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A Quantum Test Algorithm

Jacob Bi anonte and Marek Per kowski

Abstract— Current processes validation methods rely on di- circuits required to assemble quantum computational ésvic

verse input states and exponential applications of state 0g- continues to be a subject of much studly.
raphy. Through generalization of classical test theory exeptions

to this rule are found. Instead of expanding a complete operar Quantum computers will first impact society by simulating
basis to validate a process, the objective is to utilize quanm  physical systems intractable via classical means [15].- Suc
effects making each gate realized in the process act on a colefe  cessful simulations are conjectured to necessitate as $ew a

set of characteristic states and next extract functional iforma- . - . g .
tion. Random noise, systematic errors, initialization in@curacies fifty qubits [16]. Experimental physicists who build quamtu

and measurement faults must also be detected. This concept i Circuits have not yet experienced much need to research
applied to the switching class comprising the search oracldn optimized testing methods due to the current attainablét qub

a first approach, the test set cardinality is held constant tasix; count. All approaches to the quantum test problem are conse-
both testability and added depth complexity of an additionad quently exhaustive. The main approach now is to use process

"design-for-test” circuit are related to the function realized in the AT e
oracle. Oracles realizing affine functions are shown to gemate tomography such that for a systemsofjubits2™ initial states

no net entanglement and are thus the easiest to test, wherenecessitate2” measurements, for a complexity @(2%")
oracles realizing bent functions are the most difficult to tst. A and a growth rate proportional to the experimental accuracy
second approach replaces extraction complexity with a liner  desired [13][14]. In a second approach (known as ancillary
growth in experiment count. An interesting corollary of this 5ggisted process tomography [171), qubits are mirrored

study is the success found when addressing the classical ttes : N : 4 .
problem quantum mechanically. The validation of all classtal replacing2™ initial states with an: dimensional state space

degrees of freedom in a quantum switching network were found €ntangled with each of the™ basis states of the system

to necessitate exponentially fewer averaged observabldsan the under test. However, in this approach any reduction inahiti
number of tests in the classical lower bound. states increases measurement complexity, therefore tlye on
offered advantage is experimental simplification (suchras i

Keywords:Reversible Computers, Quantum Computers, Quantungptics [18]). The time required to test quantum circuitagsi
Process Validation, Test Pattern Generation. current validation methods is just as intractable as thg ver
EDICS Category: BL.3 Control Structure Reliability, Testing, and problems these circuits will be built to solve. The quantum

Fault-Tolerance, B.3.a Diagnostics, B..3.b Error-checking test problem must therefore be addressed.

PACS numbers03.67.Lx, 03.67.—a, 06.20.Dk, 76.60.—k Quantum computers offer a speed up over many classical
combinatorial algorithms (such as quantum search [20] and
. INTRODUCTION counting [21]) that rely on quantum oracles [22]. As shown

. . in Sec.[IzB, oracles are constructed as classical switching
T EST THEORY is now overf0 years old. The materi- etworks whose implementation is quantum mechanical. Use-
alization of which emerged to avoid expanding the fu

set of binary basis vectors used to characterize classétal ul quantum oracles require large numbers of qubits, making

) "brocess validation time even less tractable. Because df suc
works [1][2]. These methods are well established for ctasi wide use in quantum algorithms [23], designing test stiateg

circuits, may they be generalized to quantum circuits? — — ghociieaiy for oracles is one of the areas that classical te
The classical theory of computation implies local real'sr{heory is shown here to improve

in all states of a sequential program’'s execution and is
therefore inconsistent with physical reality [3]. Furtmare, The difficulty of extending the classical test theory has
quantum circuits often arise as a measure of algorithmfd€en a subject of discussion in recent times with the attempt
complexity [4]. For example, Adiabatic, Cluster State an@utlined in [24]. Despite this interest, no connection has
Type-Il Quantum Algorithms rely on computational model®een made between established classical methods and any
with no direct classical equivalent [5][6][7]. How then ddu of the subtleties of quantum computation, making this study
purely quantum mechanical circuits be tested with ideas froan important element to foster some growth in the field of
this celebrated classical theory? Many models of quantuibantum test engineering. Classically, the testabilitythe
computation use circuits as a way to describe the actions 6Hcuit class comprising the oracle has already receivedmu
and the interactions between collections of bi-state systeattention after thel972 paper by Sudhakar M. Reddy [2].
(qubits) sought to compute [8]. These interactions arededu This paper presents a quantum mechanical switching network
under the perturbation of a classical force, where the gquantgeneralization of classical methods.

state of one system may alter the timed change of a sec:ond1
This forms a depiction of nodes, wires and gates in time-
dependent diagrams named quantum circuits. The design
realization [10], and test [11][12][13][14] of the comparie

) Structure of the paper:We begin to address these
estions by first, in SeE_TIA afid-B giving an introduction
antum mechanics and oracle construction. BEc. Il dissuss
the quantum fault models used in this study. The intended

J.B. and M.P. are with Portland State University, 1900 SWrffodvenue, aUd|e_nce_ are engineers _and test theorists wishing to extend
P.0. Box 751, Portland, Oregon 97201, USA; J.B. is the autittr whom  classical ideas to respective quantum counterparts. Tla&-Qu
electronic correspondence shall be addresseamont e@eee.ord . tum Test Algorithm is presented in Sdc] Il followed by the

"This work has been submitted to the IEEE for possible p . . . . . B .
Copyright may be transferred without notice, after whiclis thersion may conclusion in Se€IV wherein we close with a short discussio
no longer be accessible.*”" of some open problems.
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A. Background some common states must be defineéd) = [0) + |1),

In quantum computation, classical bit registers are reglacl—) = 10) — [1), and¢ = [¢) (¢|. The number of qubits
with collections of qubits described by a correspondingsitgn considered isK+ 1) often denoted as and V represents the

operator,p = 3, p; |¥;) (], Where|y;) represents a stateMaximum number_of items in an oraclg”('!). The general
vector, andp has trace one. Whemr(p?) = 1 the pure notational conventions and vocabulary terms outlined m th

states description is complete and whefp?) < 1 the mixed textbook by Nielsen and Chuang [23] are used. A construction
state of the system lacks information for complete desoript Method for quantum oracles is next given.

The n dimensional state space of quantum computation is a

composite complex vector space formed from an algebra¢ Constructing Quantum Oracle Search Spaces

tensor product(pp ® p1 @ ... @ py) Of density matrices  p ciaqgical oracle may be viewed as a boolean function
representing component physical systepagcts on this state £:{0,13* — {0,1} in a black box, whose standard action

space. . leaves the tog input variables unchanged. The oracle’s binar
A set of measurement operatoobéervables{ M, } acting re?)]loonse o ggi\l/aen queRtzy, 2, .. I}?) s read on thak + y

on the state space of a quantum system must be defined, i .. ! . o
which indexm references the measurement outcomes [ZQs b'F' A query leading {0 a response bihary-oneis called
and>° M, M! — . Consider for example a collection olution Unlike a classical oracle, quantum oracles respond
m-omoTm T : ) to simultaneous queries by appending solutions with redati
of measurement operators on a two qubit system: phases and leaving the bottofh + 1) qubit unnoticeably
{M,,} = {|00) (00|, |01) (01|, ]10) (10|,|11) (11|}. (1) changed, but how would one construct such a device?
Any boolean equation may be uniquely expanded to the

This collection is complete since their sum is the 4 identity fixed polarity Reed-Muller form [2] as:

matrix, |00) (00| + |01) (01| + |10) (10| + |11) (11| = I4. If p
is found in eigenstaten, the resulting joint quantum state  f(zy, 29,...,7%) = co ® 127" G 223> © -+ D 1" @
of the system will bep,,, = (M,,pM])/tr(M} M,,p). The
probability of resultm is p(m) = tr(M], M,,p). In the case
of Eqn.[3, the probability that the system will be found intsta where selection variable; € {0,1}, literal =’ represents a
My = |00) (00| is calculated agr(|00) (00| |00) (00| p.) = 3. variable or its negation and any term labelede, through
It is helpful to consider that each real number indexed hy is a binary constan® or 1. In Eqn.[3 only fixed polarity
m along the diagonal of density matrjx corresponds to the variables appear such that each is in either un-complemente
probability of measuring a quantum system in the basis witt complemented form. The case where all variables in the
corresponding index and the sum of all diagonal entries is expansion of Eqrl]l4 appear in an un-complemented form will
1. System measurement allowsbits of classical information be considered in this work, this is known as a PPRM.
to be extracted. If one or more of thesebits is differentthan ~ Example:
expected, the quantum switching network contained an.error

A quantum program is represented as evolution of a (ideally (71, %2, 73, 74) = 1 & 1 & 2 © 73 © 7324 S T1T374 B
closed) system and described by a unitary transformdtion T122%3 D T2w324 (5)

(& matrix). A program must be decomposed into a prOdUCtEach term in the expansion of Edd. 5 is called a product

of physically realizable operations (matrices), and edeh e ! ,
mentary operation can be represented as a gate in a quarigifil [26], and each variable; a literal. Here a total of
circuit. The qubits in the system are initialized to stat@nd seven product terms and fourteen un-complemented literals

the system evolves accordingtb= UpU . During evolution &€ given. For exampless - x4 is such a product term, with
it is possible for a register of qubits to reside in superjass literalsz; andz, (constant however, is not considered to be a
of classical states. Superposition states may be facttned, product ter”.‘)- Each produc_:t term for a given PPRM expansion
only to the level of description that is local with respect t kaycb’\? re_allzeq bg_ thEelarbnrary quantum controlled-NOBgat
single qubits, such as: —CN) given in Fig.. . .
) ) ) . In the quantum circuit model of computation, horizontal
.= = [00) (00| + = |01) (01| + = [10) (10| + = [11) (11 wires represent the passage of time from left to right, while
P 2 100) {00] 2 01 {01 2 [10) (10] 2 1) (11 gates and controlsrepresent both interactions between and
_{10) (0] + |1) (1] [0) (O] + |1) (1] 5 actions on qubits. A control is denoted with a black de}, (
- V2 ® V2 : @ and may be connected with other black dots using wires. For
. ontrol gates, each connection is a conjunctive path; each
FV?Iu“gnt mlay ?IZO le"’.‘dt.to enlt.ekmgtlhe.d statfas that may not E}gral in a given product term receives one black dot on
actored to local descriptions, like this one: the quantum circuit diagram. A vertical wire is next placed,
1 interconnecting all of the black dots and the target of thie ga
Pe =3 (100) (00| +[11) (00| + 00 1] + |11) {11]) . (3) written as a NOT symboldf). Repeating this procedure for
Regardless of physical separation, action of a witness on @@¢h product term in Eqfill 5 leads to the network realization
entangled component has a composite impact. Furtherm@en in Fig.[2. Above each gate is the lale) p refers to a
for an entangled system, component observation leads Pi@duct term in the expansion of Eq. 5, anthe index used
classically impossible information gain regarding thetestaf {0 label all seven products. The network realization given i
the composite system, as a consequence of altering alfstafdd- [d may be implemented via a unitary approximation [23]
We conclude this section with a comment on notation&f by using controlledi™ root of NOT gates in the design
conventions. Normalization constants are often omittexl, gonsidered by Barenco et al., (see [9], page § 7). This
is an introduction to state vectofsShorthand notation for

01,.0n 01,0 o
Cng127' 25" @ - D cop—127 ' 257, ..., T, (4)

2PPRM: Positive Polarity Reed-Muller Expansion such thatheliteral

IState vectors are referenced using Dirac Notation, suchrhigramy —appears only un-complemented.
example|y) = a|0)43 |1) and respective conjugate)| = a* (0|+5* (1]. 3Controls are often called nodes.
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L1 T1 Po P1 P2 P3 P4 P5 Pe
X2 $ T2 T 1
. Z2 x2
T —e— Tk T3 T3
Yy Yy>Dx1-x2: ... Tk x4 T4
Fig. 1. k—CN Gate Realizingy @ z1 - z2 - ... - 2, on the(k + 1)*? qubit. y=1 1@ f(21, 22, T3, 74)

Fig. 2. Quantum Network Realization of EQ. 5 built from &y k-CN
gates as shown in Fifll 1. The truth table of this oracle isrgiveFig.[3.

example will be used again so it is worth stating explicitly

phase state 1 x2 x3 x4 || f
that py corresponds tay, py to 2, p3 t0 3, p3 tO T3x4, Pa T ]0000) 0 0 O oo
to z1x324, P5 1O 12273 and finallyp6 10 zox324. + |0001) 0 0 0 1 0
The underpinning difference of operation between a clas- — |oo010) 0 0 1 0|1
sical and quantunphase oraclewill now be made clear. + |0011) 0O 0 1 11]0
Quantum gates exhibit a feature known as phase kick-back. — |0100) o 1 0 041
That is, if the input state of the target is an eigenvector I_ 8%%; 8 i (1) (1) (1)
of the control gate's operation, the eigenvalue of the targe + o111 o 1 1 1lo
state traverses backwards to the activating state of the con —  |1000) 1 0 0 o011
trol qubit(s), leaving the target unchanged up to a global — |1001) 1 0 0 1|1
phase. The eigenvector states jof CN gates are created + |1010) 1 0 1 o0]o
using another gate known as the Hadamard operator: drawn + [1011) 10 1 1960
schematically ag 77} defined algebraically in Eqfll 6 and it's i ﬂg?g i i 8 2 8
action on some common states a®: — |+), |[1) — |-), + |1110) 1 1 1 0|0
|[+) — [0) and |—) — |1). - [1111) 1 1 1 1|1

1 1 Fig. 3. Oracle Truth Table for EqRl 5 implemented by the nekwo Fig.[:

H=—(]0) + |1)) (0] + —=(]0) — |1)) (1] (6) Boolean functionf is implemented quantum mechanically. Each of e

\/§ \/5 terms in a superposition input that evaluatddgic-onewill be marked with

. . . a negative phase (also shown in 15, in Eek. 1).
Typically Boolean functionf is constructed by means of a 9 P ( = )

k—CN network and placed in a black box with lak@l (for
oracle). The botton{k + 1)*" bit contains the realization of
f to be read at the box’s right. The tdpinputs to the box
begin in state0) and the(k+1)*" input (target) qubit starts in
state|1). The Hadamard operatio ®**") is next applied. through a network, such that it will map a test vector to a
Generally the black box takes as input: place of fault. This represents an added challenge in the cas
@(k+1) . |\ Ok Qk B of quantum circuits, since inputs will become entangled and

H 0T @ 1) — (0) + 1) @ (10) — 1) () in many cases specific (local) inputs to a certain fault iocat
Inside the black box all of the targets act on stat¢ (an Mmay not be possible. Functional quantum faults at the gate
eigenvector of th&—CN gate) and the top qubits remain in a level were defined as Axioms that a complete test set must
superposition of all possible classical states. The trugenins satisfy in Ref. [24]. These Axioms are used to logically test
are inputs to a Boolean function that evaluatel tahere the the gate level function of all network components and are
false minterms evaluate @ Each term in the superpositionpresented here for completeness. As will be seen in[S&c. IlI,
on the topk bits representing a true minterm in the switchinghe entanglement added to the state vector during a test must
function f realized in the oracle will be appended with dhen be removed to properly observe failures.
negative (relative) phase. The phase of states that do noth quantum error correcting codes, error locations are be-
represent true minterms are left invariant. This is seen Byeen circuit stages, and have quantifiable error prokisili
examining the truth table from Fifll 3. The action of an orack¥ strengths of occurrence [28]. For example, consider the
0, realizing a binary functiorf (1, xs, ..., 21.), is represented single stage circuit shown in Fifl 4. The numbered Ioc_atlons
by the general transfori® : |k)®|—) — (—=1)f®) |k)@|-). Of possible gate external faults are illustrated by placing

The oracle’s introduction is complete. Before continuimg o' X" on the line representing a qubits time traversal and
to Sec.[ wherein the considered gate level quantum fafiere, the gate, initial stategd) , |1) , [i2)) and measurements
models are defined, it is now mentioned that quantum phdgeo, m1,m2) may also contain errors. Error and Fault Loca-
kickback is key to our study. Phase kickback faults impagtirfions are formally defined next in Ddfl 1. _
k—CN gates are addressed in Axiofihs 4 Bhd 5. Bdc. Il present®efinition 1: Error/Fault Location: The wire locations be-
the quantum test algorithm that extracts information fréwa t tween stages as well as any node, gate initial state or mea-
phase of the quantum state to determine if a given oracleSigrement in a given networlsee Fig[y.
functional.

entangled state generally results in probabilistic mesament
outcomes thereby decreasing the observability of failures
Controllability allows one to propagate a specific inputteec

1 2
io) ——

Il. GATE LEVEL QUANTUM FAULT MODELS ' 3 4
Classically, one defines a testability measure as the ptoduc i) s A
of observability and controllability. A fault present in an liz) ——4

4See [27], the 1999 PhD thesis of M. Mosd@uantum Computer Al- Fig. 4. 2-CN gate with error locations.

gorithms for background on using quantum phase for various quantum . L
computational tasks. A quantum test set is a set of initial state and measurement
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pairs designed to drive a network to threshold limits. Farbitrary activating statéu) with both positive and negative

example, one may develop a test set that first turns as magenvalues. Furthermore, each gate must be shown not to

gates on as possible, next turns the highest possible numdigach a relative phase to arbitrary non-activating statevith

of gates off and then sends phase through as many gdieth positive and negative eigenvalues. The target statt mu

during one test as the structure of the network would allonemain globally invariant under both) and|n). B

It is the goal of this paper to develop complete test setsQuantum Test Axiom5: With the target acting on state

that sample failure rates. We therefore consider a set of er{+): relative phase must be shown not to change under

models adequately capturing the nature of fault types oirmur arbitrary activating statés) with both positive and negative

in a given circuit, together with their locations. Ref. [24kigenvalues. Furthermore, relative phase must not change

introduced the concept of what is known as tjuantum single under arbitrary non-activating stae) with both positive and

fault model This allows the separate consideration of all errorgegative eigenvaluem

at each location for a given quantum circuit. We present first Quantum Test Axiom6: For the target acting separately

Def.[d and next Conjectuid 1, both related to this idea. ~ on basis statd0) and |1): All controls in a gate must be
Definition 2: Quantum Single Fault Model: For simplifi- activated concurrently. Furthermore, each control must be

cation the "quantum single fault model” is assumed in thisddressed with a non-activating stase.

work. In the single fault model, test plans are optimized Quantum Test Axiom7: Each target must separately act

for all considered faults assuming that only a single failuron basis state input®) and|1). m

perturbs the quantum circuit exclusively. Multiple fautsl Quantum Test Axiom8: Each qubit must be measured in
accumulate and be detected, but the single fault model makesh logic-zeroand logic-onestates |
it much easier to develop test plans. Based on the Axioms and Definitions from Ref. [24], a

Conjecturel: A test set designed to detect all consideregiscussion of a test set satisfying these Axioms for quantum
single errors will detect and sample the accumulated impagtcles is discussed next is SEC.I-A.
of multiple errors at multiple locations.

The following definitions are used to define some of the
fault types considered in this work. Complete fault coverag\. Conclusions based on the Gate Level Fault Models
occurs after a test set has determined that the consideregraditionally test plans are optimized to detect all of the

fault(s) are not physically present in a given circuit. most common error types [32] and circuits are designed with
Definition 3: Pauli Fault Model: The addition of an un-gase of test in mind. A test plan is developed for the purpose

wanted Pauli matrix in a quantum network, at any errqjf jsolating a correct circuit from a circuit containing an§/

location and with placement probability The Pauli matrices the considered errors. In practice, the choice of the faotieh

are given in EqnlJg]9 arld110. will be determined by a particular quantum circuit techmggio
as well as how the circuit will be used. In this work the
oz = [1) (0] + |0) (1] (8) functional use ofk—CN networks are oracle search spaces.

Building on an understanding of the different failures [plolss
here it is shown constructively that aky-CN gate exhibits
twelve, functionally distinct actions. When used in a phase
oracle, the gate level faults that need to be considered are
o, = [0) (0] — 1) (1], (10) the Phase Faults from Axioriis 4 aldd 5. When classical inputs
are considered, Faded Control Faults (Axibin 6) and Forced
Definition 4: Initialization Error: A qubit that statistically Gate Faults (Axionfll7) must be taken into account. Theddem 1
favors correct preparation in one basis state over the .otherpresents the four classical degrees of freedom possibleyin a
Definition 5: Measurement Fault Model: A single func-k—CN gate.
tional measurement gate is replaced with a faulty measureme Theorem1: A quantumk—CN gate is capable of four char-
gate that statistically favors returnifmpic-zeroor alogic-one acteristic classical operations. (By characteristic itrisant
The Initialization Errors (Axion]3) and the Measurementat all other operations are variants of this basic set.)
Faults (Axiom[B) are considered to be largely part of the Proof: The gate is able to act on|@) and a|l) state
quantum computers’ classical functionality and have ¢yearwhen all controls are set to high. The two remaining function
defined error locations. Test sets detecting quantum nog@ simply to act orj0) and|1) when one or more control(s)
and systematic errors [30] satisfy Axioris [, 2 ddd 3. Tig addressed with a non-activating state (the action ofsmur
avoid the complications experienced with quantum testorecshould be to do nothing). There a2é — 1 input states that
controllability the test sets in this work are shown to $@tis do not activate the gate, but these inputs all probe dfie
the following gate level functional Axioms: Lost Phase Raul function. Similarly, each control has two logical funct®he
(Axioms [4 and[b), Faded Control Faults (Axiofh 6), andirst is to be addressed with a logidd) and the second is to
Forced Gate Faults (Axiorfl 7). In Selc]lll a test algorithrbe addressed with H). (See test vectorsy, v;, vo andvs
in accordance with these Axioms that samples failure ratgem Fig.[3. A similar situation arises with classical EXOR

oy = i0) (1] =i 1) (0] 9)

(ConjecturddL) will be given. gates [1].) ]
Quantum Test Axioml: A bit flip (o, or o,) at any error  Provided the state of the top bits is some equal super-
location must be detectabim. position and the target of the gate acts on a state with the
Quantum Test Axiom2: A phase flip ¢. or o,) at any following form: |0)+e*% |1). Under this condition, the inputs

error location must be detectabis. to ak—CN gate are expressed as:
Quantum Test Axiom3: Each qubit must be initialized in
both basis state®) and|1). m 281 .
Quantum Test Axiom4: With the target acting on state [Yin) — Z wy |2) | @ (|0) + e (1)), (11)

|-): Each gate must be shown to attach a relative phase to x =0
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Minterm Target State | Minterm Target State
et ltrue)  (|0) + 1)) eTTOF) | true) (10y + et [1))
e ltrue)  ([0) +etL)) | e UP=2) |true) (10) 4+ et (1))
e | false) (10)y + et 1)) et | false) (10 + et 1))
e " |false)  (|0) + et 1)) e~ | false) (10) + e**# (1))
et |true)  (|0) +e ¥ 1)) et O=9) true) (J0y + e~ 1))
e ltrue)  (|0) +e L) | e UOHD) |true) (J0)y + e 1))
et |false)  (|0) +e 7 |1)) et |false)  (|0) +e 1))
e " | false) (10) + e 1)) e " |false) (|0) +e "7 |1))

Fig. 6. A k—CN Gate Truth Table (Case: 2 top, Case: 1 bottom): lllustgagill of the different possible gate actions for orthogosetting of variabless
and . A |true) minterm activates the gate, afjalse) minterm does not.

Yo = 8 8 8 8 é concept, only when these ideas are made clear is one able to
= 1111 1 fully characterize all of the gates in a given quantum search
ZQ : 1111 0 oracle. It is therefore safe to move on and, in the next sectio

3

([, present a test set in accordance with all the Axiomd an

) . ) ) ) principles of this section.
Fig. 5. Classical test vectors(, v1, v2, v3) acting on binary basis vectors

{0, 1} with the gate first off {o, v1) and then on+z, v3). The rightmost bit
. vith th . and
in the figure is applied to thek + 1)"* bit. 1. THE QUANTUM ERRORDETECTION ALGORITHM

The quantum test algorithm introduced in this section uti-
wherew, — e*i. Similarly, as in the case of Theordh 1, CerI_|zes entanglement as a controllability resource to combin

tain operations define the gate's function. Furthermoresgh (€St Vectors and hence reduce test sets while the inherent

actions are independent of the entanglentemtgperienced reversibility of quantum circuits increases the obserigof

in the system prior to the application of the gate (the gafsrors [31]- The Axioms mentioned in Sdd Il are shown to

generates entanglement by acting on individual produntger °¢_Satisfied and the test algorithm is convergent. An explici

in a superposition). The arbitrary quantum superposittares example is given illustrating how one would go about testing

defined in EqnII1 allows one to consider each input asaagruantum oracle.
6

; : ts Ty, T, T5 and T verify all classical degrees of
separate state. In the column denoted minterm from [Big. 6, o f1: 42, 15 6 .
|true) minterms activate the gate whilgalse) terms do not. freedom. Testd; and T, verify the phase I_<|ckback features
Under this consideration the following holds: of the oracle. As a proof of concept the introduced method

Theorem2: A k—CN gate is capable of eight character0lds the test set cardinality to constant six, increashrey t

istic quantum operationgWe consider quantum operations‘:omplexIty of added stages for tesl§ and 7y. This ap-
as those that manipulate quantum phase and non-clas gﬁch helps better tie classical ideas with quantum tdst se

superposition states; characteristic has the same measing/€heration. This is due to the fact that classically, ctecui
in Theorentll) ealizing linear functions are easy to test due to their high

Proof: The proof is constructive: level of controllability. Quantum mechanically, a searchate

Case 1: When activated, quantum gates exhibit phagﬁalizing an affine function generates no net entanglenment i
: ' . ; ; ; ®k o

kickback when the state of the target|i§ + ¢—*#|1). The e topk bits provided input state+) "™ @ [—). Thus, it is

activating state can have a phaseraf, or —w,. Furthermore, €asier to control these states, extract functional inftiona

a non-activating state can have a pﬁas&wfzmor —w, and of' or observe failure. Entanglement added by the network durin

course, nothing should happen when acted on bykth€N testsT3 andT, must be removed by additional circuit stages to
gate. ’ return the system to a product state and allow a deternunisti

Case 2:(The opposite of Case 1.) The alternative case is tHasurement outcome. An analysis of this presents powerful
the target acts on stafe) +e+i¢ |1). As before, the activating CONCEPS to design test plans for quantum circuits that are
and non-activating states can have phases-of or —w,. both highly controllable and that allow high observabildfy
Nothing should happen under the case of both an activatfiors: For example, SeE_TII-F presents a second approach

and a non-activating state. This functionality is probedoiar \WhereZs and T, are replaced with other tests. These highly
additional tests. controllable tests have constant entanglement and rethece t

We draw the readers attention now to the table in Hig. 6 fgHantum test problem to a cardinality 05 + 4[k/2]) by
the illustration of Casd and Case2. Variabless and are Walking” [k/2] EPR pairs [23] down the controls mirrored by

set to create states that are operated on bykth€N gate, [k/2] Bell measurements. Classically, the additional circuitry

these are the combinations of actions considered. The Prigfd o generate test sequences is knowBI&F (Build In

is concluded by mentioning that, all the quantum functiom2e! Test Circu)t For completeness, Dl 6 is present.

of the k—CN gate represent one variant of these eight cased?€finition 6: Quantum Build In Self Test CircuildBIST):

when used in a phase oracle. m A quantum circuit designed to test a second quantum circuit;
Thus according to Theorenid 1 afil 2 in total we nexijlae quantum circuit under tesQCUT). A QBIST circuit may

4+ 8 = 12 non-entangled tests to identify the function oP® built at the input and/or output terminals of REUT, and

anv k—CN gate. Although Theoreni@ 1 afitl 2 are simple i€ QBIST stage is always assumed to contain no errors.
Y g g i : Consider the example circuit presented in Hg. 2. The

5In terms of an ability to generate entanglement, the CN wasvsto be ana_‘lySis given in the coming SUbseCtian begins by geneyrati
the most robust gate in the presence of noise [33]. an input state that turns all the gates in the netwarland off
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concurrently. This concurrent action tests all gates estiaely
on both computational basis statfy and |1), (something
classically impossible in just two tests). Denote theststas
Ty and Ty, and their general form on & variable function
follows:

T (J0)*" +11)**) @ o)

T (J0)*" = [1)*) @ 1)
The classical equivalent of tests; and 7, was given in
Fig.[E (whereT; corresponded to vectorg andwvs, andTs
corresponded to both; and vs3). Together testd; and 75

Stage Action of Stage
m — [0000) ® [0)
QBIST; — | (J0000) + [1111)) ® [0)
po — 0000) [0) + [1111)]1)
p1— 0000) [0) + [1111) ]0)
P2 — 0000) [0) + [1111) ]1)
p3 — 0000) [0) + [1111) ]0)
P4 — 0000) [0) + [1111) [1)
ps — 0000) [0) + [1111)]0)
D6 — 0000) [0) + [1111) [1)
QBISTi; — [0000) ® [0)

will be shown to satisfy AxiomEIT1 &1 6] 7 afih 8 in Sml-AFlg' 7. T test pattern and impact at each gate in the circuit. Gatesbateld

andI=B.

eft to right p; to ps.

Sec[I=Q considers testB; andTs. These tests are shown

to satisfy Axiom[$ by usin%
inputs: [+)%* @ |+) and|-)®

the following states as oraclgicome is similar to tegt;, the bottom qubit is toggled a total
® |4). In both tests, the state of seven times resulting in the final state|of. (Each gate that

at the controls will not impact the state at the target, ®gVi acted on|0) in test7) now acts on|1) thereby exhaustively
all qubits—ideally—unchanged (since no net entanglementdrobing every classical input combination of edchCN gate,

generated).

Sec.[I-0 and[I-E investigate the ability of the networkiesponses, resulting back in the initial state/afl1) @ |1)

seen in Fig.[B. The QBIST; again disentangles the test

to both attach a relative phase to each activating term in then tests 77 and 7, each node is addressed with both

superposition and to leave non-activating states unaltares

activating and non-activating states. Furthermore, eadlit ¢

in general is a complex procedure, that in the first case cgtialized and measured in both basis states. TEstand T,

be done in two tests denoted @s and T,. TestT3 utilizes
state |[+)®* @ |-) and testT; utilizes state|—)*" @ |—)

have an added CN and H gate complexityl¢f — 1)CN+4H.
The following Theorems prove which faults have been de-

as input to the oracle. However, additional "design-fatte tected with tests?; and testsT, and are general fon bit
stages must be added to the end of the circuit. These staggscles:

remove the entanglements added by the oracle, returning theheorem3: Either testT} or testT, will detecto, ando,

system to a local (factorable) description, thereby legdm
a deterministic measurement. Te§ts and 7, are shown to
satisfy Axiom[3. Testl; is now considered.

A. TestTy: (j0)*" +[1)®*) @ |0)
In test 73, all qubits are initialized as{0000) ® |0). The

action of the firstQBIST;; stage (from Fig[I8) creates th
following oracle input state:

QBIST; : [0000) @ |0) — (|0>®’“ + |1>®’“) ®10).

The left half of the entangled test sequencelid0) ® |0).

(12)

It is clear that for a §old circuit’ not one gate turns on, and
the target qubit will be left untouched. For the right half o

the entangled test vector, each gate in the circuit turnsuod,
this cycles thek+1)t" qubit initially starting in|0) back and

bit flips at any error location, thus satisfying Axidrh 1.
Proof: TestsT; andT» both satisfy AxionTIL. The proof
in this section is given for test; and is nearly identical to
the steps taken for tegft;,. Consider now test}:
Case 1 The top (%) qubit is flipped:QBIST;, receives

state(|1) [0)** 1 £ |0) [1)®*Y) as input. After successive

eapplications of CN\.; ; from i = k to i = 2 the state will

be (|11) [0)°*72 £ o1) [1)¥H2) = (jo) £ 1)) ® 1) @
|O>®<k_2). Thus, a bit flip impacting the* bit is detectable
on the 2" bit. Given a bit flip impactin? any other qubit
¢ (1 < ¢ < k) QBIST;, receives(|0)*“™ Y |a) |0)®*~9) &
)2~ 1g) 11)®**~9) as input state. A similar relation holds
guch that a bit flip on thég — 1)" bit is detectable on the
¢ and possibly the ** bit if the phase is also inverted. For
errors impacting any qubit other than th&, both theg'” bit

forth between basis states. The state of the last qubit thfger as Well as the(q + 1) (impacted bit) will show the error.

oracle is|0).% The purpose 0QBIST,, is simply to remove the

phase induced entanglement experienced on thé: tgpbits.

The intermittent states at each stage of the circuit undgr tgntering the finalQBIST;, stage. Assume an even

T, are shown in Figd7. The final step in ti@BIST, circuit

Case 2 Bottom (k + 1)** qubit is flipped: Normally the
top k bits and the bottonfk + 1) bits are factorable when
number

of gates in the oracle and that instead of staie)®" +

applies a Hadamard gate to the top qubit, resulting backen th)®*) @ |0) the final QBIST;, receives the worst case state

starting state]0000) ® |0), thereby completing test;. The

of [0)%%10) +[1)®* ® |1). The finalQBIST; will not remove

complexity of the added CN and H gates needed forI&st the entanglement associated with the-+ 1) bit. This is

is 2(k — 1)CN+2H.

B. TestTy: (|0)®F — 1)®%) & [1)

No physical change is made to the circuit from Hig. d

however the qubits are now initialized to stété11)®|1). The

61f an an even number of gates were present a slight modificétithe final

detectable based gn the probability that a bit flip occurred in
the computational basis in the first place, satisfying Ax@m
This is the only fault that, when deterministically present
nterjects a probabilistic outcome in observability. ]
' Theorem4: Together test§; and 75 initialize each qubit
in both basis states so that Axidrh 3 is satisfied.

Proof: In testT} the initial state of the register |8)**

half of the QBIST; circuit must be made. This modification is the removaj0) and in testT} the initial state is|1)** @ |1), therefore

of the first CN gate at the start of tt@BIST;2 acting on the(k + 1)t qubit

and controlled by thé:** qubit. In general for an odd number of gates in a
quantum network prior to the fin&BIST,» stage the circuit will be in state
[0Y®F |0) & [1)®* |1). The addition of a CI ;11 gate removes unwanted

entanglement ‘so that the final qubit will be left in a produetes

Axiom B is satisfied. [ |
Theorem5: Taken together testd} and T activate all
controls concurrently and each control is addressed withna n
activating state while the target is separately in basi® #fia
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QBIST; Circuit Under Test QBIST2
|a) e = [H | |a)
ja) : : ja)
|a) q T T 4 |a)
|a) (1] — . - L ja)
; 5.4 o]l ln ] .

Fig. 8. TestsTy and T> (GHZ states): In Tesi, a = 0 so the circuit starts off in statd0000). QBIST;; maps this state to the oracle’s input as:
(]0000) 4 |1111)) ® |0). In TestT», a = 1 and the input to the oracle i${0000) — |1111)) ® |1). QBISTi2> removes entanglement and returns the system
to a product state.

and next|1) satisfying Axiom[®. arbitrary non-activating and activating states since Hrget
Proof: IntestsT; andT; the test state prior to applicationstate has an eigenvalue #fl, satisfying Axiom[b. [ ]
of the oracle ig(|0)®* +(1)®") @ |a). In both testsTy andT, ~ Theorem9: Either one of testd or Ty detectso. or o,
the term|0)®* addresses each control with a non-activatinghase flips and therefore satisfies Axib 2.
state, the term- |1)®* activates all gates and in both tests the ~ Proof: Here the Proof is done considering te,
target is in a basis state. This satisfies Axigm 6. m however the steps are the same as those needed fdfgtest
Theorem6: Taken together tests; andTy; force each gate Consider staté+)“* @ |+), this is a product state that may be
in the circuit to act on both basis states, thereby satigfyiexpanded ag+)®- - -Q|+)®|+) ®|+) @ --®|+). The state
Axiom [4. of the target i§+) and therefore phase will not make the state
Proof: In both tests’; andT5 the term4- |1>®’“ activates non-local (with an exception of a phase flip on tfie+ 1)
all gates. Each gate in te%j that received target input statebit, in that case the bottom bit will deterministically red¢he
la) received target input stat@) in test 7T, thus satisfying presence of an error). Givena fault impacting any qubit,
Axiom [1. m the state becomds ) ®@ - @ [+) @ |-) @ |+)@--- @ |+). In
Theorem?7: After executing tesf’}; andT, each qubit will the final stage 0BIST;, a Hadamard operatiof ®**1) s
be measured in both basis states, thus satisfying Akiom 8.applied to the register:
Proof: The result of test?y is [0)**™V) and the
measured result pending the success of Tosts |1)®F D HY ) 1@ @ H) @) @+ @& [+) —
thus satisfying AxioniI8. u 0)® - ®[0)®|1)®[0)®- - ®]0). (13)

C. Super Test§- and T: ®k and |—)®* Since ther, bit flip impacts the global state of a qubit, it will
P > 5 [+ @ +) =) el e seen as a bit flip in the measured statel'ofsatisfying

The two following tests are simple to conceptualize, as se@iom D. The ; i :
L _ . proof is concluded mentioning that this result
in Fig.[d they have an added gate complexitydff. When  .incides with observations drawn in [24], (Theorent 4).
a = 0 testT} generates input state- + ++) ® |+) and when n

Zi:ea\}:ﬁg%?t%gigtegt Igtg?;'séatr?o;h_a?§i|n+r>e'k§tlisge Lhaese The classical degrees of freedom for an oracle have been
9 9 ! 9 P accounted for in test$y, Ts, T5 and T with an added gate

should result from propagation through the quantum circ% mplexity of only4(k-1)H+4(k—1)CN. The phase kickback

and the state of the register should not become entanglpe tures of the gates in the oracle are verified next in tests
X?(ﬁ)%etﬁrgxegd?:é 5:}23 %%mg'lgiﬁy"\gg”esﬂ satisfy T3 and T,. Superposition inpu_t states that ha\_/e retaliative
' phases to each other are difficult to control since they are
often entangled and therefore not expressible in a prodatet s
description. Depending on the function realized in the lerac
) a different amount of entanglement will be added. Returning
) the system to a product state (removing this added entangle-
ment) adds complication to tests that verify this propertye
a) controllability of a circuit represents an ability to prazde
)
)

Circuit Under Test

la Fom === = = — 4 r — & —

a

B

SREER

B

B

a specific input vector through a network, such that it will
map a state to a specific fault location. This represents an
added challenge in the case of quantum circuits, since snput
L e T -2 -2 - — will become entangled and in many cases specific inputs to
Fig. 9. TestsTs andTs (Super Tests): Tegt-)®* @ |+) is first generated a specific location may not be possible. However, after a
(a :hg(t:rﬁ) antd ne>t<t test—t>‘>t3’k ® \J) is flppliled [0 ?1, :C?&' gh_e ta_{%et ctJf tdiscussion of the upper bounds of teg§sand T in SecIII-H
gi%?:e no relga?iveea[;:hzls(t)ancfw;c:n%_e> of ﬁ]d?Cic?Sagl esraqggrp:fst%ume(s)lr\}viﬁlogur.es more <_:ontro||ab|e test Input Ve.CtorS are proposed m”
replacing the added complexity of these tests with a linear
increase in the number of experiments needed. TEstand
T, introduce important concepts that will foster growth irsthi
Theorem8: Together testds and Ty satisfy Axiom[b. research area and allow one to gain a better understanding of
Proof: In both testsT; and 7 the state of the target the complexities of controllability and observability werdhe
qubit is |+). Any gate that was activated by a state with amfluence of quantum entanglement. A purpose of this paper is
eigenvalue+1 in testTs will be activated by a state with anto introduce these concepts and connect ideas from quantum
eigenvalue-1 in testTy. Relative phase will not change undeprocess validation and classical test theory.

a

B

)
)
)
)
)

TRPTT

|0 |0
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Axioms(]) | Fault Types Teste(l]) — Tests(—) [ Th [ T2 [ T3 [ T4 [ 15 [ T | ThWUTS [ T3UT, | Ts U Tk
Axiom[l | Any o, or g, bit flips occurring? X X X

Axiom X | Any o, phase flips occurring? o o o X X o o X
Axiom[d | Is initialization into]0) and|1) O.K.? o o o o X X

AxiomHll | With [—) at target is phase kickback O.K.? o o X

Axiom Any phase problems with+) at the target? ) ) X
Axiom Are the controls activated witf0) and|1)? o o X

Axiom[d | Gate acts on basi®) and|1) O.K.? o o X

Axioml | Is measurement if0) and[1) O.K.? o o X

Fig. 10. Tests are depicted in colum®s- 11, fault types in columr2 and Axioms in columnl. A given test (column) with table entry below it satisfies
the Axiom listed in the row corresponding to that Entries witho inside correspond to tests that cover some, but not all offdablts depicted in the
corresponding row.

D. TestTs: |[+)%* @ |-) to +1, making the state factorable @8)-+|1))(]0)+]1))(]0)+

The goal of testl; is to verify that phase traverses back!1)(10) = [1) @ |=).
wards correctly amongst all gates. For tégtthe Hadamard

gates at the left of Fid—11 are used to prepare the following Z‘f — j Z; : Zi — ﬂ
superposition state as the oracle’s input on theitdpts: as = —1 ao-ay - as = +1
=+1 a1 -az =—1
= |0000) + [0001) + [0010) + [0011) + |0100) + |0101) a4 — 11 PSSP G (19)
+0110) + [0111) + [1000) + |1001) + [1010) + |1011) ao - az = +1 ai-az-az =+l
ap-as = —1 ap-ai-a2-a3 =—1
4 ]1100) + [1101) + |1110) + [1111) (14) a1y = 41 Vi,ai € {—1,+1}
Observe that Eqii_15 is like a truth table where all the true
minterms of the function have phase factors-df, (see FiglB). Circuit Under Test QBIST2
This often results in phase induced entanglement as showpjn—{ /| Fp===== =5 — 5 = e |a)
Eqn.[I5. | I |
la) —{H1} T |a)
= ]0000) + [0001) — [0010) + |0011) — [0100) — |0101) | . :
4+ |0110) + [0111) — [1000) — [1001) + [1010) + [1011) | —UH} 0 UL )
+|1100) + [1101) + [1110) — [1111) (15) la) —{HH Y YN A (Y AR O & (H]— la)
(N Ul Ut Ut | et et Ut R Ut W
In general, a productdcal) superposition state may be writteril) — H J-&—&—0—0—d—0— TS — 1 H 1)

as. Fig. 11.  Circuit Under Testls and Ty: Test T3 — |+)®* @ |—) is

k—1
) first generatedd = 0, T3) and next testfy — |—)®* ® |-) is applied
= ® (|O> +ai |1>) (16) (a =1, Ty). Nodes activated with0) are denoted asof. QBISTz2 removes
i=0 entanglement returning the system to a product state anthbasame form
. . . in both tests.
where anyu; term is either+1 or —1. For the state in EqiLL5

to be expressible as a product state, EEqh. 17 must be satisfied

. Rk

(10) + a0 [1))([0) + a1 [1))([0) + a2 [1))([0) + a5 [1)). (17) B Testli [=) @)
. i . . . Test Ty is an exact dual to tesfs and therefore, the
fleer\ Eqnl'Fm’ ar;y OT% af (Ot_g v ?tﬁ) possﬂgle chtmtcest neededQBIST., stage will have the exact same structure as
or a; results In a focal description ot the quantum state (l}ﬁe QBIST;, already used. Now the register is initialized into

implications of which will be discussed in Sdc_TlI-F). Thesiatai1111 . T
X : ®|1) (by settinge = 1 in Fig.[I1). The Hadamard
general expansion of EqiL]17 leads directly to the geneﬂﬁer(";\tors>ma|p>tr(1iginitial gsCtLate as fol?ows:)

state:
= [0000) + a3 |0001) + as [0010) + a1 |0100) + ag |1000) (H®<’““>) (M) ® 1) — |- -——)®|-) (20)
“+ag - a1 |1100> +ap - az |1010> “+ ag - as |1001>

and this acts as input to the oracle. The phase of each term
+aj - a2|0110) + a; - a3 |0101) + as - a3 |0011)

is now opposite when compared wiily. QBIST,, inverts the

+ag - a1 - a2 |1110) + ag - as - a3 [1011) phase on term1110) and |[0011) to —1, making the state
+ag - ay - a3 |1101) + ay - ag - ag|0111) factorable and resulting in this local state descriptitih) —
a0 ar - az - a3 [1111) g 0 = 11)(10) = [1)(0) + 1) & |-).

Theorem[ID proves that te§f; combined with testT,
Comparing Eqnsl15 arld]18 for the considered circuit, tisatisfy Axiom[3. Testd; andT} have a worst case added gate
system of arithmetic equations given in E@Ql 19 is obtainegomplexity of at mos® (N —k)+4kH, whereO© is a function
This system is clearly not specifying a product state sin@ the number of controls needed in the disentanglemengstag
Egns[Ib an@18 matched with Ednl 19 are inconsistent. Tard the linearity of the oracle.
interfering termsag - a1 - a2 and as - a3 could be changed Theorem10: Together testds and 7} satisfy Axiom[3.
for the system to return to a local, product state descnptio Proof: In testsT5 and T, the state of the target is-).
This may be done by inserting th@BIST;s circuit given in  Any gate that was activated by a state with eigenvaltiés
Fig.[M1.QBIST;, inverts the phase on ternisl 10) and|0011)  during testT5 is activated by a state with eigenvalues
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in test 7. Furthermore, both test$; and 7, contain non- arithmetic expressions like; - a; are changed to Boolean
activating terms, each with opposite eigenvalues. TEBs@mnd values likeen(a1)®en(az). Normally one would consider the
T, therefore satisfy Axionfil4. B case thaby, = 0 for linear functions. Because of global phase

To conclude the test algorithms presentation, the Table lip may take either binary value corresponding to all affine
Fig. [I0 is now mentioned. This table provides a concidanctions onk variables. It is well known from the canonical
illustration of the sets of faults entirely covered by gitest(s) SOP to PPRM conversion method that PPRNip=1 & (by &
(denoted byx) as well as the sets of faults partially covered;) - x5 © (b ® ba) - x2 ® (bo D b1 D ba D b3) - x2 - 3 D (bo B
by a given test (denoted bgb b ® by ® bg) s X1 To D (bo D b4) X1 D (bo B b Dby P b5) .

We have developed a quantum test algorithm for the quan-- x5 ® (by ® by © ba @ b3 @ by © bs ® bg ® br) - 11 - 22 - T3,
tum phase oracle. It has been shown that this test pattevhereb; are coefficients of minterms, i.éy is a coefficient
satisfies all of the Axioms in SeEl Il and the results coincidsf [000), b; is a coefficient of|001), etc. The minterms of
with Theorem$1l anl 2. This test pattern therefore probes @wnonical SOP obtain thus the following encoding (symbol
logical function of eactk—CN gate in the oracle. Now upper- is arithmetic multiplicatior b, = en(az), bo = en(a1),
bounds on the extraction techniqu@RISTs, circuit stage) b3 = en(a; - az) = en(a1) ® en(az) = by ® by, by = en(ag),

will be derived in SedI=F. bs = en(ag - a2) = en(ag) ® en(az) = by ® by, by = en(ag -
ay - az) = en(ag) B en(ar) B en(az) = by & by ® by.
F. Upper Bounds for QBISE: Applying now the encoding from Eqi.23 and substituting

The concepts of the presented test algorithm are general ##@ the above PPRM one obtains PPRMo=1® (b ®b1 )-z3®
therefore work for any circuit. They do however require th&o®bz) - x2® [(bo©b1Db2)® (b2 ®b1)|w2 23D [(bo Db2Dbs) B
successful design of tH@BIST;.. This design varies between(ba®©bz)]1- 22 (bo®ba) w1 D[(bo©b1Dbs) B (ba®by)|z1-22®
oracles and has an upper bound of added depth complexity that b1 Db2) ® (b2Db1)® (ba)D (ba®b1)D (ba@b2) D (bsDba®
depends on the function realized in the oracle. The purpdse] =1 -72-x3 = by 1D (bo@b1)x3D (bo Db2) w2 (boDba) 1.
of this section is to present an analysis of this test methd@us, PPRM & (bo®b1 )23 (bo@b2)z2®(bo©ba)z1 Which
designed for functional information extraction. It begimigh ~ corresponds to all affine functions on variableszz, z3. ®
the following definition. If oracle O contains functiorf (z1, ..., z) that is not affine,

Definition 7: An affine Boolean functiomd (1, ...,x;) , @ modification to any one of the affine functioAs(z1, ..., 7x)
on variablesty, ..., zj, is any function the takes the form  must be made. This can be done by adding a circuit (such as
QBIST;32(z1, ..., ;) and can be thought of as EXORIng it
Ap(zr, @2, 2p) = co®er- w1 @z 2@ Dep-zx, (21)  \with some function, like this:
where - is Boolean AND,@® is EXOR (modulo2 addition),

c; € {0,1} andi = 0,1, ...,n are indices of coefficients. It is flar, o o) @ BIST (@, s ) = Ay, - 2p)- - (24)
easy to see that there ext™! affine functions all of which Thys, f(zy,...,2;) = BISTi(21,...,21) & Ai(21, ..., 7).
have checkered cube patterns. A linear function is any onefie general disentanglement procedure is as follows:
the 2% affine functions generated when coefficiept= 0.

We present the following theoredi{11) relating state sepa-
rability to the function being realized by a given oracle. An
observation made during this study is that oracles regizin
affine functions produce no net entanglement on the &op : :
gubits. However, an oracle search space realizing bentiumc 3) Fun%'I%q_BISTi(xl’ - %) is added (XORed) aftef
produces maximal inseparability in state of the fomgubits asQ 32: . ,
when used as a search oratl@hus, an oracle realizing Theorem12: The minimum number of product terms in the
an affine function will correspond to, in the ideal case, §SOP realization of the BIST circuit ES@RST(x1, ..., 7 )
deterministic measurement result when interfered thradgh4i(z1, -.,zx)] where A; is an arbitrary affine function on
gates. variablesz, ...,z is equa! top — k wherep is the minimal

Theorem11: Consider oracl@ for which testT; obtains Number of product terms in ESOBIST(z1, ..., 7).
only separable (local) measurements (requires no disentan Proof:  Given is the minimal ESOP, denoted by
glement).O necessarily realizes only affine functions ower ESOP(BIST), of functionBIST (1, ...,xx). Let A be an
variables. arbitrary affine function on variables; , o, ...,x; andcy @

Proof: The formal proof involves complex notation butc1 - 1 & ...cx - 2, Wherec; € {0,1}. There are two of
is based on the straightforward genera”zation of the W]Hg these_functlons that have the maximum number of variables
example: equalingk; z1 @ z2 @ ..z and1 Sz B w2 & - D ay, =

Assume input variablegz,, 22, z3). The expression T1 @ 22 @ ...z Assuming that ESOP(BIST) has the minimal

number of product terms, the following cube pair types must
|000) (+1) +[001) a2 + [010) a1 + [011) a1 - ag + not be included in itw; - x; D, v -2 Ox; - T, w7 DT; -5,
[100) ag + |101) ag - as + [110) ag - a1 + x;-x;®T;-2;. The only product terms possible in ESOP(BIST)
|111) ag - a1 - as (22) are necessarily;, T;, x;-xj, T;-T;, r; DTz -...-xp. If oOne
. . writes ESOP(BIS®A;) as ESOPBIST) ®x1 ®xo® ... xk
corresponds to a classical truth table wjtha; expressions provided all the best merging cases, then all variableargis)
corresponding to sum-of-product canonical coefficients: Afrom A are merged, each of them with some literal from
suming the encoding ESOP(BIST), like thisz; @ z; = 0, 2; ® &; = 0 andz; & ;.
en(+1) =0, en(—1)=1, (23) Each of these cases will decrease the ESOP cost by one.

1) Each functiond;(x1, ..., zx) ® BIST;(z1, ..., x)) iS re-
alized as an ESOP.
2) BIST;(x1,...,x)) with the minimum cost is selected.

7|t is interesting to note that a quantum computer can diststgall affine 8This is also called the polarity table in which one considerBoolean
oracles with a single query; an exponential speed up oveclt#ssical case, function over variables{—1,1} instead of{0, 1}. In this case, XOR &)
with no known use yet, other than testing linear systems. over {0, 1} is equivalent to real multiplication over—1, 1}.
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Circuit Under Test
Merging z; with z; - Tj = Ty Ty DT T = Ty I_j will |1> Fog— — — — — — — 4  — ¢ —
not change the ESOP cost. All other mergings will increasei
the cost of the ESOB(ST® A;) with respect to ESOP(BIST). I+)
Thus, the number of terms in the ESOP can be decreased by)
no more thark. Observe also that the highest decrease of cost
is when BIST is already an affine function. [ ] 1)
As proven by Gaidukov [34], the worst case complexity
of an ESOP expression fdr variables is29 - 2°-7 product |~ I e P

terms for k > 6. It was however shown by exhaustiverig. 12. Alternative setup for tests; and Ty: Test|0111) + |1011). The
search [36] that for functions of four variables ordly reach target of eactk-CN gate acts on state-). No entanglement is added in either

the maximum bound of (counting constant as a term) and test, since all relative phases will result in a product mezment in the Bell
. . asis.
only 3888 functions haves terms. There exist several ESOFp

Bel

NN

minimizers that can efficiently realize large functions @ik Circuit Under Test

exponentially good results for arithmetic functions. Imnte 1) F——— ——— E

of exact solutions, the best ESOP minimizer can be found ' '

in [35]. 1) | | 4]
Many useful functions (such as adders) are nearly Iinear.|1> ' '

The method of extraction introduced for te§ts andT,; may ' ' Bell

be considered as a discussion of controllability of quantumH[> ‘ ‘

systems when the concept of test is an issue. A maximally nonr-_ 2 ) ot U A KB Y H

linear Boolean function is known as a bent function, wheee th R -

measurement of nonlinearity depends on Hamming distanE#; 13. Alternative setup for tests; and7y: Test|1101) = [1110).

Bent functions have several applications in cryptographegir

use in ciphers and a discussion of the difficulties of finding a

bent function can be found in [37] and the references therefnethods such as ours will find more frequent use. The firstidea
will be to use the proposed test set with one key exception.

G. Possible Extensions and Applications Instead of computational basis measurements, perform-tomo

. L . . .. ._graphic state reconstruction and apply the distance messur
An observation found in this study is that in some switchin iven in Ref. [11]. In the future these distance measures(on

circuits, both phase terms and product terms may need . ; ; ;
be changed in the finaDBIST,, stage to make the states flored test set) will be replaced with computational basi

description local and extract information. Nonetheless tmeasurements—as proposed in this study. It is interesting

principle of our algorithm is general and with an adjustmergt]natecr);remgltgOdugrn%'r?]ezoamn%q;laigsazaeldsgﬁel\;ljr\,mgre ?ﬁ;g‘:&i
has application to arbitrary structures af x n quantum q P

X o : or. a machine capable of generating observable averages as
mechanical switching networks (as opposed to single OUtp()Lﬂtput). Classically, the lower bound of this circuit class

guantum-realized functions). Respective test pattemnsa fon
networks should now also be developed. For example, t}ﬁ’gs found to be(k + 4 + 2n.) by Reddy [2] (where the

methods of making two non-adaptive oracle calls presentgd® term.depends on_the functio_n being realizt_ad). However,
in [38] are easily adapted to reduce the number of classifl classically impossible speed increase of this methasl wa

tests atleast twice y an interesting counterpart of our main goal. Our goal

as predominantly to generalize the classical test theondy a

An alternative approach based on the theory outlined is te . . i .
T5 andTy, utilizes highly controllable test vectors. The grovv‘[hg)mblne this theory and methodologies with quantum process

in additional circuitry is thus replaced with linear growith validation.
the number of experiments needed. The total cardinalitizén t
number of experiments in this second methobis-4[%/2]). IV. CONCLUSION
There is little added growth in circuit complexity. Te§tsand This work reduced the classical test problem by utilizing
T, are replaced with first repeating the circuitry needed ih tesntanglement as a controllability resource in Eet. IIl. Quen
T;. (All replaced tests of course have state at the target.) effects were used to test multiple classical degrees otltnee
Next, starting with the to@ qubits (Fig.[IR), an EPR pair is concurrently, hence the latter is used to verify the fornrat a
generated to test the oracle and mirrored with a measuremga&ntum process validation was reduced to a linear growth of
in the Bell basis. This is then moved down all the fogubits (5 + 4[k/2]) in experiment count. When testing an oracle,
(Fig.[13) a total o2[%/2] times. The EPR generating circuitrystates become non-local due to the phase change undergone
is used to create inputs that are products of statet-|10) and by all true minterms as seen in tedfs and 7, in Sec[Ilz00
[1). These must be repeated with both positive and negataed[IIl=H. It was shown in Se€_IIMIF that all affine oracles
versions to satisfy Axionf]4. This results in something igenerate no net entanglement when used as a search oracle,
classical test known awalking-a-zero[26] (except quantum while an oracle realizing a bent function requires the gretat
mechanics allows two zeros to be walked at the same timejfort to disentangle the state and return the system toal loc
This alternative approach however, does not probe the eraptoduct state. Since there a2&™! affine functions, Se€_IIEF
under the types of inputs experienced when used in a Groeeldressed the question of how close an arbitrary state is to a
search algorithm. It does however illustrate that the allgor factorable state with phase terms that represent the spectr
can be modified to reduce the complexity of the stages neeaddin affine function. The distance in many cases is close, but
to extract information. Alternative applications of thetimeds the upper bound is- ©(N — k). Linear and Affine functions
presented in this paper also exist. are very easy to test when realized quantum mechanically.
Disputing the implications of this testing method, we erBased on the potential limitations highly controllablettes
vision that after quantum systems become more controllablectors were developed in SECTII-G that do not undergog@has
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induced entanglement when propagation though a phaseorard)
occurs. This test set is an application of our main approacr[11.6]

In a correspondence from Agrawal it981 [39], fault
detection probability was shown to be the highest when
the information output of a circuit is maximized. However!7]
the information content into a classical circuit is fixed. An
interesting result found in our study is that when a quantujrs]
information source is used to increase information input,
the probability of detecting a fault is also increased. An
information theoretic approach to quantum fault testinghmi [19]
lead to further useful insight into the quantum test problem

The classical test problem is typically defined to be in thego
classNP. Other circuit structures will be shown to be expo-
nentially easier to test using our methods. The high te#iabi 21]
of a quantum information processing device, may well pro&e
in fact to be yet another supporting argument to study quantye?2]
information theory. Of course, the overwhelming failur¢era
experienced with constructing quantum circuits at the tohe
this writing causes us to call the results of this paper somagw
ironic. m (23]

[24]
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