 (0.06) 

  Verbal Learning & Memory -0.002 ± 0.22 (0.99) -0.22 ± 0.25 (0.37) -0.09 ± 0.04 (0.03) 

  Story Recall -0.16 ± 0.24 (0.49) -0.55 ± 0.26 (0.04) -0.14 ± 0.05 (0.002) 

  Visual Learning & Memory -0.06 ± 0.22 (0.78) -0.49 ± 0.25 (0.049) -0.08 ± 0.04 (0.05) 

  Working Memory -0.15 ± 0.23 (0.51) -0.26 ± 0.27 (0.34) -0.11 ± 0.04 (0.01) 

  Speed & Flexibility -0.39 ± 0.20 (0.06) -0.54 ± 0.24 (0.02) -0.06 ± 0.04 (0.11) 

Linear mixed model, adjusting for age, gender, practice effects, and race/ethnicity, and accounting for 

within-family (sibling) correlations and within-individual correlations from up to 10 years of follow up. 
aLinear mixed model, adjusting for gender and race/ethnicity, and accounting for within-family (sibling) 

correlations. 
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Figure 1. Mean Adjusted Cognitive Function by Risk Allele Carrier Status. Adjusted (for 

age, gender, practice effects, and race/ethnicity) mean z scores for the six cognitive factors for 

TREM2 R47H (T allele) carriers (light gray), PLD3 V232M (A allele) carriers (medium gray), 

APOE 4 heterozygotes (dark gray), APOE 4 homozygotes (very dark gray), and non-carriers of 

any of these three risk variants (white). Z scores were standardized (~N [0, 1]), using means and 

standard deviations obtained from the whole sample at baseline. Error bars indicate standard 

error of the mean. 
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